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-e existing numerous adaptive variants of differential evolution (DE) have been improved the search ability of classic DE to
certain extent. Nevertheless, those variants of DE do not obtain the promising performance in solving black box problems with
unknown features, which is mainly because the adaptive rules of those variants are designed according to their designers’
cognition on the problem features. To enhance the optimization ability of DE in optimizing black box problems with unknown
features, a differential evolution with autonomous selection of mutation strategies and control parameters (ASDE) is proposed in
this paper, inspired by autonomous decision-making mechanism of reinforcement learning. In ASDE, a historical experience
archive with population features is utilized to preserve accumulated historical experience of the combination of mutation
strategies and control parameters. Furthermore, the accumulated historical experience can be autonomously mapped into rules
repository, and the individuals can choose the combination of mutation strategies and control parameters according to those
rules. Additionally, an updating and utilization mechanism of the historical experience is designed to assure that the historical
experience can be effectively accumulated and utilized efficiently. Compared with some state-of-the-art intelligence algorithms on
15 functions of CEC2015, 28 functions of CEC2017, and parameter extraction problems of the photovoltaic model, ASDE has the
advantages of solution accuracy, convergence speed, and robustness in solving black box problems with unknown features.

1. Introduction

Differential evolution (DE) algorithm is an effective and
efficient global search engine for complex optimization
problems, to solve the Chebyshev polynomial problem at
first proposed by Storn and Price [1]. Since DE is a simple
and robust optimizer, DE has been a hot topic in the field of
intelligent optimization algorithm. In DE, a new solution of
the problem is generated by using the scaled difference
vector between two distinct solution randomly selected from
the candidate solution set. Meanwhile, the one-to-one se-
lection strategy is utilized to choose the better solution
between parent and offspring individual to propagate to next
generation. In addition, the implementation of DE only

needs a few lines of code in any standard programming
language, which makes it easy to realize for engineers of
different optimization fields. Over the past two decades, DE
and other intelligent algorithms have gained the promising
performance in solving numerous practical engineering
problems, such as, chemical engineering [2–5], electrical
engineering [6–9], scheduling optimization [10, 11], image
processing [12–15], and structural optimization of neural
network [16, 17]. -e convergence of DE and its variants is
proved in the literature [18].

-e performance of DE is significantly influenced by
mutation strategies and control parameters, and numerous
research has been done for finding out the proper mutation
strategies or/and control parameters.
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In terms of adjusting control parameters, in the literature
[19], F is in between 0.4 and 0.95, and the initialized F is 0.9.
Moreover, CR should be between 0 and 0.2 when the ob-
jective problem is separable, and [0.9, 1] otherwise. To
improve the performance of DE, Mohamed A. K. and
Mohamed A. W. [20] proposed an enhanced AGDE algo-
rithm, named EAGDE for short. In EAGDE, population size
gradually decreases according to a nonlinear population size
reduction.

In terms of designing mutation strategies, Cui et al. [21]
proposed an adaptive multiple-elites-guided composite DE
with a shift mechanism, and the best one of two trial vector
generated by two elites-guided trial vector generation
strategies, respectively, is adopted to participate in the se-
lection. In addition, a shift mechanism is used to avoid
falling into local trap. Mohamed A. W. and Mohamed A. K.
[22] constructed a novel mutation strategy, which uses two
random selected vectors of the top and the bottom 100p%
individuals of the population while the third vector is chosen
randomly from the middle individuals.

However, the suitable mutation strategies and control
parameters are problem specific. To assign appropriate
mutation strategies or/and control parameters to the pop-
ulation, numerous adaptive variants were proposed to
further improve the search ability of DE. -ese adaptive
variants can be divided into adaptive control parameters,
adaptive mutation strategies, and adaptive topological
neighborhood.

In terms of adaptive control parameters, Zhao et al. [23]
proposed a DE with self-adaptive control parameters and
strategy for unconstrained optimization problems (SLADE).
-e Cauchy distribution and normal distribution were
utilized to adaptively update the mutation factor F and
crossover rate CR. Ghosh et al. [24] designed a very simple
and flexible technology for adjusting F and CR online, and
the adaptive method was based on the objection function
values of different individuals in population. A new pa-
rameter with adaptive learning mechanism DE was pro-
posed by Meng et al. [25] for solving the inconvenience
selection problem of control parameter. Brest et al. [26]
proposed the DE with autoadaptive control parameters for
solving stagnation in local optima. A self-adapting control
parameter in DE was proposed by Brest et al. [27], in which
the control parameters were adjusted by means of evolution.
A variant of DE (JADE) was proposed by Zhang and
Sanderson [28], in which the values of F and CR are sampled
from the Cauchy distribution and Gaussian distribution,
respectively. In JADE, the control parameters of probability
distribution are updated by adaptive strategy.

Tanabe and Fukunaga [29] proposed a success history
based DE (SHADE), in which the historical memory archive
is utilized to adaptive update the control parameters of
probability distribution, instead of gradually update
mechanism of JADE. Zhou et al. [10] proposed a new DE
algorithm, in which control parameter values are adaptively
determined according to their historical performances.

Regarding adaptive mutation strategies, in the above
literature [23], the mutation strategy assigned to each in-
dividual is adaptively chose from the candidate strategy pool

for matching different stage of evolution search according to
their previous successful experience. Yu et al. [30] proposed
a novel mutation DE for global optimization, in which the
adaptive mutation is carried out for the current individual
when individuals cluster around the local optimal solution.
Mallipeddi and Suganthan [31] proposed a DE algorithm
with ensemble of parameters and mutation and crossover
strategies (EPSDE). In EPSDE, a set of different mutation
strategies and the values of each control parameter coexist
throughout the evolution search and compete to produce
offspring solutions. In the literature [32], a new DE algo-
rithm was proposed, which divides the population into three
subpopulations according to the fitness value and applies
three mutation strategies to exploration or exploitation. Qin
et al. [33] proposed an adaptive DE algorithm (SaDE), in
which several mutation strategies with different features are
put into a candidate pool. After a certain interval period, a
mutation strategy is adaptively selected according to its
success rate. Wu et al. [34] proposed a DE with multi-
population-based ensemble of mutation strategies
(MPEDE). In MPEDE, three mutation strategies are allo-
cated to three subpopulations for evolution search. After a
period, the current best mutation strategy will be adaptively
determined according to the improvement of fitness value,
which will be assigned to the subpopulation with largest
number in next search period.

Wu et al. [35] designed a novel DE variant by using
ensemble of multiple DE variants, named EDEV for short. In
EDEV, the population is partitioned into four subpopula-
tions, including three indicator subpopulations with smaller
size and one reward subpopulation with much larger size.
Each constituent DE variant of EDEV owns an indicator
subpopulation. -e reward subpopulation is assigned to the
DE variant with the best performance in previous
generations.

About adaptive topological neighborhood, Das et al. [36]
proposed a DE using a neighborhood-based mutation op-
erator (DEGL). In DEGL, the concept of small neighbor-
hood is defined on the index-graph of individuals, and the
weight factor is used to dynamically adjust the mutation
operator based on local model and global model, which
effectively balances the exploration and exploitation ability.
Cai and Wang [37] proposed a DE with neighborhood and
direction information (NGDE), which utilizes a neighbor-
hood selection mechanism based on population position
order to guide individuals to search in a good direction.
Epitropakis et al. [38] proposed enhancing DE utilizing
proximity-based mutation operators (ProDE), in which each
individual constructs a topological neighborhood according
to the proximity index and adaptively selects the search
direction generated by the individual that is closed to it.
Wang et al. [39, 40] proposed two DE algorithms based on
eigenvector crossover operation, which use the fitness value
to construct the topological neighborhood of the population.
Each individual of the population searches adaptively fea-
sible solution space by learning the data distribution features
of the population topological neighborhood.

Additionally, to alleviate the long time-consuming
problem of the algorithm in fitness evaluation, Zhan et al.

2 Complexity



[41] proposed a double-layered heterogeneous DE algo-
rithm, in which different populations with various param-
eters or/and mutation strategies run concurrently and
adaptively migrate to deliver robust solutions by making the
best use of performance differences among multiple pop-
ulations, and a set of cloud virtual machines run in parallel to
evaluate fitness of corresponding populations, reducing
computational costs as offered by cloud. In the literature
[42], an adaptive distributed differential evolution is pro-
posed for decreasing the sensitivity of strategies and pa-
rameters, named ADDE for short. In ADDE, three
populations called exploration population, exploitation
population, and balance population are co-evolved con-
currently by using the master-slave multipopulation dis-
tributed framework. Different populations adaptively choose
suitable mutation strategies according to their previous
performance.

Although these adaptive methods have improved the
performance of DE in solving nondifferentiable, nonlinear,
and nonseparable problems to a certain extent, they do not
address black box problems with unknown features because
their adaptive rules are designed according to designers’
cognition of the problem features. For example, in the lit-
erature [30], the current best individual will be adjusted
adaptively when the population falls into a local optimal
trap. To determine whether the population converges pre-
maturely, a parameter d is designed to reflect the conver-
gence degree of population. -e population is considered to
fall into the neighborhood of local optimal solution when the
parameter d meets the predefined threshold that is set
according to the designer’s cognition of solving problems.
When the population falls into the local optimal trap, the
mutation strategy with good exploration ability will be
assigned to the population for helping the population jump
out the local optimal trap. -us, the predefined threshold
determines whether the population falls into local optimal
trap, which determines the next search behavior of the
population. In the literature [43], the whole process of
population search is divided into five search stages in
chronological order, and the mutation strategy is assigned to
population according to the search stage features deter-
mined by designer.

-erefore, to optimize the black box problems with
unknown features, a DE with autonomous selection of
mutation strategies and control parameters (ASDE) is
proposed in this paper. In ASDE, a historical experience
archive with population features is utilized to store accu-
mulated historical experience of the combination of mu-
tation strategies and control parameters, and the
accumulated historical experience can be autonomously
mapped into rules repository so that the population can
choose the appropriate combination of mutation strategies
and control parameters for evolution search according to
those rules. Furthermore, each individual of the population
chooses a suitable combination of mutation strategies and
control parameters to explore feasible solution space
according to the historical experience whose population
features is most similar to the population features of current
population, and the improvement of fitness value of the

individuals is used to update corresponding historical
experience.

-e main contributions of this paper can be summarized
as follows:

(1) -e historical experience archive with population
features is proposed for storing cumulated historical
experience so that individuals can autonomously
select appropriate combination of mutation strate-
gies and control parameters according to the rule
mapped from the cumulated historical experience.

(2) -e updating and utilization mechanism of the
historical experience can assure that the historical
experience of mutation strategies and control pa-
rameters can be effectively accumulated and utilized
efficiently.

-e rest of this paper is provided as follows. -e brief
review of canonical DE is described in Section 2. In Section
3, DE with autonomous selection of mutation strategies and
control parameters is addressed in detail. Section 4 presents
the experiment results on 15 functions of CEC2015. -e
results of parameter extraction of photovoltaic models are
shown in Section 5, followed by conclusion in Section 6.

2. The Reviews of DE

-e implement of canonical DE, proposed by Storn and
Price [1], is composed of initialization, mutation, crossover,
and selection, which are addressed briefly as follows.

2.1. Initialization. -e initial population of DE is consisted
of a group feasible solutions randomly selected form ob-
jective solution space, termed pop1 � X1

i � (x1
i,1,

x1
i,2, . . . , x1

i,D)|i � 1, 2, . . . , NP}, where NP denotes the pop-
ulation size and D represents the dimensions of problem. Xi

is i th individual of population, which is generated by

Xi � lb +(ub − lb)∗ r and, (1)

where lb and ub are lower and upper bounds of feasible
solution space, respectively. r and is a random number,
sampled uniformly and randomly from range [0, 1].

2.2. Mutation. -e mutation operator simulates the gene
mutation in nature, which is used to create a mutation vector
Vt

i � vt
i,1, vt

i,2, . . . , vt
i,D  for each target vector at t th gen-

eration. Vt
i is calculated by

V
t
i � X

t
r1 + F∗ X

t
r2 − X

t
r3 , (2)

where F is scaling factor, and value of F is into interval [0, 1].
r1, r2, r3 ∈ 1, 2, . . . , NP{ } are distinct indices.

2.3. Crossover. -e mutation vector Vt
i is used to generate

trial vector Ut
i � ut

i,1, ut
i,2, . . . , ut

i,D  by performing crossover
addressed as
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u
t
i,j �

x
t
i,j, r and<CR,

v
t
i,j, otherwise,

⎧⎪⎨

⎪⎩
(3)

where xt
i,j denotes the j th dimension data of i th individual

and j is one of the sets 1, 2, . . . , D{ }. In addition, CR rep-
resents the crossover rate and is into the interval [0, 1].

2.4. Selection. To make better individuals in the trial vectors
and target vectors inherit to next generation, the selection is
performed as formula (4), and minimization problems are
considered in this paper:

X
t+1
i �

X
t
i , if f U

t
i >f X

t
i ,

U
t
i , . . . otherwise,

⎧⎨

⎩ (4)

where f(Xt
i) denotes calculating the fitness value of vector

Xt
i .
Mutation, crossover, and selection will be repeated until

the predefined termination criterion is met.

3. The Proposed Algorithm

In this section, ASDE will be detailly described in terms of
historical experience archive, historical experience update
and utilization, used mutation strategies and control pa-
rameters, and the architecture of proposed algorithm.

3.1. 2e Historical Experience Archive. It can be clearly
shown from Figure 1 that the historical experience archive
with H entries is consisted of population features (stdf,
stdpop, and stag) and historical experience E, where stdf

denotes the standard deviation of fitness value of the pop-
ulation, and stdpop are the sum of standard deviation of each
dimension of individuals. -e stdf and stdpop are calculated
by formulas (5) and (6), respectively.

Meanwhile, the stag stands for the generation number of
continuous stagnations of the population, updated
according to formula (7), where the stagnation is referred to
that the optimum solution is not improved during pop-
ulation evolution:

stdf �

�����������



NP

i�1
fi − f 

2
,




(5)

stdpop � 
D

j�1

�������������



NP

i�1
xi,j − xi,j 

2




, (6)

stag �
stag + 1, if optima isnt, improved,

0, otherwise,
 (7)

where f is the mean value of fitness of population, and xi,j

denotes the mean value of j th dimension data of all
individuals.

-e stdf can indicate the difference between fitness
values of all individuals in the population, and the stdpop can
show the diversity properties of the population. -e stag can
indicate whether the population falls into the local optimal
trap. -us, the combination of stdf, stdpop, and stag can
ideally describe the state of the current population.

In addition, the historical experience E is the special
vector that is shown in Figure 2 and composed of the cu-
mulated reward of m combinations of mutation strategies
and control parameters, where the reward is the average
nonnegative improvement of fitness value of the individuals
that use corresponding combinations for evolution search.

3.2.2eUpdating andUtilizationMechanism of theHistorical
Experience. To assign most appropriate historical experi-
ence to current population, the updating and utilization
mechanism of the historical experience is utilized, so that
each individual of the current population can use proper
combination of mutation strategies and control parameters
to search according to the rules mapped from assigned
historical experience. A population feature similarity cal-
culation operator is mostly main operator of this mecha-
nism, used to calculate the population feature similarity PFS

between population features PFt � (stdf, stdpop and stag) of
current population and population features PFk

(k ∈ 1, 2, . . . , H{ }) of the historical experience archive. -e
population feature similarity calculation operator is

stdf1 stdf2 stdf3 stdf(H-1) stdfH

stdpop1 stdpop2 stdpop3 stdpop(H-1) stdpopH

… …

… …

stag1 stag2 stag3 stag(H-1) stagH

E1 E2 E3 E(H-1)

… …

… … EH

Figure 1: -e historical experience archive.
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described as formula (8), in which the combination of
Mahalanobis distance and Euclidean distance is viewed as
the population feature calculator. -e Mahalanobis distance
is an effective method to calculate the similarity of two

unknown sample sets, because it is not affected by unit of
each dimension data so that each dimensional data of the
records of the historical experience archive can be processed
equally. However, the Mahalanobis distance has a necessary
condition that the covariance matrix of population feature
sets of the historical experience archive must exist. -us, a
combination of Mahalanobis distance and Euclidean dis-
tance is used to calculate the population feature similarity:

PFSk �
Mahalanobis PF

t
, PFk , if the covariancematrix exists,

�������������������������������������������

stdf − stdfk 
2

+ stdpop − stdpopk 
2

+ stag − stagk( 
2



, otherwise,

⎧⎪⎨

⎪⎩
(8)

where Mahalanobis(∗ ) denotes the Mahalanobis function
that is utilized to calculate theMahalanobis distance between
PFt and PFk.

After the population feature similarity calculation op-
erator is executed, the historical experience (Et) with highest
population feature similarity (the smaller the value of PFSk,
the higher the population feature similarity) is assigned to
the current population. -e ε-greedy strategy is utilized to
assign combination of mutation strategies and control pa-
rameters to each individual of the current population
according to the assigned historical experience. -e com-
bination of mutation strategies and control parameters
corresponding to the maximum value of the assigned his-
torical experience, with (1–ε) probability, is selected, and the
population randomly selects a combination with ε
probability.

After the population performs once evolution search, the
historical experience archive will be updated, in which the
oldest record of the historical experience archive is replaced
by the new historical experience calculated by

E
t

� (1 − c)∗E
t

+ c∗mean I
t

 , (9)

where c is cumulative degree factor and a constant in interval
[0, 1], and mean (∗ ) denotes the arithmetic mean operation.
-e It is a vector with the same dimension as Et, consisted of
average nonnegative improvements of fitness value of the
individuals that use corresponding combinations for evo-
lution search.

3.3. 2e Used Mutation Strategies and Control Parameters.
-ere are three well-known mutation strategies described as
formulas (2), (10), and (11), which are also utilized to
evolution search in EPSDE. DE/rand/1 (formula (2)) was
slower, but more robust than the other strategies that rely on
the best-so-far vector. DE/best/2/bin are better than DE/
best/1 due to its ability to improve diversity by producing
more trial vectors. DE/current-to-rand/1 being a rotation-
invariant strategy without crossover can solve rotated
problems better than other strategies. -us, these three
mutation strategies are used in ASDE.

DE/best/2 [44]:

V
t
i � X

t
best + F∗ X

t
r1 − X

t
r2  + F∗ X

t
r3 − X

t
r5 . (10)

DE/current-to-rand/1 [45]:

U
t
i � X

t
i + K∗ X

t
r1 − X

t
i  + F∗ X

t
r2 − X

t
r3 , (11)

where Xt
best is the optimal solution of the current population,

and K denotes the random chosen from interval [0, 1].
Additionally, in DE/current-to-best/1 strategy, the crossover
operator is not performed.

-e parameter feasible space of F and CR is equally
divided into 5 intervals, i.e., [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6,
0.8], and [0.8, 1]. When the specific interval is selected to set
a parameter’s value, the exact value of the parameter is
chosen uniformly randomly from within that interval.

3.4. Algorithm Architecture. As shown in Figure 3, the al-
gorithm starts with the initialized population and historical
experience archive, in which each individual of the initial-
ized population is randomly and uniformly sampled from
feasible solution space, and the population features PFt and
the historical experience E of each record of the initialized
historical experience archive are initialized as infinity and
zeros vector, respectively.

Before the population evolution search, the historical
experience Et with highest population feature similarity is
assigned to the current population by calculating the pop-
ulation feature similarity PFS between population features
PFt of current population and population features PFk of
the historical experience archive according to formula (8).

-en, each individual of the population utilizes ε-greedy
strategy to select the combination of mutation strategies and
control parameters according to the assigned historical
experience Et, and uses the assigned combination to perform
mutation, crossover and selection.

After all individuals of the population evolution search, the
average nonnegative improvement of fitness value of the in-
dividuals is utilized to update the historical experience Et, and
the updated historical experience Et and the population feature
PFt are used to update the historical experience archive.

Rc1 Rc2 Rcm… …

Figure 2: -e historical experience.
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-e above process will be repeated until the termination
condition is met. -e pseudocode of ASDE is shown in
Algorithm 1.

4. The Experiment Results of 15 Benchmark
Functions of CEC2015

In this section, firstly, ASDE is used to optimize the 15 test
functions of CEC2015 [46] that are composed of 2 unimodal
functions (F1 and F2), 3 multimodal functions (F3–F5), 3
hybrid functions (F6–F8), and 7 composition functions
(F9–F15), compared with some state-of-the-art algorithms
(DE [1], EPSDE [31], PSO [47], SLPSO [48], MFO [49],
AMFO [50], and RLDE [51]).

Furthermore, 28 benchmark functions of CEC2017 [52]
are used to verify the performance of ASDE, which consists
of 1 unimodal function F1, 7 simple multimodal functions
(F3–F9), 10 hybrid functions (F10–F19), and 10 composi-
tion functions (F20–F29). It is noteworthy that F2 of
CEC2017 is not used because it is an unstable problem. Some
state-of-the-art algorithms are utilized to participate in the
comparison, such as, DE [1], EPSDE [31], PSO [47], SLPSO
[48], MFO [49], AMFO [50], RLDE [51], jSO [53], LSHADE-
SPACMA [54], and EB-LSHADE [55].

-e common parameters of all the algorithms are set as
follows. -e population size is set as 100, and the maximum
number of function evaluation is 10000∗D, where D denotes
the dimensions of the solved problems. In CEC2015, the
dimension D is set as 30. -e dimensions D are 10, 30, 50,
and 100 for CEC2017. Meanwhile, in ASDE, the size of the
historical experience archive is the same to population size,
and ε is equal to 0.4. -e cumulative degree factor c is set as
0.3 according to the sensitivity analysis of it in Section 4.3. In
addition, the other control parameters of the compared
algorithm follow their original papers.

In this experiment, the average value and standard de-
viation of the function error value (f(g best) − f(X∗)) are
recorded for verifying the performance of the algorithms,
gained by each algorithm with 51 independent runs, where
g best is the best solution obtained by the algorithm in a run
and X∗ denotes the theoretical global optimum of the
benchmark functions. -e maximum number of function
evaluations (FES) is set to 10000∗D for both CEC2013 and
CEC2017. Wilcoxon’s rank sum test at a 5% significance
level was utilized to generate statistically reliable results for
CEC2015, and the Friedman test is used in CEC2017.
According to Wilcoxon signed-rank test, R+ is the sum of
ranks for the functions in which ASDE outperforms the
compared algorithm and R− is the sum of ranks for the
opposite. Larger ranks demonstrate larger performance
discrepancy.

4.1. Comparisons on Solution Accuracy. In each row of Ta-
ble 1, the mean values over 25 independent runs are shown
in the first line, and the standard deviations are presented in
the second line. -e P value and H value of the nonpara-
metric statistical test (Wilcoxon’s rank sum test) with a
significance level α � 0.05 are given in the third and fourth
lines. -e symbol ‘ǂ’ is tagged in the back of the mean value
produced by the algorithm that is significantly worse than
ASDE. If ASDE is worse than other algorithms, a ‘ξ’ is added
in the back of the mean value of corresponding algorithm.
-e symbol ‘∼’ demonstrates that there is no significant
difference between ASDE and compared algorithm. At the
last row of the table, a summary of total number of “ǂ,” “ξ’,”
and “∼” is presented. Additionally, the best solution is
highlighted in bold.

It is clearly seen from Table 1 that ASDE gains the better
performance than EPSDE on 7 functions composed of 1

Archive

c1 c2
cm

POPt

Evolution

Selecting
experience Et

ItIc1 Ic2 ... Icm

EtRc1 Rc2 ... Rcm

Begin:
Initial Archive

Individual

Et=operator(It,Et)

PFt and Et

Terminal?

End

Y

N

Improvementi,
i {1,2,…,m}

Figure 3: -e architecture of the ASDE.
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multimodal function (F5), 3 hybrid functions (F6–F8), and 3
composition functions (F11–F13), which indicates that the
proposed historical experience archive with population features
and the updating and utilization mechanism of the historical
experience can provide the better combination of mutation
strategies and control parameters than EPSDE. ASDE is worse
than EPSDE on 1 functions F14, which may be because the
ε-greedy strategy (ε � 0.4) is slightly poor in the exploitation
ability of the population. In addition, ASDE is similar to the
EPSDE on 7 functions (F1–F4, F9, F10, and F15).

ASDE obtains the best performance on 5 functions (F3,
F7, F11, F13, and F15), which shows that the ASDE is
promising in solving complex problems. EPSDE is the best
on 3 functions (F1–F3), and DE achieves the best perfor-
mance on 5 functions (F6, F8, F10, F14, and F15). Mean-
while, PSO only is the best on function F3, and SLPSO
outperforms other compared algorithms on 5 functions (F4,
F5, F9, F12, and F15). Additionally, MFO gains the best
performance on function (F15).

Table 2 shows the average ranks according to Friedman
test for the compared algorithms using CEC2017. -e best
ranks are shown in bold, and the second ranks are under-
lined. From Table 2, we can see that P value generated by
Friedman test for all dimensions are less than 0.05.

-erefore, it can be concluded that there is a significant
difference between the performances of the algorithms.

It can be clearly seen fromTable 2 that ASDE is ranked first
for 10 dimensions and ranked second for 30 and 100 di-
mensions. Regarding mean ranking, LSHADE-SPACMA
gains the best ranking, andASDEobtained the second ranking.

According to Wilcoxon’s test shown in Table 3, ASDE is
significantly better than AMFO, DE, EPSDE, MFO, PSO,
and RLDE for all dimensions. On the other hand, there is no
significant difference between ASDE and LSHADE-
SPACMA for all dimensions. -e performance of ASDE is
similar to that of jSO for D� 30, 50, and 100. -ere is no
significant difference between ASDE and both of EBL-
SHADE and SLPSO for D� 50 and 100.

4.2. 2e Comparison Results of Convergence Speed. In Fig-
ure 4, the vertical axis is the nature logarithm of the mean
value over independent 25 runs, and the horizontal axis is
the sampling point where 30 sampling points are taken from
FES� 1000 and mod (FES, 10000)� 0.

Figure 4 clearly shows that ASDE obtains the best per-
formance on 5 functions (F7, F9, F11, F13, and F15), which
demonstrates that ASDE is effective to optimize some complex

(1) Begin
(2) All stdf, stdpop and stag of the historical experience archive are set infinity, and all historical
(3) experience (E) of the historical experience archive are equal to 0;
(4) pos� 1;
(5) Initialize uniformly random population pop and calculate fitness value of population;
(6) Set t� 0;
(7) While termination condition is not met
(8) t� t+ 1;
(9) Calculate population feature PFt by using formulas (5)–(7);
(10) Calculate population feature similarity PFS by using formula (8);
(11) [∼, I]�min (PFS);
(12) Et � EI, where EI is Ith record of the historical experience archive.
(13) for i� 1 to NP
(14) ai is selected with ε-greedy strategy according to Et, ai ∈ 1, 2, . . . , 75{ };
(15) MSi � floor((ai - 1)/25 + 1), where MSi denotes the mutation strategy used by i th individual;
(16) Fi � floor (mod (ai – 1, 25)/5) ∗ 0.2 + rand (0, 1) ∗ 0.2;
(17) CRi �mod (ai – 1, 2) ∗ 0.2 + rand (0, 1) ∗ 0.2;
(18) Mutation, crossover and generation of trial vector u using MSi, Fi and CRi;
(19) end for
(20) for i� 1 to NP
(21) if f(ui)<f(xi)

(22) xi � ui;
(23) It (ai, : )� [Rt (ai), f(xi)-f(ui)];
(24) end if
(25) end for
(26) Updating the Et by using formula (9);
(27) Updating the historical experience archive by using Et and PFt;
(28) pos� pos + 1;
(29) if pos>H
(30) pos� 1;
(31) end if
(32) end while
(33) End

ALGORITHM 1: Pseudocode of ASDE.
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Table 1: Results of solution accuracy gained by eight algorithms on 15 benchmark functions of CEC2015.

Func. Results ASDE DE EPSDE PSO SLPSO MFO AMFO RLDE
F1 Mean 3.78E+ 04 6.03E+ 05ǂ 3.36E+ 04∼ 2.84E+ 07ǂ 3.87E+ 05ǂ 1.28E+ 06ǂ 2.84E+ 08ǂ 4.80E+ 07ǂ

Std 2.50E+ 04 5.01E+ 05 4.06E+ 04 5.01E+ 07 2.53E+ 05 6.84E+ 05 5.97E+ 07 4.26E+ 07
P value — 9.36E−06 6.78E−01 9.19E−03 3.06E−07 8.46E−08 7.79E−22 8.35E−06
H value — 1 0 1 1 1 1 1

F2 Mean 3.39E−10 8.62E+ 03ǂ 3.87E−14∼ 4.07E+ 09ǂ 4.70E+ 03ǂ 6.62E+ 03ǂ 2.11E+ 10ǂ 2.71E+ 09ǂ
Std 8.57E−10 2.06E+ 04 1.81E−14 3.16E+ 09 5.01E+ 03 5.82E+ 03 2.95E+ 09 6.21E+ 09

P value — 4.68E−02 5.98E−02 1.17E−06 9.24E−05 3.05E−05 6.96E−23 3.91E−02
H value — 1 0 1 1 1 1 1

F3 Mean 2.06E+ 01 2.08E+ 01ǂ 2.06E+ 01∼ 2.06E+ 01∼ 2.09E+ 01ǂ 2.00E+ 01ǂ 2.10E+ 01ǂ 2.10E+ 01ǂ
Std 1.91E−01 1.43E−01 3.33E−02 2.77E−01 5.51E−02 1.86E−02 5.60E−02 9.63E−02

P value — 3.64E−03 7.99E−01 6.29E−01 1.25E−09 4.30E−14 4.10E−09 3.45E−10
H value — 1 0 0 1 1 1 1

F4 Mean 1.01E+ 02 5.93E+ 01ξ 1.16E+ 02∼ 6.63E+ 01 1.76E+ 01 ξ 1.02E+ 02∼ 3.00E+ 02ǂ 2.10E+ 02ǂ
Std 3.89E+ 01 2.02E+ 01 9.65E+ 00 1.73E+ 01 5.22E+ 00 2.52E+ 01 1.74E+ 01 6.04E+ 01

P value — 7.44E−05 1.06E−01 2.05E−04 4.15E−10 6.49E−01 2.42E−16 8.91E−09
H value — 1 0 1 1 0 1 1

F5 Mean 3.14E+ 03 5.85E+ 03ǂ 5.34E+ 03ǂ 3.04E+ 03∼ 8.16E+ 02 ξ 3.15E+ 03∼ 7.09E+ 03ǂ 5.23E+ 03ǂ
Std 6.09E+ 02 8.57E+ 02 2.61E+ 02 3.74E+ 02 4.83E+ 02 6.28E+ 02 3.17E+ 02 1.22E+ 03

P value — 1.48E−12 9.34E−14 4.99E−01 6.71E−14 1.33E−01 5.48E−21 9.06E−08
H value — 1 1 0 1 0 1 1

F6 Mean 4.50E+ 03 1.48E+ 03 ξ 1.04E+ 04ǂ 3.13E+ 05ǂ 7.07E+ 04ǂ 1.43E+ 05ǂ 9.27E+ 06ǂ 1.55E+ 06ǂ
Std 3.04E+ 03 5.56E+ 02 1.29E+ 04 6.37E+ 05 5.75E+ 04 8.20E+ 04 2.89E+ 06 1.98E+ 06

P value — 2.25E−05 3.87E−02 2.35E−02 6.72E−06 4.16E−08 2.25E−13 6.61E−04
H value — 1 1 1 1 1 1 1

F7 Mean 3.76E+ 00 6.41E+ 00ǂ 1.44E+ 01ǂ 2.50E+ 01ǂ 1.09E+ 01ǂ 8.41E+ 00ǂ 5.36E+ 01ǂ 2.61E+ 01ǂ
Std 1.26E+ 00 1.31E+ 00 9.51E−01 1.78E+ 01 8.06E−01 1.30E+ 00 7.26E+ 00 1.97E+ 01

P value — 1.32E−06 8.83E−22 4.08E−06 2.09E−18 7.95E−15 2.31E−24 7.81E−06
H value — 1 1 1 1 1 1 1

F8 Mean 3.90E+ 02 2.96E+ 02∼ 1.21E+ 03ǂ 7.35E+ 04ǂ 3.69E+ 04ǂ 8.32E+ 04ǂ 2.07E+ 06ǂ 2.24E+ 05ǂ
Std 2.49E+ 02 1.99E+ 02 3.87E+ 02 9.73E+ 04 2.35E+ 04 6.20E+ 04 8.12E+ 05 1.88E+ 05

P value — 2.08E−01 1.09E−08 9.73E−04 5.24E−08 4.78E−06 3.55E−12 4.01E−06
H value — 0 1 1 1 1 1 1

F9 Mean 1.03E+ 02 1.04E+ 02ǂ 1.03E+ 02∼ 1.44E+ 02ǂ 1.02E+ 02 ξ 1.05E+ 02ǂ 1.79E+ 02ǂ 1.23E+ 02ǂ
Std 1.76E−01 4.66E−01 1.51E−01 4.56E+ 01 2.95E−01 5.46E−01 9.92E+ 00 4.49E+ 01

P value — 2.32E−09 8.56E−10 1.51E−04 7.23E−04 1.07E−17 2.88E−27 3.08E−02
H value — 1 1 1 1 1 1 1

F10 Mean 1.35E+ 03 5.00E+ 02 ξ 1.59E+ 03∼ 6.37E+ 05ǂ 8.45E+ 04ǂ 1.16E+ 05ǂ 5.63E+ 06ǂ 1.56E+ 06ǂ
Std 9.09E+ 02 2.28E+ 02 9.93E+ 02 1.38E+ 06 4.70E+ 04 8.82E+ 04 2.24E+ 06 2.77E+ 06

P value — 6.04E−05 3.54E−01 3.00E−02 4.44E−09 3.13E−05 8.55E−12 9.37E−03
H value — 1 0 1 1 1 1 1

F11 Mean 4.91E+ 02 1.25E+ 03ǂ 1.14E+ 03ǂ 6.53E+ 02ǂ 5.12E+ 02∼ 6.93E+ 02ǂ 8.41E+ 02ǂ 1.01E+ 03ǂ
Std 1.31E+ 02 1.17E+ 02 5.63E+ 01 3.01E+ 02 4.41E+ 01 2.07E+ 02 1.94E+ 02 2.75E+ 02

P value — 1.78E−17 5.33E−17 2.27E−02 4.54E−01 4.29E−09 1.00E−02 1.11E−09
H value — 1 1 1 0 1 1 1

F12 Mean 1.06E+ 02 1.09E+ 02ǂ 1.07E+ 02ǂ 1.32E+ 02ǂ 1.05E+ 02 ξ 1.11E+ 02ǂ 1.47E+ 02ǂ 1.15E+ 02ǂ
Std 6.34E−01 1.59E+ 00 3.41E−01 1.14E+ 01 6.37E−01 1.99E+ 00 3.59E+ 00 9.14E+ 00

P value — 1.99E−08 3.02E−08 3.43E−11 9.07E−05 2.79E−10 2.68E−24 2.37E−05
H value — 1 1 1 1 1 1 1

F13 Mean 1.09E+ 02 1.10E+ 02∼ 1.31E+ 02ǂ 1.22E+ 02ǂ 1.20E+ 02ǂ 1.22E+ 02ǂ 1.45E+ 02ǂ 1.37E+ 02ǂ
Std 6.18E+ 00 1.15E+ 01 1.84E+ 00 6.54E+ 00 3.69E+ 00 6.77E+ 00 2.41E+ 00 5.15E+ 00

P value — 8.26E−01 2.43E−14 3.07E−07 5.24E−08 1.75E−06 2.97E−16 2.18E−14
H value — 0 1 1 1 1 1 1

F14 Mean 3.23E+ 04 6.59E+ 03 ξ 1.28E+ 04ξ 4.14E+ 04ǂ 3.33E+ 04ǂ 3.35E+ 04ǂ 5.15E+ 04ǂ 3.74E+ 04ǂ
Std 9.94E+ 02 1.01E+ 04 1.20E+ 04 4.14E+ 03 1.00E+ 03 1.09E+ 03 2.50E+ 03 3.77E+ 03

P value — 1.49E−12 1.88E−08 5.47E−11 4.56E−04 3.96E−06 2.99E−23 1.73E−06
H value — 1 1 1 1 1 1 1

F15 Mean 1.00E+ 02 1.00E+ 02∼ 1.00E+ 02∼ 1.25E+ 02ǂ 1.00E+ 02∼ 1.00E+ 02∼ 1.26E+ 03ǂ 7.35E+ 02ǂ
Std 4.35E−14 5.17E−04 4.35E−14 9.97E+ 00 1.10E−13 1.66E−13 6.43E+ 02 1.58E+ 03

P value — 2.57E−02 NAN 5.89E−12 5.44E−03 2.82E−05 1.13E−12 4.56E−02
H value — 1 NAN 1 1 1 1 1

ǂ/ξ/∼ — 8/4/3 7/1/7 13/0/2 9/4/2 12/0/3 15/0/0 15/0/0
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problems. Although ASDE gains poor convergence perfor-
mance on functions F1, it has strong global exploration ability
and achieves the best convergence accuracy. -is may be
because the proposedmechanism can assign autonomously the
combination of mutation strategies and control parameters to
the population so that the population can use the more ex-
ploratory mutation strategies and control parameters to search.

Additionally, DE is best on 5 functions (F6, F8, F10, F14,
and F15), and EPSDE gains the best convergence speed on 3
functions (F1, F2, and F15). MFO obtains the best con-
vergence speed on 2 functions (F3 and F15), and SLPSO is
the best convergence speed on 5 functions (F4, F5, F9, F12,
and F15). PSO and RLDE have poor convergence speed on
all benchmark functions.

4.3. Sensitivity Analysis of the Parameter c. -e parameter c

determines the impact level of the historical experience on
the current population; that is, in the historical experience,
the larger the value of the parameter c, the greater the
proportion of the reward of each combination used in the
current population. To find out a good choice of the pa-
rameter c, ASDEwith different parameter c � {0.1, 0.2, . . ., 1}
is utilized to optimize 15 benchmark problems of CEC2015.
-e other parameter settings of the algorithm are the same as
the settings described above. Table 4 summarizes the results
of average errors over 25 independent runs. For each
problem, the best result of ASDE with different values of the
parameter c is displayed in bold font. At the last row of the
table, an average ranking of ASDE with different values of
the parameter c is presented.

Table 4 clearly shows that the c value affects the per-
formance of algorithms, and the same c value gains different
performance on different functions. ASDE with c � 0.3
obtains the best performance on 6 functions (F3, F8, F9, F12,
F14, and F15), and its average ranking is the best. In ad-
dition, although ASDE with c � 1 obtains the best perfor-
mance on 9 functions (F1–F4, F6, F9, F12, F13, and F15), it
makes the historical experience more volatile, because
evolutionary algorithm search has probability features.-us,
to make the algorithm more robust and make the historical

Table 2: Average ranks for all algorithms across 28 problems and all dimensions using CEC2017.

Algorithms 10D 30D 50D 100D Mean ranking Rank
ASDE 2.68 3.46 4.32 4.07 3.63 2
AMFO 9.04 10.61 10.75 10.93 10.33 10
DE 3.96 5.05 5.64 6.04 5.17 6
EBLSHADE 4.32 4.66 4.64 4.93 4.64 4
EPSDE 5.41 5.44 5.78 6.16 5.70 7
jSO 5.35 4.25 3.95 4.18 4.43 3
LSHADE-SPACMA 3.39 2.02 1.52 1.63 2.14 1
MFO 7.13 7.75 7.25 6.82 7.24 8
PSO 7.39 7.71 7.78 7.71 7.65 9
RLDE 10.71 10.21 9.75 9.32 10.00 11
SLPSO 6.61 4.82 4.1 4.21 4.94 5

Table 3: Wilcoxon’s test between ASDE and other algorithms for
D� 10, 30, 50, and 100 using CEC2017.

D Algorithms R+ R− P value

10

AMFO 406.0 0.0 0.0000
DE 310.5 67.5 0.0034

EBLSHADE 320.5 85.5 0.0070
EPSDE 359.5 18.5 0.0000
jSO 315.5 62.5 0.0023

LSHADE-SPACMA 256.0 150.0 0.2178
MFO 406.0 0.0 0.0000
PSO 402.0 4.0 0.0000
RLDE 406.0 0.0 0.0000
SLPSO 362.0 44.0 0.0003

30

AMFO 406.0 0.0 0.0000
DE 321.0 57.0 0.0014

EBLSHADE 260.0 118.0 0.0258
EPSDE 364.0 42.0 0.0002
jSO 255.0 123.0 0.1101

LSHADE-PACMA 72.5 333.5 1.0000
MFO 406.0 0.0 0.0000
PSO 406.0 0.0 0.0000
RLDE 406.0 0.0 0.0000
SLPSO 301.0 105.0 0.0248

50

AMFO 406.0 0.0 0.0000
DE 333.0 73.0 0.00030

EBLSHADE 226.0 180.0 0.5925
EPSDE 366.0 40.0 0.0002
jSO 159.0 247.0 1.0000

LSHADE-SPACMA 8.0 398.0 1.0000
MFO 406.0 0.0 0.0000
PSO 401.0 5.0 0.0000
RLDE 406.0 0.0 0.0000
SLPSO 247.0 159.0 0.3109

100

AMFO 406.0 0.0 0.0000
DE 359.0 47.0 0.0004

EBLSHADE 244.0 162.0 0.3447
EPSDE 368.0 38.0 0.0001
jSO 156.0 250.0 1.0000

LSHADE-SPACMA 7.0 399.0 1.0000
MFO 406.0 0.0 0.0000
PSO 400.0 4.0 0.0000
RLDE 406.0 0.0 0.0000
SLPSO 235.0 171.0 0.4593
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Figure 4: Continued.
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experience more stable, c � 0.3 is recommended for the
ASDE algorithm.

4.4. Comparison Results of Time Complexity. In this section,
the time complexity of ASDE is evaluated and is expressed as
follows:

(1) -e complexity of population initialization is O(N).
(2) Calculating the fitness value costs O(N).
(3) Calculating the diversity of population costs O(N2).
(4) -e feature similar between current population and

the records of the historical experience archive needs
O(N).

(5) Assigning control parameters and mutation strate-
gies for each individual costs O(N).

(6) Generating the individual to be updated cost O(N).
(7) Calculating the fitness value of offspring population

costs O(N).
(8) -e update of the historical experience archive is

O(N).

-e overall time complexity of ASDE is shown as follows:

O(N) + O(N) + O N
2

  + O(N) + O(N) + O(N)

+ O(N) + O(N) � 7O(N) + O N
2

 .
(12)

-e total comparisons of average time complexity of 28
functions for D� 100 using CEC2017 in one iteration about
11 algorithms are displayed in Figure 5 in the form of bar
plot. Figure 5 clearly shows that the mean CPU time of
ASDE is slightly worse than DE, jSO, PSO, and SLPSO, and
slightly better than MFO and RLDE. In addition, the mean
CPU time of ASDE is significantly better than AMFO,
EBLSHADE, EPSDE, and LSHADE-SPACMA.

5. The Application about Parameter
Extraction of Photovoltaic Models

As we all know, solar energy is one of the most important
renewable energy sources [56], and its main practical appli-
cation is photovoltaic (PV) power generation [57], because solar
energy can be directly converted into electricity through the PV
system. However, the conversion efficiency of PV model is
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Figure 4: Convergence performance of the eight compared algorithms on 25 functions of CEC2005.
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greatly affected bymodel parameters. To deal with this problem,
the ASDE is used to extract the parameters of PV models.

5.1. PV Models and Fitness Functions. -e single diode and
double diode models [58] are the most commonly used PV
models, which can explain the current-voltage features of the
PV systems.-e single diodemodel, the diodemodel, the PV
module and the fitness function are modeled as follows.

5.1.1. Single-Diode Model. -e output current and voltage of
the single diode model is calculated by using [59]

I � Iph − Id exp
V + IRs

aVt

  − 1  −
V + IRs

Rsh

, (13)

where Rs and Rsh are the series resistance and the shunt
resistance, respectively, and a stands for the diode ideal factor.
I and V stands for the output current and the output voltage
of the single diode model, respectively. Iph and Id are the
photogenerated current and the diode current, respectively.
Vt represents the junction thermal voltage, generated by using

Vt �
k · T

q
, (14)

where k denotes the Boltzmann constant (1.3806503×

10− 23J/K), and T stands for the temperature of junction in
Kelvin. q represents the electron charge (1.60217646×

10− 19C).
-e unknown parameters (Rs, Rsh, a, Iph, and Id) of

single diode model will be extracted.

5.1.2. Double-Diode Model. -e relationship of output
current and voltage of double diode model is described as

I � Iph − Id1 exp
V + IRs

a1Vt

  − 1 

− Id2 exp
V + IRs

a2Vt

  − 1  −
V + IRs

Rsh

,

(15)

where Idi, i ∈ 1, 2{ } denotes the current of the i-th diode, and
ai, i ∈ 1, 2{ } represents the i-th diode ideal factor.

-ere are five unknown parameters (Rs, Rsh, a1, a2, Iph,
Id1, and Id2) of the double-diode model that is extracted.

5.1.3. PV Module. -e output current and voltage of the PV
module is described as [60]

Table 4: Results of solution accuracy obtained by ASDE with different c value on 15 benchmark functions of CEC2015.

Fs Result c � 0.1 c � 0.2 c � 0.3 c � 0.4 c � 0.5 c � 0.6 c � 0.7 c � 0.8 c � 0.9 c � 1
F1 Mean 4.32E+ 04 5.12E+ 04 3.78E+ 04 4.27E+ 04 4.34E+ 04 3.90E+ 04 2.04E+ 04 1.95E+ 04 1.53E+ 04 7.93E+ 03

Std 2.72E+ 04 5.31E+ 04 2.50E+ 04 3.62E+ 04 2.82E+ 04 2.85E+ 04 1.54E+ 04 1.61E+ 04 1.22E+ 04 5.77E+ 03
F2 Mean 5.79E−E−09 7.26E−10 3.39E−10 1.26E−10 1.36E−09 3.64E−10 3.06E−10 9.80E−12 2.30E−11 4.02E−12

Std 2.65E−08 1.96E−09 8.57E−10 2.15E−10 5.40E−09 1.28E−09 1.50E−09 3.78E−11 1.01E−10 1.80E−11
F3 Mean 2.06E+ 01 2.06E+ 01 2.06E+ 01 2.06E+ 01 2.07E+ 01 2.07E+ 01 2.07E+ 01 2.06E+ 01 2.07E+ 01 2.06E+ 01

Std 1.51E−01 2.52E−01 1.91E−01 2.66E−01 1.51E−01 1.12E−01 5.95E−02 8.38E−02 5.16E−02 1.47E−01
F4 Mean 1.38E+ 02 1.29E+ 02 1.01E+ 02 7.96E+ 01 7.59E+ 01 7.65E+ 01 8.06E+ 01 6.83E+ 01 7.50E+ 01 6.46E+ 01

Std 6.07E+ 01 3.97E+ 01 3.89E+ 01 3.58E+ 01 2.84E+ 01 2.85E+ 01 2.47E+ 01 1.79E+ 01 2.28E+ 01 2.56E+ 01
F5 Mean 3.08E+ 03 2.90E+ 03 3.14E+ 03 3.32E+ 03 3.18E+ 03 2.95E+ 03 2.94E+ 03 2.99E+ 03 2.94E+ 03 2.83E+ 03

Std 6.78E+ 02 7.32E+ 02 6.09E+ 02 6.07E+ 02 6.79E+ 02 5.54E+ 02 4.93E+ 02 6.92E+ 02 4.84E+ 02 7.09E+ 02
F6 Mean 4.48E+ 03 4.54E+ 03 4.50E+ 03 5.35E+ 03 4.62E+ 03 5.59E+ 03 5.21E+ 03 4.84E+ 03 4.35E+ 03 3.30E+ 03

Std 2.27E+ 03 2.99E+ 03 3.04E+ 03 7.82E+ 03 3.36E+ 03 5.25E+ 03 4.53E+ 03 4.55E+ 03 3.11E+ 03 2.42E+ 03
F7 Mean 4.50E+ 00 3.70E+ 00 3.76E+ 00 4.01E+ 00 3.65E+ 00 3.46E+ 00 3.81E+ 00 5.42E+ 00 4.32E+ 00 4.79E+ 00

Std 1.88E+ 00 1.46E+ 00 1.26E+ 00 1.68E+ 00 1.05E+ 00 8.40E−01 9.85E−01 4.54E+ 00 1.06E+ 00 1.23E+ 00
F8 Mean 5.82E+ 02 4.63E+ 02 3.90E+ 02 5.69E+ 02 1.10E+ 03 6.72E+ 02 5.11E+ 02 4.61E+ 02 5.48E+ 02 5.17E+ 02

Std 5.46E+ 02 4.46E+ 02 2.49E+ 02 5.22E+ 02 3.14E+ 03 1.19E+ 03 3.21E+ 02 2.45E+ 02 4.35E+ 02 4.54E+ 02
F9 Mean 1.03E+ 02 1.12E+ 02 1.03E+ 02 1.03E+ 02 1.09E+ 02 1.09E+ 02 1.03E+ 02 1.08E+ 02 1.03E+ 02 1.03E+ 02

Std 2.98E−01 4.77E+ 01 1.76E−01 1.70E−01 2.91E+ 01 3.11E+ 01 1.65E−01 2.84E+ 01 2.29E−01 1.58E−01
F10 Mean 1.30E+ 03 1.50E+ 03 1.35E+ 03 1.25E+ 03 1.30E+ 03 1.12E+ 03 1.34E+ 03 1.17E+ 03 1.13E+ 03 1.14E+ 03

Std 4.04E+ 02 6.56E+ 02 9.09E+ 02 5.11E+ 02 5.26E+ 02 3.40E+ 02 5.17E+ 02 4.20E+ 02 4.15E+ 02 3.06E+ 02
F11 Mean 5.21E+ 02 4.79E+ 02 4.91E+ 02 5.35E+ 02 5.38E+ 02 5.46E+ 02 6.46E+ 02 6.01E+ 02 6.62E+ 02 6.93E+ 02

Std 2.28E+ 02 1.52E+ 02 1.31E+ 02 1.31E+ 02 1.53E+ 02 1.64E+ 02 1.73E+ 02 2.05E+ 02 1.99E+ 02 1.90E+ 02
F12 Mean 1.07E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02 1.06E+ 02

Std 2.11E+ 00 8.33E−01 6.34E−01 6.31E−01 5.73E−01 7.26E−01 9.50E−01 7.30E−01 9.58E−01 9.15E−01
F13 Mean 1.08E+ 02 1.12E+ 02 1.09E+ 02 1.09E+ 02 1.07E+ 02 1.10E+ 02 1.09E+ 02 1.07E+ 02 1.04E+ 02 1.07E+ 02

Std 5.12E+ 00 8.41E+ 00 6.18E+ 00 3.85E+ 00 5.24E+ 00 3.99E+ 00 5.43E+ 00 6.75E+ 00 7.46E+ 00 5.65E+ 00
F14 Mean 3.29E+ 04 3.30E+ 04 3.23E+ 04 3.25E+ 04 3.28E+ 04 3.25E+ 04 3.30E+ 04 3.28E+ 04 3.38E+ 04 3.34E+ 04

Std 1.54E+ 03 8.93E+ 02 9.94E+ 02 1.09E+ 03 1.00E+ 03 8.77E+ 02 1.38E+ 03 1.09E+ 03 1.62E+ 03 1.49E+ 03
F15 Mean 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02 1.00E+ 02

Std 4.35E−14 4.35E−14 4.35E−14 5.69E−14 5.69E−14 4.35E−14 5.69E−14 6.77E−14 4.35E−14 5.69E−14
Ran. — 6.40 5.67 4.53 5.26 6.20 5.87 6.13 5.13 5.07 4.73
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I � IphNp − IdNp exp
V + IRsNs/Np

aNsVt

  − 1 

−
V + IRsNs/Np

RshNs/Np

,

(16)

where Ns is the number of solar cells that are connected in
series, and Np denotes the number of solar cells that are
connected in parallel. In the experiment, Np is 1, because the
PV modules are all in series. -us, the output current and
voltage of the used PV module is addressed as

I � Iph − IdNp exp
V + IRsNs

aNsVt

  − 1  −
V + IRsNs

RshNs

. (17)

-e parameters (Rs, Rsh, a, Iph, and Id) of PVmodule are
needed to extracted.

5.1.4. Fitness Functions. Minimizing the error between
simulated and measured current data is the target of pa-
rameter extraction of PV models. -e absolute error current
(AEC) of the individuals is calculated as follows [61].

-e AEC of the single diode model is calculated by

AEC � Iph − Id exp
V + IRs

aVt

  − 1  −
V + IRs

Rsh

− I




. (18)

-e AEC of the double diode model is generated by

AEC � Iph − Id1 exp
V + IRs

a1Vt

  − 1 



− Id2 exp
V + IRs

a2Vt

  − 1  −
V + IRs

Rsh

− I


.

(19)

-e AEC of the PV module is created as

AEC � Iph − IdNp exp
V + IRsNs

aNsVt

  − 1  −
V + IRsNs

RshNs

− I




.

(20)

To quantify the overall error between the simulated and
measured current, the root mean square error is used as the
fitness function, addressed as

f(x) �

����������

1
N



N

i�1
AEC2




, (21)

where x represents the feasible solution consisted of the
unknown parameters, and N is the number of measured
current data. It is clearly shown that the smaller the fitness
value, the more accurate the extracted parameters.

5.2. Parameters Setting. -e current-voltage data of single
(PV–F1) and double (PV–F2) diode models are obtained
from [62], measured on a 57mm diameter commercial
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silicon R.T.C. France solar cell under 1000 W/m2 at 33°C.
-ree different PV modules are used to test the performance
of ASDE, i.e., ploycrystalline Photowatt-PWP201 (PV–F3),
monocrystalline STM6-40/36 (PV–F4), and polycrystalline
STP6-120/36 (PV–F5). -e ploycrystalline Photowatt-
PWP201 is gauged under 1000 W/m2 at 45°C [62]. -e
monocrystalline STM6-40/36 and the polycrystalline STP6-
120/36 are gauged under 51°C and 55°C, respectively, whose
current-voltage data are obtained from [63]. -e feasible
range of parameters to be extracted is displayed in Table 5. In
addition, the parameter setting of the simulation is the same
to Section 4.

5.3. Comparison on Solution Accuracy. -e basic settings of
Table 6 are the same to Table 1. It can be seen clearly from
Table 4 that ASDE obtains the best performance on 2
photovoltaic models (PV–F1 and PV-F2) and gets the
second performance on the other models. Meanwhile, ASDE
is better than DE, PSO, AMFO, and RLDE on all five
photovoltaic models. Compared with SLPSO and MFO,
ASDE is better on four models and is similar on one model.
In addition, ASDE has obtained the better performance than
EPSDE on three models. -is indicates that ASDE is

significant in solving the problem of parameter extraction of
the photovoltaic model. Finally, ASDE is worse than EPSDE
on 2 models (PV–F4 and PV-F5), which may be because the
ε-greedy strategy (ε � 0.4) is slightly poor in the exploitation
ability of the population.

It is noteworthy that the root mean square error between
the current obtained by ASDE and the theoretical measured
current is less than 0.05. -us, we believe that ASDE is
effective in optimizing the parameter extraction problem of
photovoltaic models.

5.4. 2e Comparison Results of Convergence Speed. In Fig-
ure 6, the vertical axis is the nature logarithm of the mean
value over independent 25 runs, and the horizontal axis is
the sampling point where sampling points are taken from
FES� 1000 and mod (FES, 10000)� 0.

Figure 6 shows that ASDE gains the best convergence
speed on 3 models (PV–F1, PV-F2, and PV-F3), which
suggests that ASDE can get the promising convergence
performance in optimizing the parameter extract problems
of photovoltaic models. On model PV-F4, in the early stage
of search, the convergence speed of ASDE is better than
EPSDE. However, in the later stage of the search, ASDE

Table 5: -e feasible range of parameters to be extracted.

Parameters
PV-F1/F2 PV-F3 PV-F4 PV-F5

LB UB LB UB LB UB LB UB
Iph 0 1 0 2 0 2 0 8
Id, Id1, Id2 0 1 0 50 0 50 0 50
Rs 0 0.5 0 2 0 0.36 0 0.36
Rsh 0 100 0 2000 0 1000 0 1500
a, a1, a2 1 2 1 50 1 60 1 50

Table 6: Solution accuracy of ASDE and compared algorithms on PV problems.

Func. Results ASDE DE EPSDE PSO SLPSO MFO AMFO RLDE
PV-F1 Mean 9.86E−04 1.76E−03ǂ 1.31E−03ǂ 2.25E−01ǂ 1.78E−03ǂ 1.88E−03ǂ 9.66E−03ǂ 1.21E−02ǂ

Std 3.04E−13 4.10E−04 4.32E−04 8.50E−17 3.57E−04 3.83E−04 3.68E−03 9.17E−03
P value — 1.47E−09 9.23E−04 1.47E−286 6.44E−11 2.15E−11 1.81E−11 2.80E−06
H value — 1 1 1 1 1 1 1

PV-F2 Mean 9.85E−04 1.45E−03ǂ 1.91E−03ǂ 2.52E−01ǂ 2.55E−03ǂ 1.85E−03ǂ 8.49E−03ǂ 8.60E−03ǂ
Std 1.39E−06 4.36E−04 3.71E−04 1.37E−01 4.56E−04 4.79E−04 2.67E−03 5.82E−03

P value — 1.93E−05 5.57E−12 2.44E−09 6.00E−15 3.85E−09 4.58E−13 9.05E−07
H value — 1 1 1 1 1 1 1

PV-F3 Mean 2.70E−03 6.89E−03ǂ 3.87E−03ǂ 4.97E+ 00ǂ 2.58E−03∼ 2.49E−03∼ 1.12E−02ǂ 2.80E−02ǂ
Std 1.35E−03 1.28E−03 7.78E−04 2.72E−15 2.30E−05 8.36E−05 3.75E−03 1.78E−02

P value — 5.37E−12 2.05E−03 2.67E−87 6.84E−01 4.56E−01 2.79E−10 2.84E−07
H value — 1 1 1 0 0 1 1

PV-F4 Mean 1.74E−03 6.30E−02ǂ 8.80E−06 ξ 3.11E−01ǂ 1.06E−02ǂ 6.87E−03ǂ 1.64E−02ǂ 2.19E−01ǂ
Std 1.33E−05 2.75E−02 1.54E−05 1.22E−16 4.62E−03 2.48E−03 5.71E−03 1.05E−01

P value — 5.74E−11 5.40E−48 1.52E−106 9.97E−10 2.39E−10 2.91E−12 2.65E−10
H value — 1 1 1 1 1 1 1

PV-F5 Mean 1.78E−02 7.63E−01ǂ 4.31E−03 ξ 3.92E−01ǂ 9.80E−02ǂ 4.41E−02ǂ 7.17E−02ǂ 1.44E+ 00ǂ
Std 4.26E−03 2.41E−01 1.91E−02 5.00E−01 1.14E−01 5.57E−03 1.54E−02 3.83E−01

P value — 5.58E−14 2.40E−03 9.71E−04 1.87E−03 4.39E−14 2.68E−15 9.40E−16
H value — 1 1 1 1 1 1 1

ǂ/ξ/∼ — 5/0/0 3/2/0 5/0/0 4/0/1 4/0/1 5/0/0 5/0/0
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obtains worse convergence speed than EPSDE.-is could be
because ASDE with fixed ε value has the slightly poor
convergence ability, which is for avoiding the population
falling into the trap of local optimal solution. Although
ASDE gains worse convergence performance than MFO on
model PV-F5, it achieves the best convergence accuracy.
-is indicates that the exploration ability of the ASDE is
interesting.

6. Conclusions

In reality, most optimization problems are black box op-
timization problems with unknown problem features,
which makes the traditional adaptive DE algorithm unable
to achieve satisfactory performance in optimizing those
optimization problems. To improve this situation, a DE
with autonomous selection of mutation strategies and
control parameters is proposed in this paper, named ASDE
for short. In ASDE, the historical experience archive with
population features is utilized to preserve historical ex-
perience of mutation strategies and control parameters,
which makes the historical experience can be cumulated so
that the accumulated historical experience can be mapped

into rules repository, and the individuals can choose the
combination of mutation strategies and control parameters
according to those rules. In addition, to assure that the
historical experience can be effectively accumulated and
utilized efficiently, an updating and utilization mechanism
of the historical experience is proposed in this paper. Fi-
nally, the 15 functions of CEC2015 and the parameter
extraction problems of the photovoltaic model are utilized
to verify the performance of ASDE, and the simulation
results demonstrate that ASDE outperforms seven com-
pared algorithms.

In our future work, ASDE will be applied to solve other
real-world optimization problems to further test its
performance.
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