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Tis article is devoted to investigate a mathematical model consisting on susceptible, exposed, infected, quarantined, vaccinated,
and recovered compartments of COVID-19.Te concerned model describes the transmission mechanism of the disease dynamics
with therapeutic measures of vaccination of susceptible people along with the cure of the infected population. In the said study, we
use the fractal-fractional order derivative to understand the dynamics of all compartments of the proposed model in more detail.
Terefore, the frst model is formulated.Ten, two equilibrium points disease-free (DF) and endemic are computed. Furthermore,
the basic threshold number is also derived. Some sufcient conditions for global asymptotical stability are also established. By
using the next-generation matrix method, local stability analysis is developed. We also attempt the sensitivity analysis of the
parameters of the proposed model. Finally, for the numerical simulations, the Adams–Bashforth method is used. Using some
available data, the results are displayed graphically using various fractal-fractional orders to understand the mechanism of the
dynamics. In addition, we compare our numerical simulation with real data in the case of reported infected cases.

1. Introduction

Various viral infectious diseases have greatly afected human
life in the past. Some famous viral infectious diseases were
known as swine fu, infuenza, SARs, MERs, etc. Recently,
coronavirus disease 2019 (COVID-19) has greatly afected
human life all over the world. Te said infection has been
reported for the frst time in Wuhan, China, in December
2019. After three months, the disease took the form of a
pandemic which was announced by the WHO in April 2020
(see [1]). Recent estimates issued by the WHO showed that
the full death toll associated directly or indirectly with the
COVID-19 pandemic between 1 January 2020 and 31

December 2021 was approximately 14.9 million (see details
in [2]). Approximately, more than six hundred million
people have got infections (see [3, 4]). Since the outbreak
surrounded the whole globe, each nation in the world has
taken its own measures. Some countries have imposed a
strict curfew and precautionary measures including wearing
face masks, keeping social distance, and avoiding large
gatherings. Europe has been seriously afected along with
USA, Brazil, Iran, and India. Initially it was reported that the
disease has been transmitted from some animals to humans
because the virus was frst identifed in a man who was
working in a fsh market. After that, various researchers
proved that bats are not a unique source and the mentioned
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disease may be transmitted from other animals, person to
person, and dogs (see [5, 6]).

Epidemiology is the most important branch of medical
science and it has been very well developed in recent times.
In the said area, various infectious diseases are investigated
for treatment, controlling, curing, etc. Moreover, virology is
a sub-branch, particularly dealing with virus and their
transmitted diseases. Here, we remark that infectious dis-
eases are investigated via various tools and methods. Bio-
mathematics and bio-informatics engineering have attracted
researchers recently more than in the past. It is worth
mentioning that mathematical models are powerful tools to
describe various real-world problems. Terefore, modeling
infectious diseases is a hot area of research at the present
time. In the said area, the dynamics of various infectious
diseases are explained by using various diferential or in-
tegral equations (some studies we refer to as [7–9]).
Mathematical models help us to investigate various diseases
for prediction and controlling procedures, to save society
from great loss. Inspired by the aforesaid importance of
mathematical models, researchers have formulated various
real-world infectious diseases, we refer some as (see [10–15]
and [16]). COVID-19 has been transmitted nearly to every
part of the Earth and afected every nation of the world. Te
health conditions and economical situation of well-devel-
oped counties have been disturbed very well. In recent times,
the world needs efective medication for the said diseases to
save the lives of people. In this regard, great trials have been
performed on vaccine preparation so far (for such detail, we
refer [17]). Some authors have identifed that COVID-19
vaccination in low and middle-income nations is extremely
cost-efective and even price-saving (see [18]). Te infection
can be minimized all over the world by providing a vaccine
to all nations of the world without any obstacles. Because by
doing so, we can secure the next generation from the deadly
virus. Moreover, some measures, like treatment, and vac-
cination, nonpharmaceutical precautionary measures, for
instance, quarantine of confrmed cases, isolation, face
masks, hand washing, social distancing, and avoiding
gathering, should be imposed to reduce the transmission.
Currently, some versions of the virus have been identifed
which indicate a new threat to human life. However, re-
searchers have proved that the currently available vaccine is
useful in medication. Moreover, it has been proved that
vaccinated people if infected can easily be recovered com-
pared to nonvaccinated people. However, this is not a
permanent solution. Terefore, preparing proper vaccines
and their availability without any bound in every society at a
low price will be the best solution. Although, in some people,
the vaccine has shown some adverse reactions. However,
with the passage of time, things will become relaxed.

Most real-world problems are nonlinear in nature. In
the same line, most epidemiological processes or phe-
nomena are modeled in the form of nonlinear equations
under traditional order derivatives or diference equations.
As ordinary diferential operators are local in nature and
cannot produce the global dynamical behavior of the
phenomenon, researchers are increasingly using fractional
order derivatives in mathematical models (for instance, see

[19–22], and [23]). A signifcant amount of work has been
performed in this regard. Some well-known studies are
referred here as [24–28], and [26]. In current times, in
almost every discipline including fuid dynamics, bio-en-
gineering, control theory, epidemiology, and rheology, the
concept of fractional calculus is increasingly used to study
various processes and phenomenons (see [29–32]). On the
other hand, the said area has been exploited in engineering
sides also recently (see [33–35]). Here it is worth men-
tioning that fractal geometry can be used as a powerful tool
to investigate complex phenomena and every irregular
picture in nature properly. Furthermore, fractal curves and
surfaces are treated by using fractal dimensions to inves-
tigate their roughness. Because natural graphs are analyzed
by using fractal interpolation (see some details in [36]). In
previous times, due to the complex nature of fractional
calculus, researchers have studied fractal surfaces through
classical integer order calculus. Recently, many researchers
have used the fractal-fractional order concept to investigate
various real-world problems relating to epidemiology and
physics, and chemical sciences. Here, we refer to some good
work as [37].

Due to the ability to explain complex nature and preserve
memory concepts, the idea of fractal calculus is widely used
in the mathematical modeling of various diseases (details
can be seen in [38]). For dealing with problems involving the
fractal-fractional order derivatives, the traditional analytical
and numerical techniques have been updated (see [39, 40],
and [41]). Moreover, various numerical methods used for
fractional derivatives have been applied to treat fractal-
fractional problems. For instance, Adams–Bashforth pro-
cedure has been updated for dealing classical and fractal-
fractional order problems (see [42–49]). Also, some authors
have investigated other infectious diseases models like
[50–54], and [55]. Authors [56] studied the psychological
efects of staying home due to the COVID-19 pandemic. For
instance, the authors applied a novel fractal-fractional order
operator to the mathematical model of optimal control for
malaria, where the derivative is defned in the Caputo sense.
Two control variables have been introduced, as well as the
necessary optimality condition in order tominimize the low-
risk and high-risk infectious humans. Furthermore, the
optimal control has been studied and results were simulated
using a numerical scheme (see [57, 58]). In the same fashion,
the author [59] proposed a compartmental mathematical
model to acquire a better understanding of COVID-19’s
future dynamics.Te problem has been described as a highly
nonlinear coupled system of classical order ODEs, which has
then been generalized using the fractal-fractional derivative
with the Mittag-Lefer kernel. For recent work on fractional
order models, see [60], and [61]. Moreover, the boundedness
and non-negativity of the model have been established as
well. Here it should be kept inmind that authors [62] studied
the backward bifurcation of a vaccination model with
nonlinear incidence. Authors [63] studied a COVID-19
model. Authors [64] studied some stability results in control
process by using fractional derivative. For more applications
of fractional derivative, we refer [65]. Using mathematical
models and the concept of fractional calculus, we refer some
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recent work like [66–69], and [70]. Also authors investigated
a fractional order model for HIV infection in [71].

Motivated by the aforesaid discussion, we formulate the
proposed model under the fractal-fractional order deriva-
tive. We investigate the proposed mathematical model with
the vaccinated class by considering the available therapeutic
measures, vaccination of susceptible, and curing of infected/
hospitalized people. Our considered model involves some
important epidemiological and biological features of the said
disease like inhibitory efect, death rates due to infection and
nature, birth rate, and diferent vaccination rates. A fow
chart of our study is given in Figure 1.

Considering the compartmental diagram, the model is
formulated as

FFP
0 D

υ,π
U(t) � Λ −

bUV

1 + aV
− (ω + μ + α)U,

FFP
0 D

υ,π
V(t) �

bUV

1 + aV
− (λ + μ + β)V,

FFP
0 D

υ,π
W(t) � λV − (μ + ξ + c + d)W,

FFP
0 D

υ,π
Q(t) � αU + βV + dW − (μ + ρ)Q,

FFP
0 D

υ,π
Xv � ωU + ρQ + cW − μXv,

FFP
0 D

υ,π
Y � ξW + cW − δY.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

Symbols involved in model (1) are described in Table 1.
Also, the nomenclature and their dimensions are described
in Table 2.

Using various tools of mathematical analysis, we es-
tablish global and local stability. Te said analysis is
established by the Lyapunov method and next-generation
matrix method. Moreover, by using the Pontryagin maxi-
mum principle, we develop some results about the optimal
control procedure. Furthermore, sensitivity analysis is also
investigated about the parameters involved in our proposed
model. Some results for numerical stability are derived by

using the Ulam–Hyers concept. We also perform numerical
simulation for our considered model by using a numerical
method based on the Adams–Bashforth method to inves-
tigate multiphase behaviors under various fractal-fractional
order derivatives. Here, we remark that multistep methods
are increasingly used because these procedures are more
efcient than the earlier methods like the Euler method.
Moreover, the derivation of the Adams–Bashforth method
can be performed in a number of ways. By using numerical
interpolation and numerical integration, one can easily
derive the aforesaid method. Terefore, we use the aforesaid
scheme to simulate our model by using some numerical
values of the parameters and initial data given in Table 1. A
graphical presentation of some real data and discussion are
provided.

μ μ μ μ μ
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Figure 1: Compartment diagram of COVID–19.

Table 1: Te compartments and their description involved in
model (1) with initial values.

Variables Physical representation Initial values
U Te uninfected class 2500
V Te exposed class 20
W Te infected class 70
Q Te quarantine class 3
Xv Te vaccinated class 10
Y Te recovered class 20

Table 2: Te parameters and their description involved in model
(1).

Variables Physical representation Dimension
Λ Birth rate month− 1

ξ COVID-19 death rate month− 1

μ Natural death rate month− 1

a Inhibitory efect rate month− 1

b Saturation constant month− 1

β Infection rate from exposed class month− 1

α Rate of quarantine from susceptible class month− 1

β Rate of quarantine from exposed class month− 1

d Quarantine from infected class month− 1

ω Vaccination rate of susceptible month− 1

c Vaccination rate of infected month− 1

ρ Vaccination rate of quarantine month− 1
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2. Preliminaries

In this section, we recall the fractional-fractional operators
as given below.

Defnition 1 (see [61]). Let the function v be diferentiable in
the opened interval (a, b), then the fractional-fractional
derivative with υ and π are fractal and fractional orders,
respectively, in the Caputo sense with power law is given as

FFP
a D

υ,π
t v(t) �

1
Γ[m − π]


t

a

dv(ξ)

dξυ
(t − ξ)

m− π− 1dξ,

m − 1< π ≤m, 0<m − 1< υ≤m,

dv(ξ)

dξυ
� limt− ξ

v(t) − v(ξ)

t
υ

− ξυ
.

(2)

Here, v is continuous over the interval (a, b).

Defnition 2 (see [61]). Te fractal-fractional integral of a
function v with fractal order υ> 0 and fractional order π > 0
is defned as

FFP
0 I

υ,π
t v(t) �

υ
Γ(π)


t

0
ξλ− 1

v(ξ)(t − ξ)
π− 1dξ, (3)

where v is continuous over the interval (a, b).

Defnition 3. Consider the fractal-fractional nonlinear ODE,
such that

FFP
0 D

υ,π
g(t) � v(t, u(t)),withg(0) � g0. (4)

From [45], the resultant Adams–Bashforth scheme for
(4) can be written as

g(l + 1) � g0 +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) g w(j), tj  × (f + 1 − j)

υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v w(j− 1), t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( .

(5)

3. Equilibrium Points and Stability

Tis section is enriched with various stability results and
equilibrium points.

3.1. Equilibrium Points. Te disease-free equilibrium point
is given by

E
0

� U
0
, 0, 0, 0, X

0
v, 0 , (6)

where

U
0

�
λ

(ω + μ + α)
,

X
0
v �

ω
μ(ω + μ + α)

,

(7)

while the positive disease-endemic equilibrium is computed
in terms of one class such that

E
∗

� U
∗
, V
∗
, W
∗
, Q
∗
, X
∗
V, Y
∗

( , (8)

where

V
∗

�
U
∗
(ω + μ + α) − λ
λ + μ + β

,

W
∗

�
λU
∗
(ω + μ + α) − λ2

(μ + ξ + c + d)(λ + μ + β)
,

Q
∗

�
1

μ + ρ
αU
∗

+
βU
∗
(ω + μ + α) − λ
λ + μ + β

+
dλ U
∗
(ω + μ + α) − λ2

(μ + ξ + c + d)(λ + μ + β)
 ,

X
∗
V �

ρ
μ(μ + ρ)

βU
∗
(ω + μ + α) − λ
(λ + μ + β)

+
dλ U
∗
(ω + μ + α) − λ2

(μ + ξ + c + d)(λ + μ + β)
+ αU
∗

 ,

Y
∗

�
ξ + c

δ
λU
∗
(ω + μ + α) − λ2

(μ + ξ + c + d)(λ + μ + β)
 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)
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3.2. Basic Reproduction Number

dZ

dt
|E0 � F − V. (10)

Te nonlinear and linear terms of the infected classes in
matrices F and V, respectively, are given as

F �

UVb

Va + 1

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V �

V(β + λ + μ)

W(d + c + μ + ξ) − Vλ

Q(μ + ρ) − Vβ − W d − Uα

Xvμ − Qρ − Uω − Wc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

Now, the Jacobian matrix of F and V is given by

F �

U
0
b 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V �

β + λ + μ 0 0 0

− λ d + c + μ + ξ 0 0

− β − d μ + ρ 0

0 − c − ρ μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)

Calculating the inverse of matrix V and the next-gen-
eration matrix G(E0), such that

V
− 1

�

1
β + λ + μ

0 0 0

λ
(β + λ + μ)(d + c + μ + ξ)

1
d + c + μ + ξ

0 0

β d + βc + βμ + dλ + βξ
(μ + ρ)(β + λ + μ)(d + c + μ + ξ)

d

(μ + ρ)(d + c + μ + ξ)

1
μ + ρ

0

β dρ + βcρ + cλμ + βμρ + dλ ρ + cλρ + βρξ
μ(μ + ρ)(β + λ + μ)(d + c + μ + ξ)

cμ + dρ + cρ
μ(μ + ρ)(d + c + μ + ξ)

ρ
μ(μ + ρ)

1
μ

.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Tus, the nonzero and largest eigenvalue is the basic
reproduction number R0, which is

R0 �
bλ

(ω + μ + α)(β + λ + μ)
. (14)

3.3. Stability Analysis

Lemma 1 (see [60]). Let A be a 2 × 2 matrix, then the ei-
genvalues of the matrix A are negative in real part if
trace(A)< 0, and det(A)> 0.

Theorem 1. Te COVID-19 model at the disease-free
equilibrium point E0, is locally asymptotically stable ifR0 < 1,
otherwise unstable.

Proof 1. Te Jacobian matrix of system (1) at disease-free
equilibrium point E0 is given by

J E
0

  �

− α − μ − ω − U
0
b 0 0 0 0

0 U
0
b − λ − μ − β 0 0 0 0

0 λ − d − c − μ − ξ 0 0 0

α β d − μ − ρ 0 0

ω 0 c ρ − μ 0

0 0 c + ξ 0 0 − δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)
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Following the characteristic equation of the Jacobian
matrix (14), we have

(ε + δ)(ε + μ)(ε +(μ + ρ))(ε +(d + c + μ + ξ))

(ε +(α + μ + ω)) ε − λ + μ + β − U
0
b   � 0.

(16)

Tus, the eigenvalues of the characteristic (16) are given
by

ε1 � − δ,

ε2 � − μ,

ε3 � − (μ + ρ),

ε4 � − (d + c + μ + ξ),

ε5 � − (α + μ + ω),

ε6 � (λ + μ + β) R0 − 1 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (17)

As a result, all eigenvalues of the Jacobian matrix (15) are
negative for (λ + μ + β)[R0 − 1]< 0, such that R0 < 1. Hence,
model (1) is locally asymptotically stable around a disease-
free equilibrium point. □

Theorem 2. Te COVID-19 model at the disease-endemic
equilibrium point E∗ is locally asymptotically stable if R0 > 1,
otherwise unstable.

Proof 2. Te Jacobian matrix of system (1) at disease-en-
demic equilibrium point E∗ is given by

J1 E
∗

(  �

− (α + μ + ω) −
V
∗
b

V
∗
a + 1

−
U
∗
b

V
∗
a + 1( 

2 0 0 0 0

V
∗
b

V
∗
a + 1

U
∗
b

V
∗
a + 1

− (λ + μ + β) −
U
∗
V
∗
ab

V
∗
a + 1( 

2 0 0 0 0

0 λ − (d + c + μ + ξ) 0 0 0

α β d − (μ + ρ) 0 0

ω 0 c ρ − μ 0

0 0 c + ξ 0 0 − δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(ε + δ)(ε + μ)(ε +(μ + ρ))(ε +(d + c + μ + ξ))(ε +(α + μ + ω)) � 0.

(18)

Tus, eigenvalues of the characteristic (16) are given by

ε1 � − δ,

ε2 � − μ,

ε3 � − (μ + ρ),

ε4 � − (d + c + μ + ξ).

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (19)

However, the reduced matrix takes the form

J2 E
∗

(  �

− (α + μ + ω) −
V
∗
b

V
∗
a + 1

−
U
∗
b

V
∗
a + 1( 

2

V
∗
b

V
∗
a + 1

U
∗
b

V
∗
a + 1

− (λ + μ + β) −
U
∗
V
∗
ab

V
∗
a + 1( 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)
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Te matrix (20) possesses negative eigenvalues if the
trace (J2(E∗)) is negative and determinant (J2(E∗)) is
positive, such that

Trace J2 E
∗

( (  � − (α + μ + ω) −
V
∗
b

V
∗
a + 1

− (λ + μ + β) −
U
∗
b

1 + aV
∗

aV
∗

1 + aV
∗ − 1 < 0,

Determinant J2 E
∗

( (  �
b

1 + aV
∗

( 
(α + μ + ω) +

V
∗
b

V
∗
a + 1

+(λ + μ + β) +
U
∗
b

1 + aV
∗

aV
∗

1 + aV
∗ − 1 

U
∗

1 + aV
∗ − V > 0.

(21)

Te determinant is positive if U∗b/V∗a+

1>U∗V∗ab/(V∗a + 1)2. Hence, model (1) is locally as-
ymptotically stable around the disease-endemic equilibrium
point with negative eigenvalues of J1(E∗) and R0 > 1. □

4. Globally Asymptotical Stability

Theorem 3. For nonautonomous fractional order system, let
a � 0 be an equilibrium point, such that

FFP
D

υ,π
t a(t) � g(t, a), a t0(  � a0. (22)

Let Λ⊆Rn be a domain which contains a � 0. Let
L(t, a): [t0,∞] × Λ⟶ R be a continuously diferentiable
function such that w1(a)≤ v(t, a)≤w2(u) and
FFPD υ

tL(t, a)≤ − w3(a), for t≥ 0, a∈ Ω,where continuous
positive defnite functions w1(a), w2(a), and w3(a) on Λ
and L is Lyapunov candidate function, then, a � 0, is
globally asymptotically stable.

Lemma 2. For the fractal-fractional order, we use the lemma
defned for fractional order ODE from [42, 60]. At any instant
of time t≥ t0, assume a continuous diferentiable function a as

1
2

FFP

D
υ,π
t a

2
(t)≤ FFP

D
υ,π
t a(t), for allυ, π ∈ (0, 1). (23)

Theorem 4. Equilibrium point E∗ is globally asymptotically
stable.

Proof 3. We consider the quadratic Lyapunov function to
derive the Lyapunov candidate function for fractional order
diferential equation.

L a1, a2, a3, . . . , an(  � 
n

k�1

sk

2
ak(t) − a

∗
( 

2
. (24)

We defne the Lyapunov candidate function as

L U(t), V(t), W(t), Q(t), Xv(t), Y(t)(  �
1
2

U(t) − U
∗

(  +
1
2

V(t) − V
∗

(  +
1
2

W(t) − W
∗

(  +
1
2

Q(t) − Q
∗

( 

+
1
2

Xv(t) − X
∗
v(  +

1
2

Y(t) − Y
∗

( .

(25)

Te linearity property is given as

FFP
0 D

υ,π
t L U(t), V(t), W(t), Q(t), Xv(t), Y(t)( 

�
1
2

FFP
0 D

υ,π
t U(t) − U

∗
(  +

FFP
0 D

υ,π
t V(t) − V

∗
(  +

FFP
0 D

υ,π
t W(t) − W

∗
(  +

FFP
0 D

υ,π
t Q(t) − Q

∗
(  +

FFP
0 D

υ,π
t Xv(t) − X

∗
v(  +

FFP
0 D

υ,π
t Y(t) − Y

∗
(  .

(26)

Using Lemma 2, we have

Complexity 7



FFP
0 D

υ,π
t L U(t), V(t), W(t), Q(t), Xv(t), Y(t)(  �

FFP
0 D

υ,π
t U(t) − U

∗
(  +

FFP
0 D

υ,π
t V(t) − V

∗
( 

+
FFP
0 D

υ,π
t W(t) − W

∗
(  +

FFP
0 D

υ,π
t Q(t) − Q

∗
(  +

FFP
0 D

υ,π
t Xv(t) − X

∗
v( 

+
FFP
0 D

υ,π
t Y(t) − Y

∗
( ≤ λ − μ N(t) − N

∗
(  − μ Y(t) − Y

∗
(  − δ Y(t) − Y

∗
( ,

(27)

which further implies that

FFP
0 D

υ,π
t L U(t), V(t), W(t), Q(t), Xv(t), Y(t)( ≤ λ − μ N(t) − N

∗
(  − μ Y(t) − Y

∗
(  − δ Y(t) − Y

∗
( . (28)

□

4.1. Global Stability at Disease-Free Equilibrium Point E0.
Using disease-free equilibrium point, N0 � (Λ/μ) in the last
equation of the proposed model, one has

FFP
0 D

υ,π
t L U(t), V(t), W(t), Q(t), Xv(t), Y(t)( 

≤ λ − μ N(t) − N
0

  − μ Y(t) − Y
0

  − δ Y(t) − Y
0

 

≤ λ − μ N(t) −
λ
μ

  − Y(t)(μ + δ)≤ − w(a(t)).

(29)

Te last inequality (29) is negative if w(a(t))> 0, such
that if λ> μ(N(t) − λ/μ) + Y(t)(μ + δ). Hence, model (1) is
globally asymptotically stable around disease-free equilib-
rium point, E0 with N0.

4.2.Global Stability atDisease-EndemicEquilibriumPointE∗.
For global stability around disease-endemic equilibrium
point E∗ and N∗, we have

FFP
0 D

υ,π
t L U(t), V(t), W(t), Q(t), Xv(t), Y(t)( 

≤ λ − μ N(t) − N
∗

(  − μ Y(t) − Y
∗

(  − δ Y(t) − Y
∗

( ,
(30)

where

N
∗

�
λ − Y
∗
(μ + δ)

μ
,

Y
∗

�
ξ + c

δ
λU
∗
(ω + μ + α) − λ2

(μ + ξ + c + d)(λ + μ + β)
 .

(31)

From (30) and (31), we obtain

FFP
0 D

υ,π
t L U(t), V(t), W(t), Q(t), Xv(t), Y(t)≤ 2λ − μN(t)( 

− Y
∗
(μ + δ),

− Y(t)(μ + δ) −
ξ + c

δ
λU
∗
(ω + μ + α) − λ2

(μ + ξ + c + d)(λ + μ + β)
 (μ + δ),

≤ − w(a(t)).

(32)

Te last inequality (32) is negative if w(a(t)) is positive
such that, if 2λ> μN(t) + Y∗(μ + δ) + Y (t)(μ + δ) + ξ+

c/δ[λU∗(ω + μ + α) − λ2/(μ + ξ + c + d)(λ + μ + β)](μ + δ).
Hence, model (1) is globally asymptotically stable around
disease-endemic equilibrium point, E∗ with N∗.

5. Sensitivity Analysis

S
R0
p �

p

R0

zR0

zp
 . (33)

Now, according to the (33) relation, we have

S
R0
] �

b

R0

λ
(β + λ + μ)(α + μ + ω)

 > 0,

S
R0
τ �

λ
R0

b(β + μ)

(β + λ + μ)
2
(α + μ + ω)

 > 0,

S
R0
ϑ � −

ω
R0

bλ
(β + λ + μ)(α + μ + ω)

2 < 0,

S
R0
χ � −

μ
R0

bλ(α + β + λ + 2μ + ω)

(β + λ + μ)
2
(α + μ + ω)

2 < 0,

S
R0
ϱ1 � −

α
R0

bλ
(β + λ + μ)(α + μ + ω)

2 < 0,

S
R0
υ � −

β
R0

bλ
(β + λ + μ)

2
(α + μ + ω)

 < 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (34)

Here, in Figures 2–7, we have described graphically the
dynamics of sensitivity analysis of various parameters,
respectively.

Furthermore, we present Table 3 for the sensitivity index
of each parameter associated with R0 based on system (34).

Considering Table 3, the change in the value of each
parameter in the basic reproduction number causes an in-
crease or decrease in the value of the basic reproduction
number R0. Hence, it directly afects the spread in the
population while keeping the values of the remaining
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Figure 2: Te dynamics of sensitivity analysis based on R0 with
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parameters constant. Furthermore, in Table 3, if the sensi-
tivity index sR0

p for parameter p goes negatively, then there is
an inverse efect on R0. Te parameters show the negative
efect must be minimized for the sake of the spread of in-
fection in the population. Moreover, the sensitivity index of
b is positive at its peak.

6. Ulam–Hyers Stability

Stability theory is an important branch of the qualitative
theory of diferential equations. As we know, the computation
of exact solutions to some problems is quite challenging to
obtain. Terefore, various numerical techniques were de-
veloped to fnd a solution. In this regard, we check the stability
of the given problem. We can fnd various types of stability in
literature, including Lyapunov, exponential, and asymptotic.
But the most important type of stability, which is frst in-
troduced by Ulam in 1940 is called Ulam stability. He posed a
problem about the stability of functional equations. Te
proper introduction was given by Hyers in 1941. Terefore,
this stability was named Ulam–Hyers stability (see [72, 73]).
Te said stability results have been extended and generalized
by researchers for diference and functional equations in
diferent directions. From a numerical and optimization point
of view, Ulam–Hyers stability is essential because it provides a
bridge between the exact and numerical solutions. Te said
stability is most useful and also easy to establish for the
approximated solution omodel (1). Terefore, in this section,
by the use of nonlinear functional analysis, some adequate
conditions are constructed for the mentioned stability of the
proposed model (1).

FFP
0 D

v,π
U(t) � Λ −

bUV

1 + aV
− (ω − μ + α)U,

FFP
0 D

v,π
W(t) �

bUV

1 + aV
− (λ + μ + β)V,

FFP
0 D

v,π
Q(t) � λV − (μ + ξ + c + d)W,

FFPD
v,π

X(t) � αU + βV + αW − (μ + ρ)Q,

FFPD
v,π
0 Y(t) � ωU + ρQ + cW − μXv,

� ξW + cW − δY.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (35)

We express model (35) as

f1(t, U, D, W, Q, X, Y) � Λ −
bUV

1 + aV
− (ω − μ + α)U,

f2(t, U, D, W, Q, X, Y) �
bUV

1 + aV
− (λ + μ + β)V,

f3(t, U, D, W, Q, X, Y) � λV − (μ + ξ + c + d)W,

f4(t, U, D, W, Q, X, Y) � αU + βV + dW − (μ + ρ)Q,

f5(t, U, D, W, Q, X, Y) � ωU + ρQ + cW − μXv,

f6(t, U, D, W, Q, X, Y) � ξW + cW − δY.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(36)

Te proposed problem (35) can be reformulated in the
following form:

c
0D

π
U(t) � vtv− 1

f1(t, U, D, W, Q, X, Y),

c
0D

π
V(t) � vtv− 1

f2(t, U, D, W, Q, X, Y),

c
0D

π
V(t) � vtv− 1

f3(t, U, D, W, Q, X, Y),

c
0D

π
V(t) � vtv− 1

f4(t, U, D, W, Q, X, Y),

c
0D

π
V(t) � vtv− 1

f5(t, U, D, W, Q, X, Y),

c
0D

π
V(t) � vtv− 1

f6(t, U, D, W, Q, X, Y).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (37)

With the help of (36), we can write the considered system
(33) as

c
0D

π
K(t) � vtv− 1

F(t, K(t)), 0< v< 1, 0< π < 1,

K(0) � K0.
(38)

On applying the integral, we get the solution of (38) as

K(t) � K0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
F(x, K(x))dx,

(39)

where

Table 3: Sensitivity of the R0 versus proposed parameters.

Parameter Sensitivity index Value Parameter Sensitivity index Value
b sR0

b 1.0000 ω sR0
ω 0.2188

α sR0
α − 0.9979 β sR0

β − 0.2187
μ sR0

μ − 0.0014 λ sR0
λ − 0.0007
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K(t) �

U(t)

V(t)

W(t)

Q(t)

X(t)

Y(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, K0(t) �

U0

V0

W0

Q0

X0

Y0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

F(t, K(t)) �

f1(t, U, D, W, Q, X, Y),

f2(t, U, D, W, Q, X, Y),

f3(t, U, D, W, Q, X, Y),

f4(t, U, D, W, Q, X, Y),

f5(t, U, D, W, Q, X, Y),

f6(t, U, D, W, Q, X, Y).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

For Ulam–Hyers stability, let ℘ ∈ C(F), which is a small
perturbation independent of solution. In addition,

|℘(t)|≤ ε, for ε> 0; FFP0 D v,πK(t) � F(t, K(t)) + ℘(t).

Lemma 3. Te solution of the perturbed problem,
c
0D

π
K(t) � vt

v− 1
F(t, K(t)) + ℘(t),

K(0) � K0,
(41)

satisfes the following relation

K(t) − K0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
F(x, K(x))dx 




≤Δε.

(42)

Proof 4. According to (37), the solution of (39) is given by

K(t) � K0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
[F(x, K(x))x + ℘(t)]dx.

(43)

Using |℘(t)|≤ ε in (43), one can easily get the relation
(41). □

Theorem  . Inview of the inequality (42), and hypothesis
given in (44), if the condition ΔLF < 1 holds, then the solution
of problem (33) is Ulam–Hyers stable, where

|F(x, K) − F(x, K)|≤QF|K − K|,LF > 0. (44)

Proof 5. SupposeW is a unique solution and K be any other
solution of (37) in Banach space B; then,

|K(t) − W(t)| � K(t) − W0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
F(x,W(x))dx 




,

≤ K(t) − K0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
F(x, K(x))dx 





+ | K0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
F(x, K(x))dx 

− W0(t) +
v

Γ(π)


t

0
x

v− 1
(t − x)

π− 1
F(x,W(x))dx 

≤Δε + LF‖K − W‖.

(45)

From (45), we can write

‖K − W‖≤Uv,πε, (46)

where A> 0,∀K ∈ B. Tus, from the result (43), we con-
clude that (33) is Ulam–Hyers stable. □

7. Numerical Scheme

Nonlinear problems are more difcult than linear ones to
solve analytically. Terefore, researchers have implemented
efcient and accurate numerical schemes for the treatment
of nonlinear problems to explore the dynamics of real-world
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problems more precisely. To tackle this nonlinear problem,
from defnition (3), we use the Adams–Bashforth scheme for
the justifcation of our work.

U(l + 1) � U(0) +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) u U(j), tj 

× (f + 1 − j)
υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v U(j− 1), t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( ,

V(l + 1) � V(0) +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) u V(j), tj 

× (f + 1 − j)
υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v V(j− 1), t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( ,

W(l + 1) � W(0) +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) u W(j), tj 

× (f + 1 − j)
υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v W(j− 1), t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( ,

Q(l + 1) � Q(0) +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) u Q(j), tj 

× (f + 1 − j)
υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v Q(j− 1), t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( ,

Xv(l + 1) � Xv(0) +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) u Xv (j), tj 

× (f + 1 − j)
υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v Xv(j− 1) , t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( ,

Y(l + 1) � Y(0) +
υZ

π

Γ(π + 2)


f

j�0
t
υ− 1
(j) u Y(j), tj 

× (f + 1 − j)
υ
(f − j + 2 + υ) − (f − j)

υ
(f − j + 2 + 2υ)( 

− t
υ− 1
(j− 1)v Y(j− 1), t(j− 1)  (f + 1 − j)

υ
+ 1 − (f − j)

υ
(f − j + 1 + υ)( .

(47)
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Figure 10:Te dynamics of infected human population for various
fractional orders υ and for fractal order π � 0.5.

Table 4: Table for numerical values of parameters.

Symbol Description of parameter Dimension Value
Λ Recruitment rate [49] Month− 1 10000/50 × 365
μ Natural death rate. [49] Month− 1 1/50 × 365
b Transmission rate Month− 1 0.00019
a Psychological efect on human, [55] Month− 1 0.0701
ξ Recovery rate of infected population, [48] Month− 1 0.01
α Period of quarantine in susceptible population. Month− 1 0.0701
β Period of quarantine in exposed population Month− 1 0.13
d Period of quarantine in infected population Month− 1 0.0701
ω Vaccination rate of susceptible population Month− 1 0.0001
c Vaccination rate of infected population Month− 1 0.00001
ρ Vaccination rate of quarantine population Month− 1 0.0002
δ Death rate of recovered population Month− 1 0.002
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Figure 8: Te dynamics of susceptible human population for
various fractional orders π and for fractal order υ � 0.5.
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Figure 9: Te dynamics of exposed human population for various
fractional orders υ and for fractal order π � 0.5.
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Figure 11: Te dynamics of quarantine human population for
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Remark 1. Here it should be kept in mind that the
Adams–Bashforth method preserves the basic type of nu-
merical stability associated with the usual one-step nu-
merical methods including Euler, backward Euler, and
trapezoidal. Furthermore, it is a (l + 1)-step explicit method,
and whose truncation error is of size O(hl+2). For detailed
convergence and stability of the Adams–Bashforth method,
we refer for the readers to see [74].

8. Numerical Results and Discussion

To simulate our model, we use the numerical values given in
Table 4.

In this section, we explain the dynamics of the proposed
model from graphical results such that the bar chart (2)
shows the quantity of sensitivity index of parameters as-
sociated with R0, in which two parameters b and α have a
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Figure 12: Te dynamics of vaccinated human population for
various fractional orders υ and for fractal order π � 0.5.
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Figure 13: Te dynamics of recovered human population for
various fractional orders υ and for fractal order π � 0.5.
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Figure 14: Te dynamics of susceptible human population for
various fractal orders π and for fractional order υ � 0.5.
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large efect on R0. From Figures 3–7, we see the dynamics of
R0 by using numerical values of parameters λ, ω, μ, α, and β.
Furthermore, Figures 8–13 show the stable behavior of
susceptible, exposed, infected, quarantine, vaccinated, and
recovered population, respectively, with a variation in fractal
order π and using value of fractional order υ � 0.5. More-
over, Figures 14–19 show the behavior of the model with
each compartment under diferent fractional order and
using value of fractal order π � 0.5. While in Figures 20, 21,

22, 23, 24, and 25, we plot the solution for diferent fractal-
fractional order. Here, we compared the real available re-
ported cases of infection in Pakistan for 200 days from 15th
March 2021 to 30th September 2021. Te details about the
COVID-19 situation in Pakistan can be found in [75, 76],
and [77]. Also, some real data in comparison with fractional
order simulation has been plotted in [78] recently. We see
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Figure 16:Te dynamics of infected human population for various
fractal orders π and for fractional order υ � 0.5.
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Figure 17: Te dynamics of quarantine human population for
various fractal orders π and for fractional order υ � 0.5.
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various fractal orders π and for fractional order υ � 0.5.
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that the numerical simulation at two diferent fractional
orders coincides very well with the plot of real data as shown
in Figure 26. Te graphical results also reveal that when the

fractal υ and fractional π orders approach 1, then model 1 is
reduced to the classical order model.

From Figure 26, it is clear that the real data plot and
the simulated data graph are closely related. Moreover,
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Figure 20: Te dynamics of susceptible human population for
various fractal-fractional orders.
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Figure 21:Te dynamics of exposed human population for various
fractal-fractional orders.

0

10

20

30

40

50

60

70

In
fe

ct
ed

 P
op

ul
at

io
n

0 20 40 60 80 100 120
t

υ = π = 0.755
υ = π = 0.85

υ = π = 0.9
υ = π = 1

υ = π = 0.62

Figure 22:Te dynamics of infected human population for various
fractal-fractional orders.
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by ftting the real data, we can obtain the numerical
values of the parameters of model 1 given in Table 4.
Moreover, the model is numerically stable and takes less

time and memory during simulation using the
Adams–Bashforth scheme due to the nonlinearity and
complexity of the problem.
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Figure 24: Te dynamics of vaccinated human population for various fractal-fractional orders.
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9. Conclusion

We have studied the compartmental model of COVID-19
which has been consisting of susceptible, infected, quar-
antined, vaccinated, and recovered human populations. Te
model has been specifcally proposed for the implementation
of a vaccinated class. Te fractal-fractional calculus has been
used to understand the dynamics of fractal order π and
fractional order υ. We have also investigated some results
devoted to local and global stability for the proposed model
based on the Jacobian matrix and the Lyapunov function
method. Both local and global type stabilities have been
demonstrated under the disease-free and endemic equilib-
rium points by showing that R0 < 1 and R0 > 1, respectively.
For the sensitivity analysis of each parameter, we have in-
vestigated global sensitivity analysis to justify the said fea-
ture. Furthermore, some results necessary for numerical
stability based on the Ulam–Hyers concept have also been
studied. Numerical simulations have been presented by
means of the Adams–Bashforth scheme. Some discussion
about the convergence and numerical stability of the pro-
posed method has been given in Remark 1. Numerical re-
sults have been displayed in diferent fractional orders
graphically to understand the dynamics of the model. We
have given a comparison between real reported and simu-
lated data in the case of the infected class. Both curves are
closely agreed which shows the efciency of the proposed
numerical method.Te given detail can be extended to more
complex dynamical systems in the future.
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