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)rough structural analysis of 8-year tag networks from online knowledge-sharing platforms, this study finds that, with the scale
of tag networks growing quickly, the growth trend of number edges indicates that tag network follows densification law. )e
clustering coefficient and the average shortest path of the network show that the rapid growth of network size does not bring about
the compartmentalization of the knowledge network, and the degree distribution of tag networks shows a truncated power-law
distribution. According to the structural characteristics of the tag network, this study proposes a tag network model based on the
BAmodel. Based on the preference attachment, the triadic closure mechanism is employed to construct the edges between the old
nodes, which revises the limitation that the BA model only connects edges between old and new nodes. )e results show that the
simulation model matches the actual tag network structure well. )e generation mechanism of the tag network model provides a
reference for understanding the knowledge construction process of the online knowledge-sharing platform to a certain extent.

1. Introduction

With the success of crowdsourced platforms, such asWikipedia,
Stack Overflow, Quora, and GitHub, a class of researchers are
driven toward understanding the dynamics of knowledge
building on these platforms [1]. )e online knowledge-sharing
system is an “all ask all” knowledge-building system, where
users spontaneously ask and answer questions, and most of the
platforms offer the opportunity for users to add knowledge tags
to questions in the process of asking.

Compared with the traditional expert-driven knowledge
production mode, the users’ self-organized knowledge
construction process is more distributed and diversified,
which generates different driving forces for the development
of the knowledge domain. )e investigation of the dynamic
development of knowledge network is an important basic
work to understand the process of knowledge production
and construction, and it will help in the exploration of the

development trend of knowledge domain, knowledge in-
novation, and other issues [2].

Although collaborative knowledge building platforms
are the most popular knowledge product mode, limited
research has been done from the perspective of knowledge
tag networks. Being composed of a set of concepts and
interrelationships, knowledge can be effectively represented
in terms of a network or a graph [3]. )erefore, our research
aimed to explain the online knowledge building process
from the perspective of network analysis and provide a
reasonable explanation of the mechanism of knowledge
network generation.

2. Related Works

To explore the development mechanism and research trends
of knowledge domains, numerous researchers construct
keyword cooccurrence networks using keywords of articles
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as knowledge elements and then analyze the characteristics
and evolution of networks. As important components of text
content, keywords can present the core idea of academic
articles. )e analysis of topological features and evolution of
keyword cooccurrence networks help in the realization of in-
depth content analysis [4]. Zhu et al. [5] observed that the
keyword networks are small worlds based on the network
clustering coefficient and average distance among reachable
nodes in a network, and the betweenness centrality is used to
conduct preliminary studies on how to detect research
hotspots of a discipline based on keyword networks. Yi and
Choi [6] used the keywords of articles as an alternative
knowledge element and studied the structural characteristics
of keyword networks to better understand scientific
knowledge. By observing keyword networks snapshots over
time, Behrouzi et al. [7] utilized link prediction methods to
foresee the future structures of these networks, which help in
the prediction of future scientific research trends.

)e knowledge tags provide a concise overview of the
important content and key points of a question. )e rela-
tionship between knowledge tags and questions is equivalent
to that between keywords and articles. Several research
works focused on tag networks with increased data avail-
ability on social media platforms. Feng et al. [8] conducted a
structural analysis of knowledge tag network based on the
motif structure and observed that the core nodes of the tag
network have a strong attraction to other nodes; thus, a large
number of knowledge tags are distributed at the periphery of
very few center tags. Zhang et al. [9] described the content
characteristics of the knowledge frontier of online knowl-
edge-sharing platforms based on the theory of collaborative
knowledge construction and assessed the knowledge frontier
inclusiveness of online knowledge-sharing platforms. Chen
and Xing [10] proposed an approach to automatically mine
technology landscape from Stack Overflow question tags.
Structured knowledge of technologies can emerge from the
tagging practices of millions of online users considered
together.

Although tag data in the online platform have been
studied for a long time, a limited number of works aim to
investigate the knowledge-building process through the
evolution of tag networks. Many of the previous studies on
the tag networks of question-and-answer (Q&A) platforms
focus on tag recommendations [10, 11], whereas the
mechanisms of knowledge tag network generation are not
explored.)e collaborative knowledge building of the online
knowledge-sharing system forms a Collaborative Authoring
Environment for online community participation by mul-
tiple people through the “question-answer” form, which is
an important way for the public to exchange, share, and
collaborate on knowledge. Users can browse, discuss, and
produce content freely and openly and can create new
questions and tags by asking questions, enabling rapid
growth of knowledge in the system. Knowledge collaborative
building based on an online knowledge-sharing system is the
process of coevolution of individual knowledge and group
knowledge [13] and realizes knowledge building in the
modern sense. )e generation of the knowledge tag network
is the result of user knowledge collaborative production. By

adding new knowledge tags to the system and adding as-
sociations between tags, users support the knowledge net-
work to continue to develop. )e change in the knowledge
tag network reflects the changes in the audience’s knowledge
concerns and the dynamic process of knowledge evolution.
)e investigation of the mechanism of such networks can
provide references for understanding knowledge production
and predicting knowledge development trends.

To explain the mechanisms of knowledge-tag network
generation, the degree distribution can be an important
reference property. If the log-distribution of the node degree
follows a power law [14], then the graph is a scale-free
network [15], which can be found in numerous complex
phenomena in the real world. Barabasi and Albert proposed
the BA model [16], and they suggested that the power-law
distribution of degree is a consequence of two generic
mechanisms: (i) continuous network expansion by the ad-
dition of new nodes and (ii) newly arriving nodes tending to
connect with already well-connected nodes, known as
“preferential attachment.” Although the BA model is one of
the most classic and applicable models available [17–19], and
there are many, it still has several limitations that are in-
applicable compared with numerous real-world networks.
)e actual network often has certain non-power-law char-
acteristics, such as exponential truncation and small variable
saturation [20]. A number of authors have subsequently
publishedmore extensive simulation results based on the BA
model.

)e improvement of the BAmodel can be approximately
divided into two directions. One way to improve the BA
model is to add new information dimensions to conform to
different realistic systems. Another way is that the mecha-
nism of connecting edges is slightly adjusted to conform to
the diversity systems’ characteristics.

First, the simulation rules could be adjusted by intro-
ducing new variables or parameters into the model. For
example, Bianconi and Barabási [21] proposed a fitness
model that reflects the basic properties of most real systems,
in which the nodes compete for links with other nodes; thus,
a node can acquire links only at the expense of the other
nodes. Xiang and Zhao proposed a modified BA model in
which connecting decisions of new nodes are motivated by
different proximities [22]. )e simulation results showed
that degree distribution still follows power laws, and the
peripheral nodes are less dependent on core actors in
accessing external knowledge.

Second, different from the BA model, which only add
edges when a new node arrives, numerous networks where
new nodes are added are found in the real world, whereas
new connections are made between existing nodes inside the
network. Although the degree distributions of nodes in these
networks also take on a power-law-like form, their gener-
ative patterns are more complex than those of BA models.
For example, to adjust the connecting rule [23] proposed
models of developing and decaying networks with undi-
rected links showing scaling behaviors. In addition to new
links connecting new sites and old ones, links between old
sites may appear or break [24]. )is also involves extending
the BA model by allowing the number of newly added links

2 Complexity



to be random, under some mild assumptions on its distri-
bution law.)e modified model can create new nodes with a
high degree at any iteration, which seem to be capable of
simulating the temporal behavior of real networks more
realistically.

Following the second improvement approach, one well-
known change in the connecting edges mechanism is that
Holme and Kim extend the standard scale-free network
model to include a “triad formation step” [25]. )ey for-
mulated that when a new node v is added to the network, v

will connect to an old node,m, and, following the preference
attachment mechanism, node v has probability P to connect
to the neighbors of m. )ey found that, with the BA model
and triadic closure mechanism, this model possessed the
same characteristics as the standard scale-free networks, like
the power-law degree distribution and the small average
geodesic length, but with high clustering at the same time.

Triadic closure is a natural mechanism to make new
connections, especially in social networks [26]. Suppose that
two people have a mutual friend in the social network; the
likelihood of them becoming friends in the future increases.
)is mechanism has been reported as the most common
structural constraint [27]. It can explain many salient fea-
tures of empirical social networks, including numerous
closed triangles between acquaintances and fat-tailed degree
distributions [28]. )is mechanism brings dense network
edge connection and can be one of the reasons for the
network community structure. As a keyword network
clustered by topic, the tag network also has a prominent
community structure. )e edge connection feature of the
practical principle of the tag networkmay also be in line with
the triadic closure mechanism. For example, when tag A is
connected to tag B and tag C simultaneously, tag B and tag C
are also more likely to be associated in the perspective of
semantic dimension.

In this research, we will first describe the essential
structural characteristics of the tag network, which is con-
structed by data from an online knowledge-sharing plat-
form. We proposed a tag network simulation model based
on the BA model and triadic closure mechanism. For
complex and large-scale networks, the exploration of net-
work characteristics and the simulation of the generative
mechanisms are significant. )e network analysis results
reveal the evolutionary features of the knowledge network
and help us understand the process of online knowledge
building.

3. Method

3.1. Data. Zhihu is the largest online Q&A platform in
China [9]. )e same as most Q&A platforms, Zhihu allows
users to add multiple tags to their questions, similar to the
keywords in an article (see in Figure 1). Users can add tags
that they have built themselves or select old tags that have
already been built by other users. In the analysis of
knowledge networks, the multiple tags appearing in the same
question could be considered to have cooccurrence rela-
tionships [3]. )is study used 74,761 tags contained in
1,520,254 questions from January 1, 2011, to December 31,

2018, in Zhihu. )e number of tags and the cooccurrence
relationships are cumulatively calculated every two months,
and the line shows that the cooccurrence relationships have
an obvious increasing trend in the last few months (see
Figure 2).

To demonstrate the dynamic development process of the
network, this study first splits 8 years of data into 48 time
periods based on a time window of 2 months. In each time
period, the tags appearing in the same problem were con-
nected to build an undirected tag network. Finally, 48
network slices in total were constructed.

3.2. Tag Network Characteristics. First, this study calculates
the network characteristics of the Zhihu tag network. We
counted the number of nodes, the number of edges, clus-
tering coefficient, and average shortest path of the largest
connected component for each network slice (Table 1). As
shown in Figures 3(a) and 3(b), the tag network size de-
veloped slowly in the first 10 time periods, and the number
of nodes exhibited a significant upward trend around the
10th to 20th time periods. )e number of nodes was rela-
tively stable in the 30th to 40th time periods, followed by a
very sharp increase in the 40th period. )e number of nodes
fell back in the last two time periods. )ese trends were
consistent with the business strategy and development of
Zhihu in China. From Figures 3(c) and 3(d), the tag network
is a relatively dense network. Although the node size of the
network is increasing, the network does not become com-
partmentalized as a result, and the average shortest path and
clustering coefficients of the network remained at a relatively
stable level, regardless of the slow decline.

In addition, Leskovec et al. [29] observed that as a
network grows, its diameter decreases over time, suggesting
that the network “shrinks” or becomes denser, which
challenged the existing belief that online social networks
evolve with a constant average degree and a slowly growing
diameter. We calculated the effective diameter of each
network slice. )e network diameter is the maximum node
distance [30]. Numerous real networks have small diame-
ters, indicating small worlds. However, diameter is not al-
ways the best metric, because it is difficult to compute, and it
is prone to outlier effects [31]. )us, the effective diameter of
each network slice was calculated (Table 1). A given natural
number d represents the effective diameter of the network
when the ratio of the shortest paths between pairs of nodes in
the network is less than or equal to d reaching 0.9 [29]. As
shown in Figure 4, the effective diameter of the network
slices showed a slowly decreasing trend.

Five tags

Question title

More details about this question

Figure 1: An example of the relationship of question and tags.
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In real world, most systems experience a slow decrease in
diameter due to the rapid growth in the number of edges.
)e growth of the numbers of nodes and edges shows a
power function relationship (e(t)∝ n(t)α). Leskovec et al.
[29] called this phenomenon densification law. Here, we
constructed a complete network with 8 years of data and
counted the numbers of nodes and edges of the network
every two months. Figure 2 shows the cumulative numbers
of nodes and edges of the network. Using the cumulative
number of nodes at each moment as the horizontal coor-
dinate and the cumulative number of edges as the vertical
coordinate, the numbers of nodes and edges of the network
almost approached a straight line in double logarithmic
coordinates (see Figure 5). A linear regression model fitted
to the scattered points yielded a slope of 1.66, an intercept of
−1.92, and a goodness of fit of 0.98.

Figure 6 shows the overall degree distribution of the
network with 74,761 nodes in the double logarithmic co-
ordinate. )e horizontal axis denotes the value of degree,
and the vertical axis represents the frequency of degree. )e
result of degree distribution showed that, as a whole, the
growth of the tag network may be roughly in line with the
preference attachment mechanism; that is, the nodes that
newly joined the network had a higher probability to
connect to the large-degree nodes, which led to the eventual
appearance of the “rich get richer” power-law distribution of
the network. However, the degree distribution of the tag
network deviated from the power-law distribution at the tail
end, which reflects that after the node scale of the network
grew to a certain extent, the growth of edges of large-degree
nodes was close to saturation, and the growth of their edges
was limited. We counted the degree distribution during the
growth of network on a bimonthly basis and screened out
the top 100 nodes in degree rank. A total of 232 large-scale
nodes were screened out at 48 time points. Next, we screened
out a total of 28 nodes which ranked in the top 100 from the
beginning of the network until the 48th time point. As
shown in Table 2, these nodes are some broad and abstract

concepts, such as “life,” “movie,” “law,” “educate,” and
“psychology.”

We fitted the tag network degree distribution by the
power-law package of Python. Figure 7 shows that the degree
distribution fit of the network was closer to a truncated
power-law distribution (the red line) than to a standard
power-law distribution (the blue line). Truncated power-law
distribution is a common alternative to the asymptotic
power-law distribution because it naturally captures finite-
size effects [32]. Several measured social networks do not
follow a power-law degree distribution [33] and are best
fitted by an exponentially truncated power-law distribution.
Clauset et al. [34] gave the basic truncated power-law
functional form f(k) (equation (1)) and the appropriate
normalization constant C (equation (2)) such that

∞
x�xmin

Cf(k)dx � 1 for the continuous case. )e distribu-
tion is P(k) � Cf(k), where k is the degree of node. )e
fitting results showed that the degree distribution of the tag
network fitted the truncated power-law distribution with
α� 2.12 and λ� 0.0003.

f(k) � k
− α

e
− λk

,

C �
λ1− α

Γ 1 − α, λkmin
 

.

(1)

4. Simulation

4.1. Model. )e BA model is a classic model in the field of
complex networks, and its simple mechanism can explain
the power-law phenomenon in real networks; many simu-
lation research of realistic mechanisms are based on the BA
model [35, 36]. )e two basic mechanisms of the BA model
are as follows: (1) new nodes are constantly added to the
network, and (2) the newly added nodes are more inclined to
connect with large-degree nodes. However, for the knowl-
edge tag network, such a mechanism is different from the
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Figure 2: )e cumulative number of tags (left) and relationships (right).
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actual knowledge tag production process. First, from the
perspective of knowledge building, new knowledge will be
continuously produced, and new associations will also be
generated between existing old knowledge concepts in the
knowledge space. )erefore, for a tag network, the con-
nection between nodes is generated when a new node joins
and also between old nodes at any time. Regarding how to
construct connected edges between old nodes, this study
draws on the mechanism of triadic closure. For node A, if

nodes B and C are both neighbors of A but B and C are not
connected, it is likely that connected edges will be generated
between B and C in the subsequent moments. Second, al-
though a “preferential attachment” exists in the tag network,
that is, large-degree nodes (such as the more commonly used
concepts with broader semantics) are more easily connected,
when the network scale increases to a certain extent, this
advantage will gradually weaken. In view of the short-
comings of the BA model and the knowledge building

Table 1: )e structural characteristics of 48-network slice.

No. Start time End time )e number of nodes )e number of edges Effective
diameter

Clustering
coefficient Average shortest path

1 2011.1.1 2011.3.1 957 2177 7 0.78 4.60
2 2011.3.1 2011.5.1 2260 5918 6 0.74 4.47
3 2011.5.1 2011.7.1 3997 12007 6 0.72 4.36
4 2011.7.1 2011.9.1 3009 8938 6 0.75 4.30
5 2011.9.1 2011.11.1 2586 7230 6 0.77 4.56
6 2011.11.1 2012.1.1 3580 11703 5 0.75 4.03
7 2012.1.1 2012.3.1 3321 11477 5 0.75 3.93
8 2012.3.1 2012.5.1 3711 14402 5 0.73 3.83
9 2012.5.1 2012.7.1 3661 14979 5 0.74 3.64
10 2012.7.1 2012.9.1 3975 15619 5 0.73 3.69
11 2012.9.1 2012.11.1 3212 10869 5 0.73 3.86
12 2012.11.1 2013.1.1 3141 9686 5 0.73 3.84
13 2013.1.1 2013.3.1 3747 11747 5 0.75 3.87
14 2013.3.1 2013.5.1 4553 15140 5 0.72 3.82
15 2013.5.1 2013.7.1 5609 19307 5 0.72 3.82
16 2013.7.1 2013.9.1 5995 21057 5 0.72 3.81
17 2013.9.1 2013.11.1 6495 23355 5 0.71 3.81
18 2013.11.1 2014.1.1 7611 28986 5 0.72 3.75
19 2014.1.1 2014.3.1 7597 29690 5 0.71 3.71
20 2014.3.1 2014.5.1 8984 35372 5 0.69 3.74
21 2014.5.1 2014.7.1 9388 37597 5 0.69 3.72
22 2014.7.1 2014.9.1 9970 40907 5 0.69 3.70
23 2014.9.1 2014.11.1 9655 40485 5 0.70 3.72
24 2014.11.1 2015.1.1 10876 49149 5 0.69 3.68
25 2015.1.1 2015.3.1 12032 59976 5 0.68 3.59
26 2015.3.1 2015.5.1 13868 71970 5 0.67 3.60
27 2015.5.1 2015.7.1 15083 81705 5 0.67 3.57
28 2015.7.1 2015.9.1 17056 92339 5 0.67 3.59
29 2015.9.1 2015.11.1 16116 83700 5 0.68 3.63
30 2015.11.1 2016.1.1 15729 80021 5 0.67 3.71
31 2016.1.1 2016.3.1 15737 77483 5 0.66 3.78
32 2016.3.1 2016.5.1 16423 77236 5 0.66 3.84
33 2016.5.1 2016.7.1 15876 73728 5 0.66 3.86
34 2016.7.1 2016.9.1 16338 78030 5 0.66 3.81
35 2016.9.1 2016.11.1 15389 69413 5 0.67 3.88
36 2016.11.1 2017.1.1 15484 68291 5 0.66 3.92
37 2017.1.1 2017.3.1 16477 76527 5 0.66 3.89
38 2017.3.1 2017.5.1 17804 89337 5 0.65 3.83
39 2017.5.1 2017.7.1 17678 90674 5 0.64 3.80
40 2017.7.1 2017.9.1 20174 107228 5 0.63 3.82
41 2017.9.1 2017.11.1 20452 101939 5 0.62 3.90
42 2017.11.1 2018.1.1 24633 164669 5 0.62 3.67
43 2018.1.1 2018.3.1 35577 392030 4 0.59 3.35
44 2018.3.1 2018.5.1 40559 479375 4 0.57 3.35
45 2018.5.1 2018.7.1 40270 445866 4 0.57 3.38
46 2018.7.1 2018.9.1 42434 507571 4 0.56 3.31
47 2018.9.1 2018.11.1 29927 275901 4 0.60 3.43
48 2018.11.1 2018.12.31 29652 300727 4 0.59 3.45
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process, this paper proposed a tag network model based on
the BAmodel and aimed to present the knowledge of the tag
network generative mechanism of online knowledge-sharing
platforms.

Based on these features, the specific algorithm of model
generation is as follows (see Figure 8):

Step 1: a single node without edges exists in the initial
network.

Step 2: the action will be selected between “add new
node” and “add edge of old nodes” based on the current
probability P. )at is, there is the probability P to “add
new node” and probability (1− P) to “add edge of old
nodes.” P is a function about the numbers of nodes and
edges of the network (P� f (n, e), where n is the number
of nodes, and e is the number of edges). )e details of
this function will be explained later.
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Step 3: if the action “add new node” is selected, then a
new node v is added, and a node m will be selected
based on its degree from the current G. )e larger the
node degree is, the easier it is to be selected. Edges are
then added to nodes v andm. Otherwise, if the action is
“add edge of old nodes,” the algorithm will also select a
nodem based on its degree from the current G. )en, a
node mn will be selected from the second-order
neighbors of m, which is not connected with m. Edges
are added to nodes m and mn afterward.
Step 4: steps 2 and 3 are repeated the until the number
of nodes reaches the target number N.

In this algorithm, the probability P determines whether
the current time step will add new nodes or edges to the
network. P is the probability of adding new nodes, and 1− P
is the probability of adding edges between existing nodes.
)rough the observation of the growth of the numbers of
nodes and edges in the actual network, the growth of the
number of edges in the network was mainly affected by the
number of existing nodes and edges in the current network.
)e probability P should be correlated with the density in the
current network. )erefore, we constructed a probability
Pt+ 1, which is about the new node addition probability to
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If the
number of nodes reach
the target number N?
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Figure 8: Simulation flow chart.

Table 2: Tags with high degree.

Degree Tag
9620 Life
7416 Movie
6996 Law
6908 Educate
6399 Psychology
6108 How to think/evaluate X
5923 )e internet
5386 History
5174 Healthy
5167 Music
4803 Start a business
4587 Delicacy
4556 Study
4484 Survey questions
4431 Travel
4297 Emotion
3991 Japan
3588 Interpersonal communication
3585 Design
3554 Culture
3460 Lifestyle
3174 Female
3161 Invest
3083 )e life
2978 Philosophy
2837 Common sense of life
2831 English
2723 Read
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the network at time t+ 1 based on the number of nodes nt
and the number of edges et in the network at time t, as shown
in the following equation:

Pt+1 � a∗
et

nt

+ 1 

b

. (2)

In this study, the values of parameters a and b in formula
(2) are obtained by fitting the actual data. We create a loss
function floss that calculates the difference between the
number of edges in a simulated network at parameters a and
b and the number of edges in an actual network of the same
network size. )e floss is shown in formula (3), and t is the
index of every two months. Et is the actual number of edges
in time t, E’t is the number of edges in simulation network at
the current time t, and logEt is used as the denominator to
balance out the impact of network size growth. )e smaller
the loss function is, the closer the performance of the
simulated network is to the connection of the actual net-
work, so the optimal solutions for parameters a and b can be
obtained. Here we limit the range of a to [1, 15] and the
range of b to [−10, 10] and then use the bisection method to
find the optimal solution of b in the case of traversing a with
a step length of 0.001.

floss � 
t

Et − Et
′




log Et

(t ∈ [1, 48]). (3)

Furthermore, the degree growth of large-degree nodes in
the tag network is not infinite. )erefore, when the degree of
a concept has reached a certain threshold during model
construction, its advantage in the degree-based preferential
attachment mechanism needs to be weakened. Here, we
assumed that when the degree of a node in the network
reaches threshold H, the node with probability ph does not
increase its degree when calculating the current selected
probability.

4.2. Simulation Results. By constructing the model mecha-
nism proposed in Section 4.1, this study simulated the
network generation process in which the network grew from

an initial 1 node to 74,761 nodes. In this model, we fixed the
parameters that determine the probability P as a� 5.51 and
b� −0.19. In addition, given the situation of the tag network,
we applied the degree threshold values of H� 2000 and
ph � 0.69.

Figure 9 shows the growth of the numbers of nodes and
edges in the simulated network. )e horizontal and vertical
coordinates are the numbers of nodes and edges, respec-
tively. With the passage of time steps, the distributions of the
numbers of nodes and edges in the double logarithmic
coordinate can be fitted by a straight line. )e fitting slope
was 1.68, the intercept was −2.01, and the goodness of fit was
R2 � 0.96. )us, the power function relationship
(e(t)∝ n(t)α) between the numbers of nodes and edges was
maintained in the simulated network, and the fitting slope
and intercept were relatively close to the fitting results of the
actual network.

Figure 10 displays the degree distribution of the simu-
lated network, which is similar to the degree distribution
image of the real network. In the double logarithmic co-
ordinate, the degree distribution of the simulated network
was a truncated power-law distribution with heavy tail,
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8 Complexity



which is a common phenomenon in empirical networks
([16], (Zhihai Rong∗, Zhi-Xi Wu, Xiang Li, Petter Holme &
Guanrong Chen (2019), Heterogeneous cooperative lead-
ership structure emerging from random regular graphs,
Chaos, vol.29, pp.103103)). When we fitted the degree
distribution image (see in Figure 11), the degree distribution
of the simulated network was closer to the truncated power-
law distribution (red line). In addition, the fitting parameters
α� 2.07 and λ� 0.0003 were very close to the actual fitting
parameters of the tag network (see in Figure 12).

5. Conclusion

Despite the enormous and recent interest in large-scale
network data and the range of interesting patterns identified
for static snapshots of graphs, relatively little work has been
conducted on the properties of the time evolution of real
graphs [29]. )is paper introduced the knowledge tag
network characteristics of online knowledge-sharing plat-
form and simulated the generation model based on the
classic BA model.

First, the results showed that the tag network exhibits a
very rapid growth in scale, but it is not a fragmentation with
a rapidly growing number of nodes. On the contrary, the
effective diameter and clustering coefficient of the network
showed a slowly declining trend. )e edges of the network
were very dense, and the numbers of nodes and edges of the
network showed a relationship close to a power function
over time, which indicates that the tag network followed the
densification law.

Second, the degree distribution of the tag network fol-
lowed a truncated power-law distribution. )e link mech-
anism in tag networks also followed the “rich get richer”
preference attachment mechanism. In the tag network, the
edges among nodes imply that those knowledge concepts are
semantically related, and the nodes with large degree are
often generalized and broad concepts. )erefore, with the
development of tag networks, the degree advantage of the
addition of an edge stage will weaken, which explains why
the degree distribution of the knowledge tag network was

closer to the truncated power-law distribution than to the
power-law distribution. )e fitting results showed that the
degree distribution of tag network fitted the truncated
power-law distribution with α� 2.12 and λ� 0.0003. )en,
this study proposed a network generation model applicable
to tag networks. )e model is based on the BA model with
the addition of the edge linkage mechanism between old
nodes, which is more consistent with the actual process of
knowledge building and can make the network generate a
dense network structure. A truncated power-law fit of the
node degree distribution of the simulated network was
obtained with α� 2.07 and λ� 0.0003, which were close to
those of the real network degree distribution. )erefore, the
simulation model proposed in this study can explain the
growth mechanism of the real tag network to a certain
extent.

Finally, this study investigated the mechanism of tag
network generation in online knowledge platforms, and this
work will help us deepen our knowledge and understanding
of the online knowledge building process. )e model pro-
posed in this study can provide a general adaptation to the
current online knowledge-sharing platform by adjusting
model parameters. )is model uses probability P to balance
the relationship between network edge addition and point
addition.)e parameters of P come from the fitting of actual
data, which means that the function has strong expansibility
and can be simulated according to the historical data of
different platforms. In addition, the parameters of the P
function in the model are determined by fitting the historical
data of the network, and, in the process of searching for
parameters, the algorithm uses the idea of binary search to
reduce the time complexity significantly while maintaining
the accuracy of the results. Even large-scale network data can
be calculated in a relatively brief time. )ese characteristics
make the model utility to adapt to different data platforms. It
is useful to predict the growth scale of tag networks in the
future based on the information of the network at present
and provide a reasonable reference for the future knowledge
platform construction.

In the future, the research on the generation mechanism
of the tag network should be expanded from two dimen-
sions. One is to broaden the research platform and research
objects. )e other is to use the simulation network as the
basic framework to carry out the research on the network
structure and network efficiency by the generation mech-
anism. )e research platform and research objects should
not be limited to the knowledge tags and the keywords. Topic
and many other texts content also have research value. In
addition, future research could pay attention to the infor-
mation communication effect or other problems combined
with the network generation mechanism, which could give
an in-depth understanding of the relationship between
network structure and network function [37].

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon reasonable
request.
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