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)is paper focuses on studying containment control problem with switching communication graphs of continuous-time het-
erogeneous multiagent systems where the control inputs are constrained in a nonconvex set. A nonlinear projection algorithm is
proposed to address the problem. We discuss the stability and containment control of the system with switching topologies and
nonconvex control input constraints under three different conditions. It is shown that all agents converge to the convex hull of the
given leaders ultimately while staying in the nonconvex set under the premise that at least one directed path from leaders to the
agents exists in each bounded time interval. Finally, the validity of the results obtained in this paper is verified by simulation.

1. Introduction

With the in-depth research of autonomous control ofmultiagent
systems in recent years, many cooperative control problems of
multiagent systems have become the focus of many fields, such
as control theory, biology, robotic systems, and spacecraft
systems [1–5]. )e study and exploration of multiagent systems
provided a unified framework and theoretical basis for various
practical problems such as unmanned aerial vehicles, formation
aircrafts, multiple robots, and other practical applications. A
Lyapunov-based approach was proposed to address the con-
sensus problem in [6]. Lin et al. [7] emphasized on the consensus
control problem in consideration of nonconvex control input
constraints. )e consensus control problem of multiagent sys-
tems with time delays was studied in consideration of external
interference in [8]. And the work [9] was centered on the
containment control problem. Lin et al. [10] studied distributed
optimization problems for continuous-time and discrete-time
multiagent systems with different constraints.

As an important branch of control theory, there weremany
articles focusing on the study of containment control [11–20].
Ji et al. and Li et al. [11, 13] solved the containment control

problem with fixed topology. )e output formation-contain-
ment problem of heterogeneous system was investigated in
[14, 15]. For double-integrator multiagent systems, contain-
ment control problemwith fixed communication topology and
position measurements was addressed in [16, 17]. Two dis-
tributed algorithms were proposed for containment control in
the case of only using absolute position measurements and
relative position measurements, respectively. However, the
‘sign’ function was employed in [17], which may lead to the
chattering phenomenon. Cheng et al. [18] avoided employing
the ‘sign’ function, and both disturbance and measurement
noise were also taken into consideration. Notarstefano et al.
and Zhang et al. [19, 20] investigated containment control with
switching topologies. Cao et al. [12] studied the solution of
containment control in consideration of switching topologies
and fixed simultaneously.

In many practical systems, the control inputs were
generally constrained in a convex or a nonconvex hull, while
most of existing works studied the multiagent problem
without considering the constraint of control inputs. )e
authors of [21–24] studied the consensus problem with
position constraints on the basis of the property of stochastic
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matrices. Nevertheless, these approaches could not be ap-
plied to the realization of containment control with the
nonconvex control inputs’ constraints. )e containment
control problem with input saturation of the second-order
agent system was studied in [25, 26]. However, control input
of each agent was supposed to be in a hypercube. In reality,
on account of the physical limitation, the control inputs were
often constrained in a convex or a nonconvex region. For
instance, the maximum driving forces of quadrotors, which
formed a nonconvex region, were in the direction of the
diagonal axis. A multiagent system model and a projection
consensus algorithm were introduced in [23], and it placed
emphasis on the effects of control input constraints. )e
algorithm was executed locally by each agent and its rela-
tionship with the alternate projection method was discussed
in [23]. Yang et al. and Lin et al. [27, 28] took nonconvex
velocity and control inputs’ constraints into consideration,
but what they emphasized on was the consensus control
problem which meant all the followers had to reach a
consensus.

In [29], all agents were assumed to be in the form of the
second-order dynamics. In practical applications, the mul-
tiagent systems might contain different kinds of agents. Our
focus of this paper is to study the containment control for
heterogeneous multiagent systems with nonconvex input
constraints. Since the agents in this paper have different
dynamics, the analysis for the case with all identical agents in
[29] cannot be applied to this paper directly. In this study, we
expand the results of [29] and mainly focus on the con-
tainment control problem of continuous-time heteroge-
neous multiagent systems, given the nonconvex control
input constraints and switching communication graphs. Li
et al. [30] studied the containment control of heterogeneous
multiagent systems. However, they did not consider the
constraints of control inputs and heterogeneous multiagent
systems at the same time. To analyze the stability and
convergence of the system, a nonlinear projection algorithm
is proposed to address the problem. )en, a model trans-
formation is introduced and estimates the distance from the
followers to the nonconvex hull by using the Lyapunov
function we construct. We prove that the distance decreases
and ultimately all followers converge to the nonconvex hull.

1.1. Notations. Assume that Rm×n represents the set of
m × n-dimensional real matrix. xT is the transposing matrix
of x. ‖x‖ is the Euclidean norm of x. Wχ(x) denotes the
projection of a vector x onto a closed convex set χ, i.e.,
Wχ(x) � argminx∈χ‖x − x‖.

2. Preliminaries

2.1. Graph 'eory. G(V, E, A) is a directed weighted graph
representing the communication graphs among the agents,
where V � v1, v2, . . . vn􏼈 􏼉 is the set of node representing the
agents and E⊆V × V is the set of directed edges representing
the communication between the agents. A � aij􏽮 􏽯 ∈ Rn×n is a
weighted adjacent matrix. Laplacian is a very important
matrix in graph theory, which is defined as L � D − A, where

D �
􏽘

n

j�1, i≠j
aij, i � j,

0, i≠ j.

⎧⎪⎪⎨

⎪⎪⎩
(1)

)en, the Laplacian matrix can be expressed as follows:
L � lij􏼐 􏼑

n×n
,

lij �
􏽘

n

j�1,i≠j
aij, i � j,

− aij, i≠ j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

For heterogeneous multiagent systems consisted of n first-
order andm second-order agents, the adjacent agents of second-
order agent i1 can be denoted as Ni1

� Ns
i1
∪N

f
i1
. Similarly, the

adjacent agents of first-order agent i2 can be denoted as Ni2
�

Ns
i2
∪N

f
i2

.s andf represent the second-order and the first-order
agents, respectively. Partition the matrix A and D as

A �
As Asf

Afs Af

⎧⎨

⎩

⎫⎬

⎭,

D �
Ds + Dsf 0

0 Df + Dfs

⎧⎨

⎩

⎫⎬

⎭,

(3)

where Dsf � diag(􏽐
j∈Nf

i1
ai1j, i1 � 1, 2 . . . m) and Asf repre-

sents the adjacent relationship of the second-order and the
first-order agents. Dfs � diag(􏽐j∈Ns

i2
ai2j, i2 � 1, 2 . . . n) and

Afs represents the adjacent relationship of the first-order
and the second-order agents. )en, the Laplacian matrix can
be expressed as follows:

L � D − A

�
Ls − Asf

− Afs Lf

⎧⎨

⎩

⎫⎬

⎭,
(4)

where Ls � Dsf + Ls, Lf � Dfs + Lf, and Ls and Lf are the
Laplacian matrix of second-order agents and first-order
agents, respectively.

2.2.NonconvexConstraints. )e control inputs are generally
subject to nonconvex constraints in many practical cases.
Hence, we have the following assumption.

Assumption 1 (see [7]). E ∈ Rr is a nonempty bounded
closed set, 0 ∈ Ei and
maxx∈Ei

‖QEi
(x)‖ � η, minx∉Ei

‖QEi
(x)‖ � η > 0. QEi

is a
nonconvex constraints’ operator and is defined as follows:

QEi
(x) �

x

‖x‖
max0≤ε≤‖x‖ ε|

δεx
‖x‖
∈ Ei,∀0≤ δ ≤ 1􏼨 􏼩 , x≠ 0,

0, x � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

In this study, the operator QEi
(.) is used to convert x to

QEi
(x) which has the alignment with the direction of x and

satisfies ‖QEi
(x)‖≤ ‖x‖ and δQEi

(x) ∈ Ei, for all 0≤ δ ≤ 1.
maxx⊆Ei

‖QEi
(x)‖ � η means that the value cannot be
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arbitrarily large. We do not have any requirement for Ei to
be convex or nonconvex. What we require is that the dis-
tance from any point outside Ei to the origin is lower
bounded by a positive constant.

3. System Modeling

Consider a continuous-timemultiagent system consisted of l

leaders, n first-order followers, and m second-order fol-
lowers. )e first-order agents have the following dynamic
equation:

_xf(t) � uf(t). (6)

)e dynamic equations of the second-order agents can
be denoted as follows:

_xs(t) � vs(t),

_vs(t) � us(t),
(7)

where s, f ∈ Γ represent the second-order and the first-order
agents, respectively, and xs(t), vs(t), and us(t) represent the
position information, speed information, and control input
of the second-order agents separately. xf(t) and uf(t)

represent the position information and control input of the
first-order agents separately. )e set of all followers is
expressed by Γ � 1, 2, . . . , n + m{ }. We assume all leaders are
stationary and the position states are denoted by
Y � y1, y2, . . . yl􏼈 􏼉.

In this study, if all the followers can converge into the
convex set of leaders under the control protocol for any
initial value given, that is, limt⟶∞ ‖xi(t) − Wχ(xi(t))‖ � 0,
the control protocol can realize the containment control.

4. Model Transformation

To analyze the containment control of continuous-time
heterogeneous multiagent system, a control protocol is
proposed in this study as follows:

us � QEi
− qsvs + 􏽘

i∈Γ
asi(t) xi(t) − xs(t)( 􏼁 − gs(t)(xs(t) − Wχs(t)(xs(t)))⎡⎣ ⎤⎦,

uf � QEi
􏽘
i∈Γ

afi(t) xi(t) − xf(t)􏼐 􏼑 − gf(t)xf(t) − Wχf(t) xf(t)􏼐 􏼑⎡⎣ ⎤⎦,

(8)

where s, f ∈ Γ and qs is speed decay factor of followers. asi(t)

and afi(t) are the weight of edge (i, s), (i, f) at time t. And,
we assume the weight of edge is always positive and lower
bounded by a constant εd. If follower i can get the infor-
mation from one or more agent directly, then gi(t) � gi,
otherwise, gi(t) � 0. Assume that χ(t) is the convex set of

the leaders. )e Laplacian matrix of the heterogeneous
multiagent system can be denoted by the following matrix:

L �
Ls − Asf

− Afs Lf

⎧⎨

⎩

⎫⎬

⎭. (9)

)en, algorithm (8) can be converted into

us(t) � QEi
− qsvs(t) − Lsxs(t) + Afsxf(t) − gs(t)(xs(t) − Wχs(t)(xs(t)))􏽨 􏽩,

uf(t) � QEi
− Lfxf(t) + Asfxs(t) − gf(t)(xf(t) − Wχf(t)(xf(t)))􏼔 􏼕.

(10)

)e following model transformation is introduced for
further derivation:

zi(t) �
QEi

[Φ(t)]
�����

�����

‖Φ(t)‖
, (11)

whenΦ(t) � 0, zi(t) � 1. For the first-order agents, (11) can
be denoted as follows:

zf(t) �
QEi

ωf(t)􏽨 􏽩
�����

�����

ωf(t)
�����

�����
, (12)

where ωf(t) � − Lfxf(t) + Asfxs(t) − gf(t)(xf(t)− Wχf(t)

(xf(t))). For the second-order agents, (11) can be trans-
formed as follows:

zs(t) �
QEi

− qsvs(t) + ωs(t)􏼂 􏼃
�����

�����

− qsvs(t) + ωs(t)
����

����
, (13)

where ωs(t) � − Lsxs(t) + Afsxf(t) − gs (t)(xs(t) − Wχs(t)

(xs(t))). From the above definition, it is easy to know the
range of zi(t), that is, 0< zi(t)< 1. We assume that zi(t) is
lower bounded by a positive constant πi � min zi(t)􏼈 􏼉> 0,
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for all i. According to the above definition, system (8) can be
converted into the following form.

For the first-order agents,

_xf(t) � zf(t)ωf(t). (14)

For the second-order agents,

_xs(t) � vs(t),

_vs(t) � − qszs(t)vs(t) + zs(t)ωs(t).
(15)

Denote ds � max 􏽐j∈Γasj(t)􏽮 􏽯, vs(t) � xs(t) + vs(t)/cs,
where cs � ds + gs is a positive constant. )en, (15) can be
expressed in the following form:

_xs(t) � csvs(t) − csxs(t),

_vs(t) � cs − qszs(t)( 􏼁vs(t) + qszs(t) − cs −
zs(t) Ls + gs(t)( 􏼁

cs

xs(t) +
zs(t)Afs

cs

xf(t) +
zs(t)gs(t)

cs

Wχs(t) xs(t)( 􏼁􏼢 􏼣.

(16)

5. Main Result

Prior to the main theorems, we need to give the definition of
switching communication graphs. Denote an infinite se-
quence of nonempty bounded continuous intervals as
[ts, ts+1), s � 0, 1, 2 . . . and 0≤ ts+1 − ts ≤T, where T is a
positive constant. Divide the above interval into a series of
subintervals which are represented as
[ts0

, ts1
)t, n[qts1

, ts2
h)...x[7tsn

, tsn+1
) with ts0

� ts and
tsn+1

� ts+1. We assume there exists a constant ρ≥ 0 that
makes tsn+1

− tn ≥ ρ. )e communication topologies change
at t � tsn

and do not change in the subinterval [tsn
, tsn+1

).

Assumption 2. Suppose that there exist at least one path
between leaders and followers in the interval [ts, ts+1) for
every agent. In other words, each follower can receive in-
formation from leaders directly or indirectly in the every
interval [ts, ts+1).

Assumption 3 (see [29]). ‖􏽐j∈Γaij(t)(xj(t) − xi(t))‖≤Ni/2
and gi(t)(xi(t) − Wχi(t)(xi(t)))≤Ni/2 for some constant
Ni.

Lemma 1 (see [29]). Suppose that U⊆Rr is a nonempty
closed set. For any vector xi ∈ Rr, i ∈ 1, 2 . . . , n{ }, and
􏽐

n
i�1 ai � 1, we have

􏽘

n

i�1
aixi − WU 􏽘

n

i�1
aixi

⎛⎝ ⎞⎠

����������

����������
≤ 􏽘

n

i�1
ai xi − WU xi( 􏼁

����
����. (17)

To analyze the stability and convergence of the system, we
construct a Lyapunov function as follows:

F(t) � max
k

ζk(t) − Wχk(t) ζk(t)( 􏼁
�����

�����, (18)

where t≥T0, k ∈ 1, 2 . . . 2(n + m){ }.

Theorem 1. If qs ≥ (cs + 1)/πi and η /2<Ni < η, under as-
sumption 1 and 2, F(t) is a nonincreasing function relative to
time t and F(t)≥ 0, namely, the limit of F(t) exits. And the
following inequalities hold:

d xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

dt
≤ cs vs(t) − Wχs(t) vs(t)( 􏼁

�����

����� − cs xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����, (19)

d vs(t) − Wχs(t) vs(t)( 􏼁
�����

�����

dt
≤ cs − qszs(t)( 􏼁 vs(t) − Wχs(t) vs(t)( 􏼁

�����

�����

+ qszs(t) − cs −
zs(t) Ls + gs(t)( 􏼁

cs

􏼠 􏼡 xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

+
zs(t)Asf

cs

􏼠 􏼡 xf(t) − Wχs(t) xf(t)􏼐 􏼑
�����

�����,

(20)

d xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����

dt
≤ − Lfzf(t) + gf(t)􏼐 􏼑􏼐 􏼑 xf(t) − Wχf(t) xf(t)􏼐 􏼑

�����

�����

+ Asfzf(t)􏼐 􏼑 xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����.

(21)
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Proof. For the second-order agents, we can deduce

lim
Δt⟶0

xs(t + Δt) � lim
Δt⟶0

1 − csΔt( 􏼁xs(t) + lim
Δt⟶0

csΔt( 􏼁vs(t), (22)

where Δt is time increment and Δt⟶ 0. cs is a positive
constant. )en, it is evident that csΔt> 0, 1 − csΔt> 0, and
1 − csΔt + csΔt � 1. According to Lemma 1, (22) is con-
verted to

xs(t + Δt) − Wχs(t) xs(t + Δt)( 􏼁
�����

�����≤ 1 − csΔt( 􏼁 xs(t + Δt) − Wχs(t) xs(t + Δt)( 􏼁
�����

�����

+ csΔt vs(t + Δt) − Wχs(t) vs(t + Δt)( 􏼁
�����

�����.
(23)

Analogously, we can do the same conversion for vs(t):

vs(t + Δt) � 1 + cs − qszs(t)( 􏼁Δt( 􏼁vs(t) + qszs(t) − cs −
zs(t) Ls + gs(t)( 􏼁

cs

􏼠 􏼡Δtxs(t) +
zs(t)Asf

cs

Δtxf(t)

+
zs(t)gs(t)

cs

ΔtWχs(t) xs(t)( 􏼁.

(24)

To facilitate later calculations, we have simplified the
upper formula to the following form:

vs(t + Δt) � β1ivs(t) + β2ixs(t) + β3ixf(t) + β4iWχs(t) xs(t)( 􏼁, (25)

where

β1i � 1 + cs − qszs(t)( 􏼁Δt,

β2i � qszs(t) − cs −
zs(t) Ls + gs(t)( 􏼁

cs

􏼠 􏼡Δt,

β3i �
zs(t)Asf

cs

Δt,

β4i �
zs(t)gs(t)

cs

Δt.

(26)

For all t≥T0, we have

β1i > 0, β3i ≥ 0, β4i ≥ 0. (27)

When qs ≥ (cs + 1)/πi, we obtain

β2i � qszs(t) − cs −
zs(t) Ls + gs(t)( 􏼁

cs

􏼠 􏼡≥ qsπi − cs − 1≥ 0. (28)

And β1i + β2i + β3i + β4i � 1. )en, (24) can be converted
into the following forms:

vs(t + Δt) − Wχs(t) vs(t + Δt)( 􏼁
�����

�����≤ β1i vs(t) − Wχs(t) vs(t)( 􏼁
�����

����� + β2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

����� + β3i xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����

+ β4i Wχs(t) xs(t)( 􏼁 − Wχs(t)(Wχs(t)(xs(t)))
�����

�����.
(29)
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Combined with the following conditions, χs(t) ∈ χ,
χf(t) ∈ χ, and Wχs(t)(Wχs(t)(xs(t))) � Wχs(t)(xs(t)); it fol-
lows that

vs(t + Δt) − Wχs(t) vs(t + Δt)( 􏼁
�����

�����≤ β1i vs(t) − Wχs(t) vs(t)( 􏼁
�����

����� + β2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

+ β3i xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����.
(30)

Similarly, for the first-order agents, we can deduce

lim
Δt⟶0

xf(t + Δt) � lim
Δt⟶0

_xf(t)Δt + lim
Δt⟶0

xf(t)Δt, (31)

where Δt is time increment and Δt⟶ 0. According to (31)
and Lemma 1, we have

xf(t + Δt) � 1 − zf(t) Lf + gf(t)􏼐 􏼑􏽨 􏽩Δtxf(t) + Asfzf(t)Δtxs(t) + gf(t)zf(t)ΔtWχf(t) vf(t)􏼐 􏼑. (32)

To facilitate later calculations, we have simplified the
upper formula to the following form:

xf(t + Δt) � α1ixf(t) + α2ixs(t) + α3iWχf(t) xf(t)􏼐 􏼑, (33)

where α1i � [1 − zf(t)(Lf + gf(t))]Δt, α2i � Asfzf(t)Δt,
and α3i � gf(t)zf(t)Δt. We can deduce from (33)

xf(t + Δt) − Wχf(t) xf(t + Δt)􏼐 􏼑
�����

�����≤ α1i xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

����� + α2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

+ α3i Wχf(t) xf(t)􏼐 􏼑 − Wχf(t)(Wχf(t)(xf(t)))
�����

�����.
(34)

Similar to the second-order agents, according to the
condition χf(t) ∈ χ and

Wχs(t)(Wχs(t)(xs(t))) � Wχs(t)(xs(t)), we have
Wχf(t)(Wχf(t)(xf(t))) � Wχf(t)(xf(t)). )en,

xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����≤ α1i xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

����� + α2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����. (35)

It is evident that every ‖ζk(t) − Wχ(ζk(t))‖ is a convex
hull that is composed of ‖ζj(t) − Wχ(ζj(t))‖. From (23),
(30), and (35), we can obtain that

ζj(t + Δt) − Wχj(t) ζj(t + Δt)􏼐 􏼑
�����

�����≤ max
j

ζj(t) − Wχj(t) ζj(t)􏼐 􏼑
�����

�����. (36)

)us, F(t + Δt)≤F(t) can be deduced which indicate
that F(t) is a nonincreasing function relative to time t. It is

obvious thatF(t)≥ 0.)us, it is easy to know that the limit of
F(t) exists.
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For the second-order agents, according to the definition
of derivative and (23), we have

lim
Δt⟶0

xs(t + Δt) − Wχs(t) xs(t + Δt)( 􏼁
�����

����� − xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����􏼒 􏼓

Δt
≤ cs vs(t) − Wχs(t) vs(t)( 􏼁

�����

����� − cs xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����.
(37)

)at is,

d xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

dt
≤ cs vs(t) − Wχs(t) vs(t)( 􏼁

�����

����� − cs xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����. (38)

Similarly, according to (30), we have

lim
Δt⟶0

vs(t + Δt) − Wχs(t) vs(t + Δt)( 􏼁
�����

����� − vs(t) − Wχs(t) vs(t)( 􏼁
�����

�����􏼒 􏼓

Δt
≤ λ1i vs(t) − Wχs(t) vs(t)( 􏼁

�����

����� + λ2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

+ λ3i xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����.

(39)

)at is,

d vs(t) − Wχs(t) vs(t)( 􏼁
�����

�����

dt
≤ λ1i vs(t) − Wχs(t) vs(t)( 􏼁

�����

����� + λ2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����

+ λ3i xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����,

(40)

where

λ1i � cs − qszs(t),

λ3i �
zs(t)Asf

cs

,

λ2i � qszs(t) − cs −
zs(t) Ls + gs(t)( 􏼁

cs

.

(41)

For the first-order agents, similarly, according to (35), we
have

lim
Δt⟶0

xf(t + Δt) − Wχf(t) xf(t + Δt)􏼐 􏼑
�����

����� − xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����􏼒 􏼓

Δt
≤ μ1i xf(t) − Wχf(t) xf(t)􏼐 􏼑

�����

����� + μ2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����.
(42)

)at is,

d xf(t) − Wχf(t) xf(t)􏼐 􏼑
�����

�����

dt
≤ μ1i xf(t) − Wχf(t) xf(t)􏼐 􏼑

�����

����� + μ2i xs(t) − Wχs(t) xs(t)( 􏼁
�����

�����, (43)

Complexity 7



where μ1i � − zf(t)(Lf + gf(t)), μ2i � Asfzf(t). □

Theorem 2. Under assumption 1 and 2, all the followers can
move into the convex hull spanned by static leaders with
algorithm (3), i.e., limt⟶∞‖xi(t) − Wχi(t)(xi(t))‖ � 0.

Proof. Wewill discuss the convergence of the heterogeneous
multiagent system with switching graphs and nonconvex
control input constraints at intervals in three cases.

Case 1: suppose that there exists a agent in can receive
the information from leaders at time t � tsn

. At
this point, gi(t) � gi. First of all, we assume in is a
second-order agent. From (40), we have

d vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����

dt
≤ λ1in

vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

����� + − λ1in
−

zsin
(t)gsin

csin

􏼠 􏼡F tsn
􏼐 􏼑

≤ csin
− qsin

􏼐 􏼑 xsin
(t) − Wχsin

(t) xsin
(t)􏼐 􏼑

�����

����� + qsin
− csin

−
πin

gsin

csin

􏼠 􏼡F tsn
􏼐 􏼑.

(44)

According to the definition of calculus, for all
t ∈ [tsn

, tsn+1
), we have

vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����≤ e
csin

− qsin
( 􏼁 t− tsn

( 􏼁
F tsn

􏼐 􏼑 + 􏽚
t

tsn

e
csin

− qsin
( 􏼁(t− τ)

qsin
− csin

−
πin

gsin

csin

􏼠 􏼡F tsn
􏼐 􏼑

≤ e
csin

− qsin
( 􏼁 t− tsn

( 􏼁
F tsn

􏼐 􏼑 +
qsin

− csin
− πin

gsin
/csin

􏼐 􏼑F tsn
􏼐 􏼑

qsin
− csin

1 − e
csin

− qsin
( 􏼁 t− tsn

( 􏼁
􏼔 􏼕≤ 1 +

πin
gsin

e
csin

− qsin
( 􏼁 t− tsn

( 􏼁
− 1􏼒 􏼓

qsin
qsin

− csin
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦F tsn

􏼐 􏼑.

(45)

For all t ∈ [tsn
, tsn+1

), thus, we have

vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����≤m1F tsn
􏼐 􏼑, (46)

where m1 � 1 + πin
gsin

(e(csin
− qsin

)(t− tsn
) − 1)/qsin

(qsin
− csin

). It
is obvious that 0<m1 < 1. According to (38) and (46), we
obtain

xsin
(t) − Wχsin

(t) xsin
(t)􏼐 􏼑

�����

�����≤m1F tsn
􏼐 􏼑 + 1 − m1( 􏼁e

− qsin
t− tsn

( 􏼁
F tsn

􏼐 􏼑. (47)

For all t ∈ [tsn
, tsn+1

), we have

xsin
(t) − Wχsin

xsin
(t)􏼐 􏼑

�����

�����≤m2F tsn
􏼐 􏼑, (48)

where m2 � 1 + (1 − m1)e
qsin

(t-tsn
). Obviously, 0<m2 < 1.

If in is a first-order agent, we have

d xfin
(t) − Wχfin

(t) xfin
(t)􏼐 􏼑

�����

�����

dt
≤ − gfin

xfin
(t) − Wχfin

(t) xfin
(t)􏼐 􏼑

�����

�����≤ − gfin
F tsn

􏼐 􏼑≤ e− gfin
t− tsn

( 􏼁
F tsn

􏼐 􏼑. (49)

)en,

8 Complexity



xfin
(t) − Wχfin

(t) xfin
(t)􏼐 􏼑

�����

�����≤ n1F tsn
􏼐 􏼑, (50)

where n1 � e− gfin
(t− tsn

). Obviously, 0< n1 < 1.

Case 2: If there exists a follower in such that
‖xin

(t) − Wχin
(t)(xin

(t))‖≤ bin
F(tsn

), for the sec-
ond-order agents, from (23), we obtain

xsin
(t) − Wχsin

(t) xsin
(t)􏼐 􏼑

�����

�����≤ e
− csin

t− tsn
( 􏼁

bin
F tsn

􏼐 􏼑 + 1 − e
− csin

t− tsn
( 􏼁

􏼒 􏼓F tsn
􏼐 􏼑. (51)

For all t ∈ [tsn
, tsn+1

), we have

xsin
(t) − Wχsin

(t) xsin
(t)􏼐 􏼑

�����

�����≤m3F tsn
􏼐 􏼑, (52)

where m3 � 1 + (bin
− 1)e− csin

(t-tsn
). Obviously, 0<m3 < 1.

)en, we can obtain that

d vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����

dt
≤ (qsin

zsin
(t) − csin

)m3 + 1 − m3􏽨 􏽩 F tsn
􏼐 􏼑 − vsin

(t) − Wχsin
(t) vsin

(t)􏼐 􏼑
�����

�����􏼒 􏼓

+ 1 − m3( 􏼁 csin
− qsin

zsin
(t) + 1􏼐 􏼑 × vsin

(t) − Wχsin
(t) vsin

(t)􏼐 􏼑
�����

�����􏼔 􏼕≤ qsin
− cs􏼐 􏼑m3 + 1 − m3( 􏼁 qsin

− csπin
􏼐 􏼑􏽨 􏽩

× vs(t) − Wχsin
(t) vsin

(t)􏼐 􏼑
�����

����� + qsin
− cs􏼐 􏼑m3 + 1 − m3􏽨 􏽩F tsn

􏼐 􏼑.

(53)

And

vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����≤ 1 + 1 − m3( 􏼁 csπin
− qsin

− 1􏼐 􏼑 ×
e

− Bs t− tsn
( 􏼁

− 1
Bs

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦F tsn
􏼐 􏼑, (54)

where

Bs � 1 + 1 − m3( 􏼁 csin
πin

− qsin
􏼐 􏼑. (55)

Hence,

vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����≤m4F tsn
􏼐 􏼑, (56)

where

m4 � 1 + 1 − m3( 􏼁 csin
πin

− qsin
− 1􏼐 􏼑 ×

e
− Bs t− tsn

( 􏼁
− 1

Bs

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

0<m4 < 1.

(57)

For the first-second agents, similarly, we have

d xfin
(t) − Wχfin

(t) xfin
(t)􏼐 􏼑

�����

�����

dt
≤gin

bin
F tsn

􏼐 􏼑. (58)

)en,

xfin
(t) − Wχfin

(t) xf(t)􏼐 􏼑
�����

�����≤ n2F tsn
􏼐 􏼑, (59)

where n2 � e− gin
(t-tsn

)bin
, 0< n2 < 1.

Case 3: suppose that there exists a follower in such that
ainj0

(tsn
)> 0,

‖xj0
(tsn

) − Wχj0(t)(xj0
(t))‖≤ ej0F(tsn

), where
0< ej0 < 1. According to the above assumption,
for the second-order agents, we have

xsin
tsn

􏼐 􏼑 − Wχsin
(t) xsin

tsn
􏼐 􏼑􏼐 􏼑

�����

�����≤ 1 + ej0
− 1􏼐 􏼑e

− gsin
t− tsn

( 􏼁
􏼒 􏼓F tsn

􏼐 􏼑.

(60)

Hence,

d vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����

dt
≤ csin

− qsin
􏼐 􏼑 vsin

(t) − Wχsin
(t) vsin

(t)􏼐 􏼑
�����

����� + qsin
− csin

+
πin

csin

qsin

ej0
− 1􏼐 􏼑e

− csin
T

􏼢 􏼣F tsn
􏼐 􏼑. (61)
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Figure 1: Four directed graphs.
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Figure 3: Nonconvex constraints of control input.
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For all t ∈ [tsn
, tsn+1

), we have

vsin
(t) − Wχsin

(t) vsin
(t)􏼐 􏼑

�����

�����≤m5F tsn
􏼐 􏼑, (62)

where m5 � 1 + πin
csin

/qsin
(1 − ej0

) e− csin
(t-tsn

)(e(csin
− qsin

)(t-tsn
)

− 1)/qsin
(csin

− qsin
), 0≤m5 ≤ 1. Furthermore,

xsin
(t) − Wχsin

(t) xsin
(t)􏼐 􏼑

�����

�����≤m6F tsn
􏼐 􏼑, (63)

where m6 � 1 + (m5 − 1)(1 − ecsin
(t-tsn

)), 0<m6 < 1. And
similarly, for the first-order agents, there exists 0< n3 < 1 that
makes

xfin
(t) − Wχfin

(t) xfin
(t)􏼐 􏼑

�����

�����≤ n3F tsn
􏼐 􏼑. (64)

Under assumption 2, we know that there exists at least
one follower which can receive the information directly from
leaders. From the analysis of the above cases, in the time
interval [ts, ts+1], we have the following conclusions for all
agents:

xin1
ts+1( 􏼁 − Wχ xin1

ts+1( 􏼁􏼐 􏼑
�����

�����≤ c1F ts( 􏼁,

vin1
ts+1( 􏼁 − Wχ vin1

ts+1( 􏼁􏼐 􏼑
�����

�����≤ c2F ts( 􏼁,
(65)

where the constant c1, c2 ∈ (0, 1). And there exists another
follower in2 ≠ in1 which can receive the information from
leaders or in1 in the interval [ts+1, ts+2]. Hence,

xin1
ts+2( 􏼁 − Wχ xin1

ts+2( 􏼁􏼐 􏼑
�����

�����≤ c3F ts+1( 􏼁,

vin1
ts+2( 􏼁 − Wχ vin1

ts+2( 􏼁􏼐 􏼑
�����

�����≤ c4F ts+1( 􏼁,

xin2
ts+2( 􏼁 − Wχ xin2

ts+2( 􏼁􏼐 􏼑
�����

�����≤ c3F ts+1( 􏼁,

vin2
ts+2( 􏼁 − Wχ vin2

ts+2( 􏼁􏼐 􏼑
�����

�����≤ c4F ts+1( 􏼁,

(66)

where the constant c3, c4 ∈ (0, 1). )en, we can draw the
following conclusions:

xi ts+n( 􏼁 − Wχ xi ts+n( 􏼁( 􏼁
�����

�����≤ cF ts( 􏼁,

vi ts+n( 􏼁 − Wχ vi ts+n( 􏼁( 􏼁
�����

�����≤ cF ts( 􏼁,
(67)

where c ∈ (0, 1). Hence, there exists a constant ε ∈ (0, 1)

that makes F(ts+nr)≤ εrF(ts). )en, we can know the limit of
F(t) exists and lim

t⟶∞
max‖ζk(t) − Wχ(ζk(t))‖ � 0. )ere-

fore, we can draw the conclusion that the control protocol
can realize the containment control. □

6. Simulation

Consider a continuous-time heterogeneous multiagent
system with 6 followers and 4 leaders. According to the
topology assumptions, we design four different communi-
cation topologies which are shown in Figure 1. And they
switch every 1.5s. )e control inputs are limited in the
following set: χ � x|‖x‖≤ 1{ }∪ x|‖x − [0,

�
3

√
/2]T‖≤ 0.5􏽮 􏽯∪

x|‖x − [0, −
�
3

√
/2]T‖≤ 0.5􏽮 􏽯. Suppose the weight of every

edge is 0.6. Initial position values of followers are
x1(0) � [− 3, 3]T, x2(0) � [− 3, 0]T, x3(0) � [− 3, − 3]T,

x4(0) � [3, 3]T, x5(0) � [3, 0]T, and x6(0) � [3, − 3]T. Initial
position values of leaders are y1(0) � [− 2, 2]T,
y2(0) � [2, 2]T, y3(0) � [− 2, − 2]T, and y4(0) � [2, − 2]T.
Initial velocity of agents are v1(0) � v3(0) � [1, 1]T,
v2(0) � [1, 0]T, v4(0) � [− 1, − 1]T, v5(0) � [− 1, 0]T, and
v6(0) � [− 1, 0]T. We suppose each parameter qi is taken as
qi � 10. Figure 2 shows the trajectory of followers. As you
can see in Figures 2 and 3, all the followers finally converge
to the set composed of multiple stationary leaders while the
control input of each followers remains in their corre-
sponding constraint set. )e simulation result is consistent
with theorem.

7. Conclusion

)is paper focuses on distributed containment control with
nonconvex control input constraints of heterogeneous
multiagent systems. For this system, a protocol with non-
convex control input is proposed. Based on the Lyapunov
function and the definition of the derivative, we can theo-
retically infer the distance between each follower and the set
consisted of leaders in each time interval. )en, we can
obtain that each follower is driven to converge to a convex
set composed of multiple stationary leaders. Future work
could be directed to the containment control of the system
which consisted of more different order multiagent.
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