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+is study aims to develop a robust metalearning system for rapid classification on a large number of tasks. +e model-agnostic
metalearning (MAML) with the CACTUs method (clustering to automatically construct tasks for unsupervised metalearning) is
improved as EW-CACTUs-MAML after integrated with the entropy weight (EW) method. Few-shot mechanisms are introduced
in the deep network for efficient learning of a large number of tasks. +e process of implementation is theoretically interpreted as
“gene intelligence.” Validation of EW-CACTUs-MAML on a typical dataset (Omniglot) indicates an accuracy of 97.42%,
performing better than CACTUs-MAML (validation accuracy� 97.22%). At the end of this paper, the availability of our thoughts
to improve another metalearning system (EW-CACTUs-ProtoNets) is also preliminarily discussed based on a cross-validation on
another typical dataset (Miniimagenet).

1. Introduction

Generally, a learning algorithm f is defined as a procedure
for processing the data D to make predictions y∗ from every
input x∗ [1]. +at is, f is a particular function that maps x∗

to y∗. In this sense, the goal of machine learning is to recover
a function from data, including learning classifiers, re-
gression, and policies [2]. Consequently, the learning al-
gorithm f is said to be consistent if
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∗
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∗
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Differing from traditional machine learning, metal-
earning is interpreted as “learn to learn,” which can achieve
(1), where the function from x∗i to y∗i can be actually
presented as a universal metalearner [3]. +e main research
directions of metalearning include metalearning based on
the metric space (e.g., prototypical networks), metalearning
based on parameter optimization (e.g., model-agnostic
metalearning), and model-based metalearning (e.g., rein-
forcement metalearning) [1–5]. +e datasets for

metalearning are very large, and hence, the automatic
classification of learning tasks is always a great challenge [6].
Due to this challenge, few engineering applications of
metalearning are reported [7, 8].

+e objectives of this study are (1) to analyze the major
reasons for the challenge, (2) to develop a method for tackling
the challenge, and (3) to propose a scheme for engineering
applications of metalearning. +e organization of the whole
paper is as follows. In Section 2, we formulate the problem as a
challenge in a large-scale matrix operation, and in Section 3, we
theoretically analyze how to further improve the accuracy and
efficiency in classification. Experiments and discussion are
presented in Section 4, where the room for improvement in
parameter optimization is also highlighted.

2. Problem Formulation

2.1. Representation of the Model. We utilize the entropy
weight method to improve the metalearning processes,
where model-agnostic metalearning (MAML) is employed
as the prototypical network [9–12].
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Let θ be the vector of initial parameters for the model f
and∅J denote the updated parameters. Let α be the nonzero
learning rate. For K-shot learning, we use 5-way-5-shot to
build the prediction model [13–15].
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(2)

According to the universal function approximation
theorem [16–20], fMAML can also be represented as an
approximator for functions on x∗.

2.2. Interpreting theLearningProcess. Let l be the lth task and
∅(·; wl

j, θ
l
ft, θ

l
b) represent the input feature values which

were evaluated by parameters θl
ft, bias θl

b, and transfor-
mation variable θl

b. Let 
N
i�1 Wi represent the weight ma-

trices, which include a set of linear layers with nonnegative
input and activations. Let fout(·, θl

out) be the output func-
tion. Let θ: θl

ft, θ
l
b, Wi , θl

out  be the learned parameters.
We improve the traditional gradient descent utilized in

the prototypical network to update the weights of the learner
f, which can be represented as
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Let disc(·) denote a function that produces a K-shot
discretization of its inputs. Select θft and Bjl such that
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+e loss in classification is calculated with a cross-en-
tropy function

C � −
1
n


x

[ylna +(1 − y)ln(a)]. (6)

A simplified interpretation of metalearning processes is
shown in Figure 1.

3. Theoretical Analyses

3.1. Construction of Tasks. Suppose there is an embedding
learning algorithm 5 on D; then, we can obtain the mapping
data xi  from the embedding space μ. For the cluster Cc, the
centroid of cluster ci is calculated from

P ci  � arg Cc{ }min ci{ } 
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Given a source matrix
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+e weight matrix calculated from r with the entropy
weight method is
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+e prototype of the kth class is generated from

zk � rw
T
. (10)

Hence, the set of examples labeled with class k is

Sk � zk, yk( . (11)

We utilize k-means clustering division to get P and a set
of partitions [21–28]. Let N be a support set of one-shot
labels and Q be a query set. Each task can be sampled from a
permutation with the one-shot labels yi  obtained from
CACTUs. +at is,

Tt � xm,n, yi  , yi ∈ 1, 2, . . . , K{ }. (12)

3.2. Parameters’ Optimization. Entropy weight method is
utilized in computing relative weights wk for every data of
tasks DJ and adapting to new tasks DJi which also determine
the parameters of the model through the calculations of
gradient descents ∅i [29, 30]. Let α be the global learning
rate (a fixed metalearning parameter). +en,
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Parameters are optimized by sampling tasks from
P(J)—associated with f∅i.

minθ 
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+e goal of the optimization process is to use the updated
parameters to calculate the outer layer updates. Let β be the
learning rate in the inner layer. +e parameters’ heredity
during the optimization process is
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+e relationship between the total loss and the task loss
during the parameters’ optimization process is shown in
Figure 2.

3.3. 7eoretical Implementation. +e implementation of
EW-CACTUs-MAML includes two steps, which can be
theoretically interpreted as “gene intelligence” (to highlight
parameters’ heredity).

First, in order to implement multistep gradients’ up-
dates, define an initial gene (that is, the initialization pa-
rameter). +e multistep gradients’ updates can be
implemented through the calculation of the input training
tasks’ update genes. Second, continue to join the training
data for each task and update genes. +e optimal genes will
be obtained in multiple gradient descents. Certainly, the
parameters for a certain task may need to be updated several
times to get the optimal result, as shown in Figure 3.

In order to simplify the genetic process, a future ex-
pectation for the best situation is that one update is enough
for finding a gene, and during the whole process, only
limited data with small samples are necessary for learning, as
shown in Figure 4.

4. Experiments and Discussion

4.1. Performance of the Model. Two typical datasets, the
Omniglot dataset and the Miniimagenet dataset, will be
employed in this section.+eMiniimagenet dataset has been
widely used in the fields of metalearning and few-shot
learning [31–37]. +e famous original reference of the
dataset is [37], where the matching networks for one-shot
learning were presented to tackle a key challenge in machine

learning—learning from a few examples. Up to now,
Miniimagenet has become a benchmark dataset in the field
of metalearning and few-shot learning [38–40]. +e dataset
contains 60000 colorful pictures with size 84× 84 in 100
categories, including 600 samples in each category [41]. +e
Omniglot dataset contains 1623 handwritten characters
from 50 different letters, which were drawn online by 20
different people with Amazon’s Mechanical Turk [42]. Each
image is paired with stroke data, and for the coordinate
sequence [x, y, t] of each stroke data, the time t is in mil-
liseconds [43]. Omniglot is a benchmark dataset in the field
of one-shot and few-shot learning [40, 44–49]. We utilize
60% of the Omniglot dataset as the training set and 40% of
this dataset as the validation set, as shown in Figure 5.

According to the 300 iterations of the training and
testing datasets in the deep cluster of the Omniglot dataset,
the average value of the validation accuracy is 97.42%, which
indicates that EW-CACTUs-MAML is robust on the
Omniglot dataset.

4.2. Competitiveness and Practicability. +e performance of
CACTUs-MAML on the Omniglot dataset is shown in
Figure 6, including details for the training process and
validation process. According to the 300 iterations of the
training and testing datasets in the deep cluster of the
Omniglot dataset, the average value of the validation ac-
curacy is 97.22%.

Comparing the dynamic curves of the train loss, train
accuracy, validation loss, and validation accuracy of CAC-
TUs-MAML with those of EW-CACTUs-MAML in Fig-
ure 5, we conclude that the proposed model is competitive
with CACTUs-MAML. +e comparisons of EW-CACTUs-
MAML and CACTUs-MAML in the performance on the
Omniglot dataset are shown in Table 1.

+e loss of EW-CACTUs-MAML in validation is
0.20578947, which is less than the loss of CACTUs-MAML
in validation. +e accuracy of EW-CACTUs-MAML in
validation is 97.42%, which is higher than the accuracy of
CACTUs-MAML in validation. It must be noted that
CACTUs-MAML can represent one most competitive
model on the Omniglot dataset [50]. Consequently, these
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Figure 1: A simplified interpretation of metalearning processes.
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results already demonstrate that the proposed model is
competitive and practicable.

4.3. Uncertainty Analysis and Discussion. We tried to vali-
date the model EW-CACTUs-MAML on another typical
dataset Miniimagenet, but the size of this dataset is too big so
that the computer sources were spent out before completing
the performance of EW-CACTUs-MAML. Since we also want
to validate the availability of the EW method in improving
other metalearning systems, we then tried to improve another
competitive metalearning system CACTUs-ProtoNets
[50] as EW-CACTUs-ProtoNets. Fortunately, the com-
puter sources are enough for performing the alternative
model on both the Miniimagenet dataset. Details for the
training and validation processes of CACTUs-ProtoNets

and EW-CACTUs-ProtoNets on the Miniimagenet
dataset are shown in Figure 7.

It must be pointed out that we utilized 80% of the
Miniimagenet dataset as the training set and 20% of this
dataset as the validation set for training/testing EW-CAC-
TUs-ProtoNets and CACTUs-ProtoNets, which is similar
with our strategy for training/testing EW-CACTUs-MAML
and CACTUs-MAML. We explicitly compared the perfor-
mance of the models EW-CACTUs-ProtoNets and CAC-
TUs-ProtoNets on the Miniimagenet dataset, as shown in
Table 2.

+e Miniimagenet dataset is really challenging. +e
CACTUs-ProtoNets model is already most competitive on
the Miniimagenet dataset, but the validation accuracy is still
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Figure 2: +e relationship between ∅i and l(θ).
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Figure 3: Gene updates in optimization processes.
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Figure 4: Simplified heredity: one update is enough for finding a
gene.
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Figure 5: Performance of EW-CACTUs-MAML on Omniglot.
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Figure 6: Performance of CACTUs-MAML on Omniglot.
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Table 1: Results of experiments with k� 500 for each partition.

Dataset Algorithm Val loss Val acc (%)

Omniglot (5-way/5-shot) EW-CACTUs-MAML 0.20578947 97.42
CACTUs-MAML 0.20888889 97.22
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Figure 7: Performance of EW-CACTUs-ProtoNets and CACTUs-ProtoNets.

Table 2: Comparisons of the performance of EW-CACTUs-ProtoNets and CACTUs-ProtoNets on Miniimagenet with k� 100 for each
partition.

Dataset Algorithm Train loss Train acc (%) Val loss Val acc (%)

Miniimagenet (5-way/1-shot) EW-CACTUs-ProtoNets 0.8724325 68.35 1.344944 48.52
CACTUs-ProtoNets 0.8353898 68.86 1.3138521 48.78
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less than 50% [50]. +e low validation accuracy has not been
improved after integrated with the EW method. As a cross-
validation, performance of the model EW-CACTUs-Pro-
toNets on the Miniimagenet dataset revealed a challenge in
the practical applications to complicated datasets [51–54].
+e EW method can improve CACTUs-MAML, but it
cannot improve CACTUs-ProtoNets.

One possible explanation for this is that CACTUs-
MAML is a parameter-based model, while CACTUs-Pro-
toNets is a metric-based model. An unresolved issue is how
to improve the performance of CACTUs-ProtoNets on the
Miniimagenet dataset and other complicated datasets. Al-
though the performance of our method on the Omniglot
dataset implies the feasibility of the practical applications in
optical character recognition (OCR), further validation on
other engineering datasets is still necessary [55–59]. +ese
should be next research priorities.

5. Conclusion

We apply few-shot mechanisms in completing task con-
struction and propose a new method to optimize the pre-
vious algorithm, which is a competitive metalearning
system. Entropy weight method is utilized to improve the
prototypical network. +e traditional gradient descent is in
turn improved and utilized in the prototypical network to
update the weights of the basic learner. +e implementation
of the proposed method is interpreted as “gene intelligence”
to highlight parameters’ heredity. +e performance of EW-
CACTUs-MAML indicates a robust prediction, which is
competitive in the comparisons with CACTUs-MAML.
Next research priorities are to further improve the perfor-
mance of CACTUs-ProtoNets on the Miniimagenet dataset
and to further validate the model on more complicated
engineering datasets.
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