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Fractional calculus is nowadays an efficient tool in modelling many interesting nonlinear phenomena.(is study investigates, in a
novel way, the Ulam–Hyers (HU) and Ulam–Hyers–Rassias (HUR) stability of differential equations with general conformable
derivative (GCD). In our analysis, we employ some version of Banach fixed-point theory (FPT). In this way, we generalize several
earlier interesting results. Two examples are given at the end to illustrate our results.

1. Introduction

(e stability issue gained a considerable attention in various
research fields through applications.(ere are many kinds of
stability, among them is the stability introduced by S. M.
Ulam, in his famous talk at a conference held in Wisconsin
University in 1940. Since then, it is known as HU stability or
simply Ulam stability. Its applications for various types of
differential equations have been investigated by many re-
searchers. (e readers can see the interesting results in 1–7,
for more details. (e stability problem of Ulam can be re-
written in the following form.

Consider a group G∗ and a metric group (G∗∗, χ1). Is it
true that given ε> 0, there exist δ > 0 such that if
Λ: G∗ ⟶ G∗∗ satisfies

χ1 Λ x1x2( 􏼁,Λ x1( 􏼁Λ x2( 􏼁( 􏼁< δ. (1)

For all x1, x2 ∈ G∗, then a homomorphism
Ξ: G∗ ⟶ G∗∗ exists such that

χ1 Λ x1( 􏼁,Ξ x1( 􏼁( 􏼁< ε, (2)

for every x1 ∈ G∗?

(e problem of Ulam has been extended in many di-
rections for various interesting settings. In particular, Ras-
sias (see [8]) generalized Ulam’s result for Banach spaces.

Initial and boundary value problems with fractional-
order derivatives are natural generalization of the classical
initial and boundary value problems. It is much more
complicated to investigate stability issues of fractional-order
problems than their classical analogues; this is because of the
singularity and nonlocality in the kernel of fractional dif-
ferential operators. Fractional derivatives, in general, play
negligible roles in a number of fields of science and engi-
neering (see, e.g., [9–13] and the references there in).

In particular, during the last few decades, the area of
fractional calculus has been investigated qualitatively by using
different tools of functional analysis. (ese tools include but are
not limited to Gronwall Lemma, see, e.g., [14], Pachpatte’s in-
equality, see, e.g., [15], Schaefer’s FPT, see, e.g., [16], Schauder’s
FPT, see, e.g., [17], Banach FPT, see, e.g., [18], and Picard op-
erator, see, e.g., [15]. Various approaches have been used to
define fractional derivatives (see, e.g., 19–28, for more details).
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It should be remarked that generalized conformable
derivative plays an essential role in many applications. For
instance, the authors in [29] utilized it to examine some
nonlinear evolution equations. Generalized conformable
derivative also has been used in [30] to investigate some
nonlinear evolution equations. A new generalized version of
conformable derivative is given and in [31] with some ap-
plications in biological population. In the present study, we
generalize several recent interesting works as follows.We use
(eorem 2 to generalize the interesting results in [32, 33] by
dropping some of the basic assumptions that have been used
there. We also use (eorem 3 to generalize the work in [34].

(e organization of the study is as follows. In Section 2,
we present some preliminaries and some basic definitions. In
Section 3, we introduce our stability results in the sense of
HU and HUR. In Section 4, two examples are written to
show the validity of our results, and in Section 5, we con-
clude our work.

2. Preliminaries

In this section, some definitions, lemmas, and theorems are
given [35–39].

Definition 1. Let us consider a function ϕ defined on [c, d);
then, the GCD starting from the real c of a function ϕ is
defined by

T
υ,ψc

c ϕ(z) � lim
σ⟶0

ϕ z + σψc(z, υ)( 􏼁 − ϕ(z)

σ
. (3)

For all z> c, υ ∈ (0, 1) and ψc(z, υ) is a nonnegative
continuous function that satisfies

ψc(z, 1) � 1,

ψc ., υ1( 􏼁≠ψc ., υ2( 􏼁,where υ1 ≠ υ2 and υ1, υ2 ∈ (0, 1].

(4)

If T
υ,ψc
c ϕ(z) exists, for every z ∈ (c, a); for some a> c,

limt⟶c+ T
υ,ψc
c ϕ(z) exists; then, by definition,

T
υ,ψc

c ϕ(c) � lim
t⟶c+

T
υ,ψc

c ϕ(z). (5)

Remark 1. To further study the properties of GCD, we
suppose that ψc(z, υ)> 0, for all z> c, and 1/ψc(., υ) is locally
integrable.

Definition 2. Let 0< υ< 1. (e conformable fractional in-
tegral starting from c of a function ϕ is defined by

I
υ,ψc

c ϕ(z) � 􏽚
z

c

ϕ(x)

ψc(x, υ)
dx . (6)

Lemma 1. Suppose that ϕ ∈ C([c, d]). <us,

T
υ,ψ
c I

υ,ψc

c ϕ(z) � ϕ(z), ∀z≥ c. (7)

Lemma 2. Suppose that ϕ ∈ AC1([c, d]). <us,

I
υ,ψc

c T
υ,ψ
c ϕ(z) � ϕ(z) − ϕ(c), ∀z≥ c. (8)

Remark 2. Assume that ϑ ∈ R∗. If

g(z): � Eψc
υ (ϑ, z, c) � e

ϑ􏽒
z

c
1/ψc(x,υ)dx, then

T
υ,ψc
c g(z) � ϑg(z) and I

υ,ψc
c g(z) � 1/ϑ(g(z) − 1).

(e following is the notion of a generalized metric on
some set S1.

Definition 3 (see 40). Consider a mapping
ϱ: S1 × S1⟶ [0,∞]. (e mapping ϱ is called a general-
ized metric on set S1 iff ϱ satisfies:

M1 ϱ(o1, o2) � 0 if and only if o1 � o2

M2 ϱ(o1, o2) � ϱ(o2, o1), for all o1, o2 ∈ S1

M3 ϱ(o1, o3)≤ ϱ(o1, o2) + ϱ(o2, o3), for all
oi ∈ S1, i � 1, 2, 3

(e following theorem (see [40]) represents one of the
interesting results of FPT.(is theorem plays a fundamental
role in our study.

Theorem 1. Suppose that (Q, F) is a metric space that is
generalized complete. Let B: Q⟶ Q be a strictly contractive
operator. If there is an integer t≥ 0 with F(Γt+1c, Γtc)<∞ for
some c ∈ Q, thus

(a) lims⟶+∞Bsc � c∗, where c∗ is the unique fixed point
of Γ in Q∗: � c1 ∈ Q: F(Btc, c1)<∞􏼈 􏼉

(b) If c1 ∈ Q∗, then F(c1, c∗)≤ 1/1 − LF(Bc1, c1)

Define the space X as X: � C(I,R), with I � [a, a + T]

(a is some real number).

Lemma 3. Define a metric η: X × X⟶ [0,∞] in such a
way that

η β1, β2( 􏼁 � inf A ∈ [0,∞]:
β1(z) − β2(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ (ϑ, z, a)
≤Aλ(z), z ∈ I􏼨 􏼩,

(9)

where ϑ> 0, θ ∈ (0, 1), and λ is positive and continuous.<us,
(X, η) is a generalized complete metric space.

(e goal of this study is to investigate the stability of the
following initial value problem:

T
θ,ψa

a y(z) � ξ(z, y(z)), y(a) � ya, (10)

in the sense of HU and HUR. Notice that the solution of the
initial value problem (10) is the solution of

y(z) � 􏽚
z

a

ξ(p, y(p))

ψa(p, θ)
dp + ya, z ∈ I. (11)

3. Ulam–Hyers–Rassias Stability Results

We use this section to present our main results. (e theorem
below represents the stability of (10) in the sense of HU.
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Theorem 2. Suppose ξ is continuous and satisfies

|ξ z, c1( 􏼁 − ξ z, c2( 􏼁|≤P|c1 − c2|, ∀z ∈ I, ci ∈ R, i � 1, 2.

(12)

If an absolutely continuous function x: I⟶ R satisfies

|T
θ,ψa

a x(z) − ξ(z, x(z))|≤ ϵ, (13)

for some ϵ> 0, therefore, there is a unique solution x∗ of (10)
with

|x(z) − x
∗
(z)|≤ ϵ

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a), (14)

for every z ∈ I, where ϱ is any positive constant and
M � sups∈[a,a+T](I

θ,ψa
a (1)(s)/Eψa

θ ((P + ϱ), s, a)).

Proof. For any B1, B2 ∈ X, we define the metric d in this way:

d B1, B2( 􏼁 � inf V ∈ [0,∞]:
B1(z) − B2(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤V, z ∈ I􏼨 􏼩.

(15)

Define the operator G: X⟶ X such that

(Gy)(z): � x(a) + 􏽚
z

a

ξ(s, y(s))

ψa(s, θ)
ds , ∀y ∈ X. (16)

Since

Gy0( 􏼁(z) − y0(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
<∞, ∀y0 ∈ X, z ∈ I, (17)

so that it is clear that d(Gy0, y0)<∞, in addition, we get
y ∈ X: d(y0, y)<∞􏼈 􏼉 � X.

Now, we prove that G is strictly contractive:

Gy1( 􏼁(z) − Gy2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
z

a

ξ s, y1(s)( 􏼁 − ξ s, y2(s)( 􏼁( 􏼁

ψa(s, θ)
ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
z

a

ξ s, y1(s)( 􏼁 − ξ s, y2(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ψa(s, θ)
ds

≤P 􏽚
z

a

y1(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ψa(s, θ)
ds

≤P 􏽚
z

a

1
ψa(s, θ)

y1(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), s, a)
E
ψa

θ ((P + ϱ), s, a)ds

≤
P d y1, y2( 􏼁

P + ϱ
E
ψa

θ ((P + ϱ), z, a) − 1􏼐 􏼑

≤
P d y1, y2( 􏼁

P + ϱ
E
ψa

θ ((P + ϱ), z, a)for all z ∈ I.

(18)

So, it is clear that

Gy1( 􏼁(z) − Gy2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤

P

P + ϱ
d y1, y2( 􏼁, (19)

which implies that

d Gy1,Gy2( 􏼁≤
P

P + ϱ
d y1, y2( 􏼁, (20)

which prove that the operatorG is a strictly contractive one.
We get, from (27),

|x(z) − Gx(z)|≤ ϵ􏽚
t

a

1
ψa(s, θ)

ds ≤ ϵIθ,ψa

a (1)(z). (21)

(erefore,

d(x,Gx)≤ ϵM. (22)

Now, according to (eorem 1, there is some solution x∗

of (10) satisfying

d x, x
∗

( 􏼁≤ ϵ
P + ϱ
ϱ

M, (23)

so that

x(z) − x
∗
(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤ ϵ

P + ϱ
ϱ

M, (24)

which implies that

|x(z) − x
∗
(z)|≤ ϵ

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a). (25)
□

Remark 3. It is clear that our findings in the sense of HU are
some generalized version of the results obtained in [32, 33]
as follows. In our analysis, we do not impose any constrains
on P unlike equation 5 in (eorem 2 in [32]. In [33], the
authors assumed conditions on the function φ which is not
the case in our study.

(e following theorem represents the stability of (10) in
HUR sense.

Theorem 3. Suppose ξ is continuous and satisfies

|ξ z, c1( 􏼁 − ξ z, c2( 􏼁|≤P|c1 − c2|, ∀z ∈ I, ci ∈ R, i � 1, 2.

(26)

If an absolutely continuous function x: I⟶ R satisfies

|T
θ,ψa

a x(z) − ξ(z, x(z))|≤ κ(z), (27)

where κ(z) is a nondecreasing, continuous function,
therefore, there is a unique solution x∗ of (10) with

|x(z) − x
∗
(z)|≤

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a)κ(z), (28)

for every z ∈ I, where ϱ is any positive constant and
M � sups∈[a,a+T](I

θ,ψa
a (1)(s)/Eψa

θ ((P + ϱ), s, a)).

Proof. For any B1, B2 ∈ X, we define the metric d as follows:

d B1, B2( 􏼁 � inf V ∈ [0,∞]:
B1(z) − B2(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤Vκ(z), z ∈ I􏼨 􏼩.

(29)
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Define the operator G: X⟶ X such that

(Gy)(z): � x(a) + 􏽚
z

a

ξ(s, y(s))

ψa(s, θ)
ds , ∀y ∈ X. (30)

We have d(Gy0, y0)<∞, for all y0. In addition, we get
y ∈ X: d(y0, y)<∞􏼈 􏼉 � X.

Now, we prove that G is strictly contractive:

Gy1( 􏼁(z) − Gy2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
z

a

ξ s, y1(s)( 􏼁 − ξ s, y2(s)( 􏼁( 􏼁

ψa(s, θ)
ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤P 􏽚
z

a

y1(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ψa(s, θ)
ds

≤P d y1, y2( 􏼁κ(z) 􏽚
z

a

E
ψa

θ ((P + ϱ), s, a)

ψa(s, θ)
ds

≤
P d y1, y2( 􏼁

P + ϱ
E
ψa

θ ((P + ϱ), z, a)κ(z)for all z ∈ I.

(31)

So,

d Gy1,Gy2( 􏼁≤
P

P + ϱ
d y1, y2( 􏼁, (32)

which prove that the operator G is a strictly contractive one.
We get, from (13),

|x(z) − Gx(z)|≤ 􏽚
t

a

κ(s)

ψa(s, θ)
ds ≤ κ(z)I

θ,ψa

a (1)(z). (33)

Hence,

d(x,Gx)≤M. (34)

Using (eorem 1, there is a solution x∗ of (10) with

d x, x
∗

( 􏼁≤
P + ϱ
ϱ

M. (35)

(us,

|x(z) − x
∗
(z)|≤

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a)κ(z). (36)
□

Remark 4. Notice that the authors in [34] used conformable
fractional Laplace transform to study the HUR stability of
several kinds of differential equations. (ey had to assume
some specific conditions, see, e.g., condition 12 in (eorem
3.6 is given in [34].

Remark 5. (e authors in [41] obtained stability results for
differential equations with integer-order derivatives ψa � 1,
while in our study it is for GCD. In this sense, we introduce a
generalized version of the interesting results [41].

4. Examples

(is section uses two examples to show the validity of
results.

Example 1. Consider equation (10) for
ψa(z, θ) � (z − a)1− θ, a � 0, θ � 0.6, T � 2, and
ξ(z, ]) � z4 sin(]).

We have

|z
4 sin ]1( 􏼁 − z

4 sin ]2( 􏼁|≤ 16|]1 − ]2|, ∀z ∈ [0, 9], ]1, ]2 ∈ R.

(37)

(en, L � 16.
Suppose that ] satisfies

|T
0.6,ψ0
0 ](z) − ξ(z, ](z))|≤ 0.01, (38)

for all z ∈ [0, 2].
Here, ϵ � 0.01. Using (eorem 2, there is ]∗ and M> 0

such that

|](z) − ]∗(z)|≤ 0.01M, ∀z ∈ [0, 2]. (39)

Example 2. Consider equation (10) for
ψa(z, θ) � (z − a)1− θ, a � 3, θ � 0.3, T � 3, and
ξ(z, ]) � z cos(]).

We have

|z cos ]1( 􏼁 − z cos ]2( 􏼁|≤ 6|]1 − ]2|, ∀z ∈ [3, 6], ]1, ]2 ∈ R.

(40)

(en, L � 6.
Suppose that ] satisfies

|T
0.3,ψ3
3 ](z) − ξ(z, ](z))|≤ (z + 2), (41)

for all z ∈ [3, 6].
Here, κ(z) � z + 2. Using (eorem 3, there is ]∗ and

M> 0 such that

|](z) − ]∗(z)|≤M(z + 2), ∀z ∈ [0, 2]. (42)

5. Conclusion

We managed to utilize a version of Banach FPT to present
stability results in the sense of HU and HUR for some
differential equations involving GCDs. In our analysis, we
generalized some interesting results by dropping some of the
basic assumptions that have been used in recent known
investigations. We used two examples to show the validity of
our main findings. We believe that the methodology used in
this study can be further applied to many other fractional
differential equations.
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