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,is paper addresses the adaptive asymptotic tracking control problem for nonlinear systems whose virtual control gains are
unknown nonlinear functions of system states. Only in the first step, the Nussbaum gain technique is utilized to handle the
uncertain virtual control gain. In the remaining steps, virtual control gains are dealt with by constructing novel control laws
without the approximation of the uncertain nonlinear functions and external disturbances by neural networks or fuzzy logic. New
adaptive laws are defined to compensate for unknown virtual control gains, uncertain parameters, and external disturbances.
Finally, an adaptive tracking controller is designed and applied to the control of a 3-order robot system, which guarantees the
boundedness of all the signals in the closed-loop system and asymptotic stability of the tracking error.

1. Introduction

,e tracking control has received considerable attention for
the purpose of ensuring the output of the system is tracking a
desired trajectory. To deal with the uncertainties in non-
linear systems, one of the most popular methods, adaptive
control, has been introduced for controller design. ,ere
have been many related results in this area [1–11]. An
adaptive data-driven controller was designed for nonlinear
systems using goal representation heuristic and dynamic
programming [4]. In view of unknown nonlinear fractional-
order systems, an adaptive control scheme was proposed [5].
For nonlinear systems with dead-zone and actuator failure,
two novel finite-time adaptive tracking controllers were
developed [7–9]. By introducing a new performance func-
tion, [10, 11] they constructed two adaptive tracking con-
trollers via prescribed performance control and funnel
control, respectively. It needs to be emphasized that the
VCGs (virtual control gains) of systems in the above papers
are assumed to be known.

However, the VCGs are uncertain for many actual
systems. In response to this challenge, the Nussbaum gain
technique was first proposed [12]. ,ere have been many
achievements for nonlinear systems, whose VCGs were
unknown constants [13–16]. Two adaptive control strategies
were given for unknown nonlinear SISO (single input, single
output) systems and stochastic nonlinear systems based on
state observers [13, 14]. In consideration of unmodeled
dynamics and an unknown dead-zone, an improved control
strategy was addressed [15]. In view of nonlinear systems
with actuator faults and state/input constraints, a controller
was designed based on dynamic surface and Nussbaum gain
[16]. Taking into account uncertain time-varying VCGs, an
improved adaptive control method was given [17], which
was further improved [18] such that the Nussbaum gain
technique was applied to nonlinear systems whose virtual
control gains were unknown nonlinear functions of system
states. To handle time-varying uncertain control gains, new
Nussbaum functions were defined [19]. Two adaptive robust
control schemes were proposed [20] for nonlinear systems
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with certain and uncertain signs of VCGs. Aiming at
nonlinear systems with uncertain dead-zone output, an
adaptive fuzzy control scheme was designed using a state
observer [21]. To achieve full state constraints, adaptive
tracking control was studied by the Barrier Lyapunov
function [22]. Considering MIMO (multiple input, multiple
output) nonlinear systems with input saturations and un-
certain control gains, two adaptive NN (neural network)
controllers were constructed [23, 24]. A dynamic surface
control strategy was given for nonlinear systems with un-
certain VCGs using fuzzy logic [25].

Fuzzy logic and neural networks were also usually ap-
plied to handle the unknown VCGs. ,e VCGs were sup-
posed to have known upper and lower bounds and were
approximated by fuzzy logic, and then the adaptive fuzzy
tracking controllers were constructed for strict feedback [26]
and switched nonlinear systems [27]. Two adaptive fuzzy
control schemes were proposed for nonaffine [28] and
nonstrict-feedback [29] nonlinear systems based on funnel
control and dynamic surface control, respectively. Several
adaptive NN tracking controllers were constructed for
different-type uncertain nonlinear systems [30–32]. Besides,
by utilizing |z| − z2/

������
z2 + δ2

􏽰
< δ with δ > 0 and z being any

real number, two controllers were designed by invoking the
lower bounds of unknown VCGs [33, 34]. By describing
UVCCs in terms of their known and unknown parts, a new
adaptive tracking controller was constructed and applied to
the attitude control of quadrotors [35]. More research results
on nonlinear systems with unknown VCGs can be seen in
[36, 37].

In summary, only the boundedness of tracking error can
be obtained in the aforementioned achievements. ,e better
tracking performance of asymptotic stability was not
researched for nonlinear systems with uncertain VCGs being
functions of system states. Recently, an adaptive asymptotic
tracking control method was presented in [38]. ,ere were
also some others that dealt with unknown nonlinear
functions and external disturbances by neural networks.
However, according to the literature review, there has been
no work reported on adaptive asymptotic tracking con-
trollers for nonlinear systems with VCGs being uncertain
state functions without using fuzzy logic or neural networks.

Inspired by the mentioned research achievements, the
paper is concerned with adaptive tracking control for
nonlinear systems with external disturbances, whose VCGs
are uncertain functions of system states. An adaptive
tracking controller is designed in a stepwise strategy and
applied to the control of a robot system, which ensures both
the boundedness of all the signals in the closed-loop system
and the asymptotic stability of the tracking error. ,e ef-
fectiveness and practicability of the developed control
strategy are validated by both theoretical analysis and
simulations.

,e paper possesses the following features:

(1) Different from the control methods based on the
Nussbaum gain technique [13–25], a Nussbaum
function is only employed in the first step and an
improved adaptive law for the Nussbaum variable is

defined such that the asymptotic stability of the
tracking error is achieved. ,is is the main im-
provement on [13–32], which can only guarantee
that the tracking error is bounded. Without using
fuzzy logic or neural networks [26–32], and the
lemma of |z| − z2/

������
z2 + δ2

􏽰
< δ [33, 34], novel control

laws are constructed in the remaining steps without
the bounds of the unknown VCGs.

(2) To compensate for unknown VCGs, unknown ex-
ternal disturbances, and parameter uncertainties,
new adaptive laws are adopted so that the as-
sumption of unknown VCGs can be relaxed as in
Assumption 2, where unknown VCGs only have
unknown lower and upper bounds
[22, 25, 26, 29, 31, 34, 38]. Unknown VCGs are
assumed to be bound by with known upper and
lower bounds [14, 18], known lower bounds [27, 30],
and known upper bounds [13, 16]. In [32], unknown
VCGs are assumed to be strictly either positive or
negative. All the above assumptions are more re-
strictive. ,erefore, the proposed controller can be
suitable for more nonlinear systems.

(3) ,e reference signal is only required to be differ-
entiable and the assumption is written as Assump-
tion 1, which is less restrictive than the related
assumption that the reference signal and its time
derivatives up to the n-th order are continuous and
bounded [13, 17, 18, 20–22, 26, 28–31, 33, 38].

,e outline of this paper is presented below. In Section 2,
the preliminaries and problem formulation are described.
,e design of an adaptive control algorithm and stability
analysis are given in Section 3. Sections 4 and 5 provide the
simulation examples of a second-order nonlinear system and
a robotic system, respectively, and the summary of the paper.

2. Problem Formulation and Preliminaries

,e uncertain nonlinear system is considered as follows:

_xi � gi(x)ixi+1 + θTφi(x)i + di(t), i � 1, . . . , n − 1,

_xn � gn xn( 􏼁u + θTφn xn( 􏼁 + dn(t),

y � x1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where xi � [x1, . . . , xi]
T ∈ Ri, u ∈ R, y ∈ R are the state

vector, input, and output of the system, respectively,
i � 1, . . . , n. gi(xi) ∈ R denotes the VCG, which is an un-
known smooth non-zero nonlinear function. θ ∈ Rs1 is an
unknown parameter vector, and φi(xi) ∈ Rs1 . denotes a
nonlinear function, which is known and smooth, s1 is a
positive integer; di(t) ∈ R is an unknown bounded external
disturbance.

Assumption 1 (see [24]). ,e ideal output vector y1
d(t) �

[yd(t), _yd(t)].T is absolutely continuous and bounded.
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Assumption 2 (see [22]). Let us assume that the sign of
gi(xi). does not change for all xi and gi(xi). satisfies

0<g
im
≤ gi xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤giM < +∞, (2)

with g
im

and giM being unknown positive constants.
It is reasonable that gi(xi). is bigger than a positive

constant g
im

due to the system controllable condition of
gi(xi) being away from 0, which could eliminate the con-
troller singularity problem and has been given in many
control strategies [22, 25, 26, 29, 31, 34, 38] and the refer-
ences therein. It is worth noting that the VCGs in the above
references possess the following synthesis: the lower and
upper bounds of the VCGs are only used in the procedures
of the controller design and are not required in the con-
troller, which means that g

im
and giM can be unknown.

Without loss of generality, we assume that gi(xi)> 0.

Assumption 3. ,ere exists an unknown positive constant di

satisfying

di(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤di. (3)

Definition 1 (see [12]). A continuous function N(ς) is
named as Nussbaum function when the following conditions
hold:

lim
ε⟶E

sup
1
ε

􏽚
ε

0
N(ς)dς � +∞,

lim
ε⟶∞

inf
1
ε

􏽚
ε

0
N(ς)dς � − ∞.

(4)

,ere are many Nussbaum-type functions, such as
eς

2 sin((π/2)ς), eς
2 cos((π/2)ς), ς2 sin(ς), and ς2 cos(ς).

Lemma 1 (see [18]). Let g(x) ∈ [gl, gu] with gl, gu being
non-zero real numbers and 0 ∉ [gl, gu], N(ς) is an even
Nussbaum function, z(t) is an absolutely continuous func-
tion, and x(t) is another function. If there exist l> 0 and a real
constant c such that a function V(t) should be subject to

V(t)≥ e
− lt

􏽚
t

0
(g(x(τ))N(ζ(τ)) + 1) _ζ(τ)e

ltdτ + c, ∀t ∈ 0, tf􏽨 􏽩,

(5)

then ζ(t), 􏽒
t

0(g(x(τ))N(ζ(τ)) + 1) _ζ(τ)eltdτ and V(t) are
all bounded on [0, tf].

According to Proposition 2 in [39], tf can be extended to
+∞, when the solution of the closed-loop system is bounded.

3. Design and Analysis of the Controller

,e procedure of the adaptive controller design and stability
analysis are presented.

Firstly, the common coordinate transformation is in-
troduced as

z1 � x1 − yd,

zi � xi − αi− 1, i � 2, . . . , n
(6)

with αi− 1 being the intermediate control law\designed later.
,e system (1) is changed into

_z1 � g1 x1( 􏼁x2 + θTφ1 x1( 􏼁 + d1(t) − _yd,

_zi � gi xi( 􏼁xi+1 + θTφi(x)i + d2(t) − _αi− 1,

i � 2, . . . , n − 1,

_zn � gn xn( 􏼁u + θTφn xn( 􏼁 + dn(t) − _αn− 1,

y � x1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

In order to estimate the unknown VCGs gi(xi), un-
known parameter vector θ, and uncertain external distur-
bances di(t), define

ϖ∗i � Γi
����

����, i � 1, 2, . . . , n, (8)

􏽥ϖi � ϖ∗i − ϖi, (9)

where ‖ · ‖ is the 2-norm of vectors, Γi is an unknown
bounded vector given later; 􏽥ϖi is the approximation error
with ϖi being the estimation of ϖ∗i .

In what follows, the controller will be constructed in a
stepwise strategy via backstepping. For convenience, let
gi � gi(xi), φi � φi(xi), and di � di(t).

Step 1. We choose the first Lyapunov function candidate as

V1 �
1

2g1m

z
2
1 +

1
2q1

􏽥ϖ21, (10)

where q1 is a positive constant.
Differentiating V1 and invoking (9) produce

_V1 �
1

g1m

z1 _z1 −
1
q1

􏽥ϖ1 _ϖ∗1 . (11)

Substituting _z1 in (7) into (11) and considering (6) yield

_V1 �
z1

g1m

g1z2 + g1α1 + θTφ1 + d1 − _yd􏼐 􏼑 −
1
q1

􏽥ϖ1 _ϖ1. (12)

Based on Young inequality, we have

g1

g1m

z1z2 ≤
1
2

g1M

g1m

z
2
1 +

1
2

g1M

g1m

z
2
2,

1
g1m

θT
z1φ1 ≤

1
2a1

θTθ
g1m

φT
1φ1z

2
1 +

a1

2g1m

,

1
g1m

z1d1 ≤
1
2b1

1
g1m

d
2
1z

2
1 +

b1

2g1m

≤
1
2b1

1
g1m

d
2
1z

2
1 +

b1

2g1m

,

−
1

g1m

z1 _yd ≤
1
2c1

1
g1m

_y
2
dz

2
1 +

c1

2g1m

≤
1
2c1

1
g1m

_y
2
dMz

2
1 +

c1

2g1m

,

(13)

where a1, b1, and c1 are positive constants and _ydM is the
maximum of | _yd| and unknown.

By invoking (13), _V1 is described as
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_V1 ≤
z1

g1m

g1α1 +
1
2

g1M

g1m

z
2
1 +

1
2

g1M

g1m

z
2
2 +

1
2a1

θTθ
g1m

φT
1φ1z

2
1

+
1
2b1

1
g1m

d
2
1z

2
1 +

a1

2g1m

+
b1

2g1m

+
1
2c1

1
g1m

_y
2
dMz

2
1 +

c1

2g1m

−
1
q1

􏽥ϖ1 _ϖ1.

(14)

Let us define

Γ1 �
g1M

g1m

,
θTθ
g1m

,
1

g1m

d
2
1,

_y
2
dM

g1m

⎡⎣ ⎤⎦, (15)

Υ1 �
1
2
,
1
2a1

φT
1φ1,

1
2b1

,
1
2c1

􏼢 􏼣. (16)

Substituting (15) and (16) into (14) results in

_V1 ≤
g1

g1m

z1α1 +
1
2

g1M

g1m

z
2
2 + Γ1Υ

T
1 z

2
1 +

a1

2g1m

+
b1

2g1m

+
c1

2g1m

−
1
q1

􏽥ϖ1 _ϖ1

�
g1

g1m

z1α1 +
1
2

g1M

g1m

z
2
2 + ϖ∗1 Υ1

����
����z

2
1 +

a1

2g1m

+
b1

2g1m

+
c1

2g1m

−
1
q1

􏽥ϖ1 _ϖ1.

(17)

In the following, the virtual control signal α1 is defined as

α1 � N(ς)α1, (18)

α1 � k1z1 + ϖ1 Υ1
����

����z1, (19)

where N(ς) is a Nussbaum-type even function and k1 is a
positive design parameter.

ς is adjusted according to the following law:

_ς � λz1α1, (20)

where λ> 0 is a design parameter.

Remark 1. From (19) and the definition of α1, ϖ1, it can be
known that all the terms of _ς are nonnegative, which is the
key to proving the asymptotic stability of the tracking error
later.

By invoking (18) and (20), _V1 is shown as

_V1 ≤
g1

g1m

z1N(ς)α1 + z1α1 − z1α1 + ϖ∗1 Υ1
����

����z
2
1 +

a1

2g1m

+
b1

2g1m

+
c1

2g1m

+
1
2

g1M

g1m

z
2
2 −

1
q1

􏽥ϖ1 _ϖ1

� − k1z
2
1 +

g1

λg1m

N(ς)_ς +
_ς
λ

−
􏽥ϖ1
q1

_ϖ1 − q1 Υ1
����

����z
2
1􏼐 􏼑 +

1
2

g1M

g1m

z
2
2 +

a1

2g1m

+
b1

2g1m

+
c1

2g1m

.

(21)

,e adaptive law _ϖ1 is defined as

_ϖ1 � q1 Υ1
����

����z
2
1 − σ1ϖ1. (22)

With σ1 > 0 being a design parameter.
Replacing _ϖ1 in (21) by (22), _V1 can be given as

_V1 ≤ − k1z
2
1 +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 +
1
2

g1M

g1m

z
2
2 +

a1

2g1m

+
b1

2g1m

+
c1

2g1m

. (23)

Step 2. A Lyapunov function candidate is given as
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V2 � V1 +
1

2g2m

z
2
2 +

1
2q2

􏽥ϖ22, (24)
where q2 > 0 is a constant.

Based on (23) and _z2 in (7), we have

_V2 � _V1 +
1

g2m

z2 _z2 −
1
q2

􏽥ϖ2 _ϖ2

≤ − k1z
2
1 +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 +
1
2

g1M

g1m

z
2
2

+
a1

2g1m

+
b1

2g1m

+
1

g2m

z2 g2x3 + θTφ2 + d2 − _α1􏼐 􏼑 +
c1

2g1m

−
1
q2

􏽥ϖ2 _ϖ2.

(25)

From (18), _α1 is expressed as

_α1 �
zα1
zx1

_x1 +
zα1
zyd

_yd +
zα1
zς

_ς +
zα1
zϖ1

_ϖ1. (26)

Substituting (26) into (25) leads to

_V2 ≤ − k1z
2
1 +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 +
1
2

g1M

g1m

z
2
2 +

a1

2g1m

+
b1

2g1m

+
c1

2g1m

+
1

g2m

z2 g2 z3 + α2( 􏼁 + θTφ2 + d2􏼐 􏼑

−
1
q2

􏽥ϖ2 _ϖ2 −
1

g2m

z2
zα1
zx1

g1x2 + θTφ1􏼐 􏼑 −
1

g2m

z2
zα1
zyd

_yd +
zα1
zς

_ς +
zα1
zϖ1

_ϖ1􏼠 􏼡.

(27)

According to Young inequality, the following inequal-
ities hold

g2

g2m

z2z3 ≤
1
2

g2M

g2m

z
2
2 +

1
2

g2M

g2m

z
2
3,

1
g2m

z2d2 ≤
1
2b2

1
g2m

d
2
2z

2
2 +

b2

2g2m

,

1
g2m

θT
z2 φ2 −

zα1
zx1

φ1􏼠 􏼡≤
1
2a2

θTθ
g2m

φ2 −
zα1
zx1

φ1

��������

��������

2

z
2
2 +

a2

2g2m

,

−
1

g2m

z2
zα1
zyd

_yd ≤
1
2c2

1
g2m

_y
2
dM

zα1
zyd

􏼠 􏼡

2

z
2
2 +

c2

2g2m

,

−
1

g2m

z2
zα1
zx1

g1x2 ≤
1
2l2

1
g2m

g
2
1Mx

2
2

zα1
zx1

􏼠 􏼡

2

z
2
2 +

l2
2g2m

,

−
z2

g2m

zα1
zς

_ς +
zα1
zϖ1

_ϖ1􏼠 􏼡≤
1

2m2

1
g2m

zα1
zς

_ς +
zα1
zϖ1

_ϖ1􏼠 􏼡

2

z
2
2 +

m2

2g2m

,

(28)

where a2, b2, c2, l2, and m2 are positive constants.
Substituting (28) into (27) leads to
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_V2 ≤ − k1z
2
1 +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 +
1
2

g1M

g1m

z
2
2 + 􏽘

2

i�1

ai + bi + ci

2g
im

+
g2

g2m

z2α2

+
1
2

g2M

g2m

z
2
2 +

1
2

g2M

g2m

z
2
3 −

1
q2

􏽥ϖ2 _ϖ2 +
1
2a2

θTθ
g2m

φ2 −
zα1
zx1

φ1

��������

��������

2

z
2
2 +

1
2b2

1
g2m

d
2
2z

2
2

+
1
2c2

1
g2m

_y
2
dM

zα1
zyd

􏼠 􏼡

2

z
2
2 +

1
2l2

g
2
1M

g2m

x
2
2

zα1
zx1

􏼠 􏼡

2

z
2
2 +

l2

2g2m

+
1

2m2

z
2
2

g2m

zα1
zς

_ς +
zα1
zϖ1

_ϖ1􏼠 􏼡

2

+
m2

2g2m

.

(29)

Γ2 and Υ2 are written as

Γ2 �
g1M

g1m

+
g2M

g2m

,
θTθ
g2m

,
d
2
2

g2m

,
_y
2
dM

g2m

,
g
2
1M

g2m

,
1

g2m

⎡⎢⎣ ⎤⎥⎦, (30)

Υ2 �
1
2
,
φ2 − zα1/zx1φ1

����
����
2

2a2
,
1
2b2

,
zα1/zyd( 􏼁

2

2c2
,Υ∗2⎡⎢⎣ ⎤⎥⎦,

Υ∗2 �
zα1/zx1x2( 􏼁

2

2l2
,

zα1/zς_ς + zα1/zϖ1 _ϖ1( 􏼁
2

2m2
􏼢 􏼣.

(31)

Invoking (30) and (31) produces

_V2 ≤ − k1z
2
1 +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 + 􏽘
2

i�1

ai + bi + ci

2g
im

,

+
l2

2g2m

+
m2

2g2m

+
g2

g2m

z2α2 + ϖ∗2 Υ2
����

����z
2
2 +

1
2

g2M

g2m

z
2
3 −

1
q2

􏽥ϖ2 _ϖ2.

(32)

Designing the following virtual control signal as

α2 � − k2z2 − ϖ2 Υ2
����

����z2. (33)

and substituting it into (32) give

_V2 ≤ − k1z
2
1 +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 −
g2

g2m

k2z
2
2 + ϖ2 Υ2

����
����z

2
2􏼐 􏼑

+ ϖ∗2 Υ2
����

����z
2
2 + 􏽘

2

i�1

ai + bi + ci

2g
im

+
l2

2g2m

+
m2

2g2m

+
1
2

g2M

g2m

z
2
3 −

1
q2

􏽥ϖ2 _ϖ2,

(34)

where k2 > 0 is a design parameter.

Remark 2. . Based on (32), Assumption 2, and the definition
of ϖ2, it is easy to check that all the items of

− (g2/g2m
)(k2z

2
2 + ϖ2‖Υ2‖z2

2) are nonpositive, and
(g2/g2m

)≥ 1, which means that (g2/g2m
) can be replaced by

1 in the controller design.
_V2 is changed to

_V2 ≤ − 􏽘

2

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς +
σ1
q1

􏽥ϖ1ϖ1 + 􏽘

2

i�1

ai + bi + ci

2g
im

+
l2

2g2m

+
m2

2g2m

−
1
q2

􏽥ϖ2 _ϖ2 + q2 Υ2
����

����z
2
2􏼐 􏼑 +

1
2

g2M

g2m

z
2
3.

(35)
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We construct an adaptive law as

_ϖ2 � q2 Υ2
����

����z
2
2 − σ2ϖ2, (36)

where σ2 is a positive constant.
Substituting (36) into (35) produces

_V2 ≤ − 􏽘
2

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
2

i�1

σi

qi

􏽥ϖiϖi + 􏽘
2

i�1

ai + bi + ci

2g
im

+
l2

2g2m

+
m2

2g2m

+
1
2

g2M

g2m

z
2
3. (37)

Step j (3≤ j≤ n − 1): For the j th subsystem of (6), a
Lyapunov function candidate is iteratively chosen from the
previous step.

Vj � Vj− 1 +
1

2g
jm

z
2
j +

1
2qj

􏽥ϖ2j , (38)

where qj > 0 is a design parameter.
Differentiating Vj produces

_Vj � _Vj− 1 +
1

g
jm

zj _zj −
1
qj

􏽥ϖj
_ϖj. (39)

By an induction argument, _Vj− 1 is deduced as

_Vj− 1 ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘

j− 1

i�1

ai + bi + ci

2g
im

+ 􏽘

j− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j− 1

i�2

li + mi

2g
im

+
1
2

gj− 1,M

g
j− 1,m

z
2
j , (40)

where ai, bi, ci, li, mi, σi, qi are all positive constants. Substituting (40) into (39) gives

_Vj ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘

j− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j− 1

i�1

ai + bi + ci

2g
im

+ 􏽘

j− 1

i�2

li + mi

2g
im

+
1
2

gj− 1,M

g
j− 1,m

z
2
j +

zj

g
jm

gjzj+1 + gjαj + θTφj + dj − _αj− 1􏼐 􏼑 −
1
qj

􏽥ϖj
_ϖj,

(41)

where

_αj− 1 � 􏽘

j− 1

i�1

zαj− 1

zxi

_xi +
zαj− 1

zyd

_yd +
zαj− 1

zς
_ς +

zαj− 1

zϖj− 1
_ϖj− 1,

_ϖj− 1 � qj− 1 Υj− 1

�����

�����z
2
j− 1 − σj− 1ϖj− 1.

(42)

Furthermore, _Vj is expressed as

_Vj ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘

j− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j− 1

i�1

ai + bi + ci

2g
im

+ 􏽘

j− 1

i�2

li + mi

2g
im

+
1
2

gj− 1,M

g
j− 1,m

z
2
j

+
gj

g
jm

zjzj+1 +
gj

g
jm

zjαj +
zj

g
jm

dj −
zj

g
jm

􏽘

j− 1

i�1

zαj− 1

zxi

gixi+1 −
zj

g
jm

zαj− 1

zyd

_yd

−
zj

g
jm

zαj− 1

zς
_ς +

zαj− 1

zϖj− 1
_ϖj− 1􏼠 􏼡 +

zj

g
jm

θT φj − 􏽘

j− 1

i�1

zαj− 1

zxi

φi
⎛⎝ ⎞⎠ −

1
qj

􏽥ϖj
_ϖj.

(43)

Based on the completion of squares, one has

Complexity 7



gj

g
jm

zjzj+1 ≤
1
2

gjM

g
jm

z
2
j +

1
2

gjM

g
jm

z
2
j+1,

1
g

jm

zjdj ≤
1
2bj

1
g

jm

d
2
jz

2
j +

bj

2g
jm

,

θT

g
jm

zj φj − 􏽘

j− 1

i�1

zαj− 1

zxi

φi
⎛⎝ ⎞⎠≤

1
2aj

θTθ
g

jm

φj − 􏽘

j− 1

i�1

zαj− 1

zxi

φi

���������

���������

2

z
2
j +

aj

2g
jm

,

−
1

g
jm

zj

zαj− 1

zyd

_yd ≤
1
2cj

1
g

jm

_y
2
dM

zαj− 1

zyd

􏼠 􏼡

2

z
2
j +

cj

2g
jm

−
1

g
jm

zj 􏽘

j− 1

i�1

zαj− 1

zxi

gixi+1,

≤
1
2lj

1
g

jm

g
∗
jM 􏽘

j− 1

i�1

zαj− 1

zxi

xi+1
⎛⎝ ⎞⎠

2

z
2
j +

lj

2g
jm

−
zj

g
jm

zαj− 1

zς
_ς +

zαj− 1

zϖj− 1
_ϖj− 1􏼠 􏼡,

≤
1

2mj

z
2
j

g
jm

zαj− 1

zς
_ς +

zαj− 1

zϖj− 1
_ϖj− 1􏼠 􏼡

2

+
mj

2g
jm

,

(44)

where aj, bj, cj, lj and mj are positive design parameters and
g∗jM � max g2

1M, . . . , g2
j− 1,M􏽮 􏽯.

Invoking (44), _Vj is rewritten as

_Vj ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘

j− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j

i�1

ai + bi + ci

2g
im

+ 􏽘

j

i�2

li + mi

2g
im

+
1
2

gj− 1,M

g
j− 1,m

z
2
j +

1
2

gjM

g
jm

z
2
j +

1
2

gjM

g
jm

z
2
j+1 +

gj

g
jm

zjαj +
1
2bj

1
g

jm

d
2
jz

2
j +

1
2aj

θTθ
g

jm

φj − 􏽘

j− 1

i�1

zαj− 1

zxi

φi

���������

���������

2

z
2
j

+
1
2cj

1
g

jm

_y
2
dM

zαj− 1

zyd

􏼠 􏼡

2

z
2
j +

1
2lj

1
g

jm

g
∗
jM 􏽘

j− 1

i�1

zαj− 1

zxi

xi+1
⎛⎝ ⎞⎠

2

z
2
j −

1
qj

􏽥ϖj
_ϖj +

1
2mj

1
g

jm

zαj− 1

zς
_ς +

zαj− 1

zϖ1
_ϖ1􏼠 􏼡

2

z
2
j .

(45)

Similarly, we define

Γj �
gj− 1,M

g
j− 1,m

+
gjM

g
jm

,
θTθ
g

jm

,
d
2
j

g
jm

,
_y
2
dM

g
jm

,
g
∗
jM

g
jm

,
1

g
jm

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (46)

Υj �
1
2
,
φj − 􏽐

j− 1
i�1 zαj− 1/zxi􏼐 􏼑φi

�����

�����
2

2aj

,
1
2bj

,Υ∗j1,Υ
∗
j2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

Υ∗j1 �
zαj− 1/zyd􏼐 􏼑􏼐 􏼑

2

2cj

,
􏽐

j− 1
i�1 zαj− 1/zxi􏼐 􏼑xi+1􏼐 􏼑

2

2lj

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Υ∗j2 �
zαj− 1/zς􏼐 􏼑_ς + zαj− 1/zϖj− 1􏼐 􏼑 _ϖj− 1􏼐 􏼑

2

2mj

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(47)

By invoking (46) and (47), _Vj is shown as

_Vj ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘

j− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j

i�1

ai + bi + ci

2g
im

+ 􏽘

j

i�2

li + mi

2g
im

+
1
2

gjM

g
jm

z
2
j+1 +

gj

g
jm

zjαj + ϖ∗i Υj

�����

�����z
2
j −

1
qj

􏽥ϖj
_ϖj.

(48)

Defining the j th virtual control law as

αj � − kjzj − ϖj Υj

�����

�����zj. (49)

and substituting it into (48) to yield
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_Vj ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘

j− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j

i�1

ai + bi + ci

2g
im

+ 􏽘

j

i�2

li + mi

2g
im

+
1
2

gjM

g
jm

z
2
j+1 + 􏽥ϖj Υj

�����

�����z
2
j −

1
qj

􏽥ϖj
_ϖj,

(50)

where kj > 0 is a constant.
Similar to (36), _ϖj can be specified as

_ϖj � qj Υj

�����

�����z
2
j − σjϖj. (51)

with σj > 0 being a design parameter.
,en, _Vj is given as

_Vj ≤ − 􏽘

j− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
_ς
λ

+ 􏽘

j

i�1

σi

qi

􏽥ϖiϖi + 􏽘

j

i�1

ai + bi + ci

2g
im

+ 􏽘

j

i�2

li + mi

2g
im

+
gjM

2g
jm

z
2
j+1. (52)

Step n: following the similar procedure for (38) in Step j,
the Lyapunov function candidate for the last step is designed
as

Vn � Vn− 1 +
1

2g
nm

z
2
n +

1
2qn

􏽥ϖ2n. (53)

and _Vn is presented as

_Vn �
1

g
nm

zn _zn + _Vn− 1 −
1
qn

􏽥ϖn
_ϖn, (54)

where qn > 0 is a constant.
It follows from (52) that

_Vn− 1 ≤ − 􏽘
n− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
n− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘
n− 1

i�1

ai + bi + ci

2g
im

+ 􏽘
n− 1

i�2

li + mi

2g
im

+
1
2

gn− 1,M

g
n− 1,m

z
2
n, (55)

where ai, bi, ci, li, mi, σi, and qi are all positive constants. _Vn is given as

_Vn ≤ − 􏽘
n− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
n− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘
n− 1

i�1

ai + bi + ci

2g
im

+ 􏽘
n− 1

i�2

li + mi

2g
im

+
1

g
nm

zn gnu + θTφn + dn − _αn− 1􏼐 􏼑 +
1
2

gn− 1,M

g
n− 1,m

z
2
n −

1
qn

􏽥ϖn
_ϖn,

(56)

where

_αn− 1 � 􏽘
n− 1

i�1

zαn− 1

zxi

_xi +
zαn− 1

zyd

_yd +
zαn− 1

zς
_ς +

zαn− 1

zϖn− 1
_ϖn− 1,

_ϖn− 1 � qn− 1 Υn− 1
����

����z
2
n− 1 − σn− 1ϖn− 1.

(57)

Furthermore, _Vn is reformulated as

_Vn ≤ − 􏽘
n− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
n− 1

i�1

σi

qi

􏽥ϖiϖi + 􏽘
n− 1

i�1

ai + bi + ci

2g
im

+ 􏽘
n− 1

i�2

li + mi

2g
im

+
1
2

gn− 1,M

g
n− 1,m

z
2
n +

gn

g
nm

znu + zndn −
zn

g
nm

􏽘

n− 1

i�1

zαn− 1

zxi

gixi+1

−
zn

g
nm

zαn− 1

zς
_ς +

zαn− 1

zϖn− 1
_ϖn− 1􏼠 􏼡 −

zn

g
nm

zαn− 1

zyd

_yd +
zn

g
nm

θT φn − 􏽘
n− 1

i�1

zαn− 1

zxi

φi
⎛⎝ ⎞⎠ −

1
qn

􏽥ϖn
_ϖn.

(58)
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Repeating the similar procedures in Step j, we have

θT

g
nm

zn φn − 􏽘
n− 1

i�1

zαn− 1

zxi

φi
⎛⎝ ⎞⎠≤

1
2an

θTθ
g

nm

φn − 􏽘
n− 1

i�1

zαn− 1

zxi

φi

���������

���������

2

z
2
n +

an

2g
nm

,

1
g

nm

zndn ≤
1
2bn

1
g

nm

d
2
nz

2
n +

bn

2g
nm

,

−
1

g
nm

zn

zαn− 1

zyd

_yd ≤
1
2cn

1
g

nm

_y
2
dM

zαn− 1

zyd

􏼠 􏼡

2

z
2
n +

cn

2g
nm

,

−
1

g
nm

zn 􏽘

n− 1

i�1

zαn− 1

zxi

gixi+1 ≤
1
2ln

1
g

nm

g
∗
nM 􏽘

n− 1

i�1

zαn− 1

zxi

xi+1
⎛⎝ ⎞⎠

2

z
2
n +

ln

2g
nm

,

−
zn

g
nm

zαn− 1

zς
_ς +

zαn− 1

zϖn− 1
_ϖn− 1􏼠 􏼡≤

z
2
n

2g
nm

mn

zαn− 1

zς
_ς +

zαn− 1

zϖn− 1
_ϖn− 1􏼠 􏼡

2

+
mn

2g
nm

,

(59)

Γn �
gn− 1,M

g
n− 1,m

,
θTθ
g

nm

,
d
2
n

g
nm

,
_y
2
dM

g
nm

,
g
∗
nM

g
nm

,
1

g
nm

⎡⎢⎣ ⎤⎥⎦, (60)

Υn �
1
2
,
φn − 􏽐

n− 1
i�1 zαn− 1/zxi( 􏼁φi

����
����
2

2an

,
1
2bn

,Υ∗n1,Υ
∗
n2

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Υ∗n1 �
zαn− 1/zyd( 􏼁

2

2cn

,
􏽐

n− 1
i�1 zαn− 1/zxi( 􏼁xi+1􏼐 􏼑

2

2ln

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Υ∗n2 �
zαn− 1/zς( 􏼁_ς + zαn− 1/zϖn− 1( 􏼁 _ϖn− 1( 􏼁

2

2mn

􏼢 􏼣,

(61)

where an, bn, cn, ln, and mn are positive design parameters
and g∗nM � max g2

1M, . . . , g2
n− 1,M􏽮 􏽯.

Substituting (60) and (61) into (58) results in

_Vn ≤ − 􏽘
n− 1

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
n− 1

i�1

σi

qi

􏽥ϖiϖi

+ 􏽘
n

i�1

ai + bi + ci

2g
im

+ 􏽘
n

i�2

li + mi

2g
im

+
gn

g
nm

znu + ϖ∗n Υn

����
����z

2
n −

1
qn

􏽥ϖn
_ϖn.

(62)

Similar to (49) and (51), the real control law and n th
adaptive law can be defined, respectively, as follows:

u � − knzn − ϖn Υn

����
����zn, (63)

and

_ϖn � qn Υn

����
����z

2
n − σnϖn, (64)

where kn and σn are positive design parameters.
By some direct calculations, _Vn can be described as

_Vn ≤ − 􏽘
n

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
n

i�1

σi

qi

􏽥ϖiϖi

+ 􏽘
n

i�1

ai + bi + ci

2g
im

+ 􏽘
n

i�2

li + mi

2g
im

.

(65)

According to the above controller design, the main
conclusion is summarized as

,eorem 1. For system (1) with Assumptions 1–3, there
exists an adaptive controller with the adaptive laws in (21),
(35), (51), (65), and real control signal u in (64), which can
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guarantee the boundedness of all the signals in the closed-
loop system for t ∈ [0, +∞) and asymptotic convergence of
the tracking error.

Proof: . since 􏽥ϖiϖi � 􏽥ϖi(ϖ∗i − 􏽥ϖi)≤ (1/2)ϖ∗ 2i − (1/2)􏽥ϖ2i , it is
easy to check that

􏽘

n

i�1

σi

qi

􏽥ϖiϖi � 􏽘
n

i�1

σi

qi

􏽥ϖi ϖ
∗
i − 􏽥ϖi( 􏼁≤ 􏽘

n

i�1

σi

2qi

ϖ∗ 2i − 􏽘
n

i�1

σi

2qi

􏽥ϖ2i .

(66)

Substituting (66) into (65) leads to

_Vn ≤ − 􏽘
n

i�1
kiz

2
i +

g1

λg1m

N(ς)_ς +
1
λ

_ς + 􏽘
n

i�1

σi

2qi

ϖ∗ 2i

− 􏽘
n

i�1

σi

2qi

􏽥ϖ2i + 􏽘
n

i�1

ai + bi + ci

2g
im

+ 􏽘
n

i�2

li + mi

2g
im

≤ − κVn + ι +
g1

λg1m

N(ς)_ς +
1
λ

_ς.

(67)

with

κ � min 2k1, . . . , 2kn, σ1, . . . , σn􏼈 􏼉,

ι � 􏽘
n

i�1

ai + bi + ci

2g
im

+ 􏽘
n

i�2

li + mi

2g
im

+ 􏽘
n

i�1

σi

2qi

ϖ∗2i􏼠 􏼡.
(68)

Moving − κVn to the left-hand side and then multiplying
both sides of (67) by eκt produce

d Vne
κt

􏼐 􏼑

dt
≤ ιeκt

+
g1

λg1m

N(ς)_ςeκt
+
1
λ

_ςeκt
. (69)

Integrating (69) gives

Vn(t)e
κt

− Vn(0)≤ 􏽚
t

0

g1 x1( 􏼁

λg1m

N((ς(τ))_ς(τ))e
κτdτ

+ 􏽚
t

0

_ς(τ)

λ
e
κτdτ +

ι
κ

e
κt

− 1􏼐 􏼑.

(70)

By some direct calculations, (70) is described as

Vn(t)≤
e

− κt

λ
􏽚

t

0

g1 x1( 􏼁

g1m

N(ς(τ)) + 1⎛⎝ ⎞⎠_ς(τ)e
κτdτ + c. (71)

where c � Vn(0) + (ι/κ) is a positive constant.
By virtue of Lemma 1, it is shown that Vn(t)., N(ς(τ)).,

ς(τ) are bound for t ∈ [0, +∞). ,erefore, the boundedness
of all the signals in the closed-loop system is certified for
t ∈ [0, +∞).

Furthermore, using the definition of _ς, it can be seen that

_ς � λk1z
2
1 + λϖ1 Υ1

����
����z

2
1 ≥ λk1z

2
1. (72)

Based on the boundedness of ς(t), the following in-
equality holds.

limt⟶+∞ 􏽚
t

0
λk1z

2
1dτ ≤ limt⟶+∞(ς(t) − ς(0))< +∞.

(73)

From the definition of _z1 in (6) and the boundedness of
x1, x2, and _yd, it is easily shown that _z1 is bounded.

,us, by utilizing Barbalat’s Lemma, one has

limt⟶∞z1(t) � 0. (74)

which means that the tracking error is asymptotically stable.

Control parameters selection. ,e selection ranges of σi and
ki are wide.,e bigger the parameters σi and ki, the faster the
asymptotic convergence and response. Besides, λ is the other
key parameter, which affects the asymptotic convergence of
the tracking error. According to the simulation tests (see
Figure 1), the bigger λ the faster the transient process and the
smaller the steady-state errors. But it cannot be too big. In
addition, the choices of ai, bi, ci, and qi are flexible. □

4. Simulation Results

To illustrate the feasibility of the developed adaptive control
approach, an uncertain nonlinear system and a single-link
robot are considered.

4.1. Simulation of a Second-Order Nonlinear System. Let us
consider the strict-feedback nonlinear system as

_x1 � g1 x1( 􏼁x2 + θTφ1 x1( 􏼁 + d1(t),

_x2 � g2 x2( 􏼁u + θTφ2 x2( 􏼁 + d2(t),

y � x1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(75)

where g1 � 1 + 0.1 sin x1 with g1m � 0.9 and g1M � 1.1,
g2 � 1 + 0.1 cos x1 sin x2 with g2m � 0.9, and g2M � 1.1,
θ � [1, 1]T φ1 � cos x1, φ2 � sin x1 cos x2, d1 � e− t sin t,
d2 � e− t cos t.

,e desired trajectories are selected as
yd1(t) � 4 sin(0.2πt). and yd2(t) � 2.5(sin(0.5t) + sin t).

In order to see the controller performance under different
initial conditions for the system states, the initial value of x1
is given as 1.5 and 3, respectively; ς(0) � 1; and other initial
conditions are chosen to be 0.

,e intermediate control signal α1, Nussbaum variable _ς,
and actual control law u of the developed control strategy are
defined as (17), (19), and (64), where n � 2, k1 � 5, and
k2 � 10, a1 � a2 � b1 � b2 � c1 � c2 � l2 � m2 � 10, λ � 0.1,
0.5, 1, and 3. It is worth noting that the upper limit of λ is 3.5.
Otherwise, the controller is easy to be ill-defined such that
the states in the system are divergent.

_ϖ1 and _ϖ2 are designed as (21) and (65), with n � 2,
q1 � q2 � 1, and σ1 � σ2 � 0.1.

,e proposed controller (PC) is compared with the
adaptive fuzzy (AFC) [28] and adaptive controllers (AC)
[34], respectively.

,e AFC is presented as
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α1′ � − k1z1 + 0.5z1 +
1
2a

2
1
z1θ1R

T
1 R1􏼠 􏼡,

u′ � − k2z2 + 0.5z2 +
1
2a

2
2
z2θ2R

T
2 R2􏼠 􏼡,

θ
.

1 �
q1

2a
2
1
z
2
1R

T
1 R1 − σ1θ1,

θ
.

2 �
q2

2a
2
2
z
2
2R

T
2 R2 − σ2θ2.

(76)

where θi and Ri are defined in [28], ki, ai, qi, and σi are taken
the same values as the PC, i � 1 , 2.

,e AC is given as

α1 � −
z1α

2
1��������

z
2
1α

2
1 + δ21

􏽱 , α1 � k1z1 + ϖ1 Υ1
����

����z1,

u � −
z2α

2
2��������

z
2
2α

2
2 + δ22

􏽱 , α2 � k2z2 + ϖ2 Υ2
����

����z2,

_ϖ1 � q1 Υ1
����

����z
2
1 − σ1ϖ1,

_ϖ2 � q2 Υ2
����

����z
2
2 − σ2ϖ2,

(77)

where ki, ai, bi, ci, l2, m2, qi, and σi are as same as the PC,
i � 1, 2. δ1, δ2 are positive constants, δ1 � 0.1, δ2 � 1.

Figures. 1–11 display the simulation results. In Figure 1, the
tracking errors are drawn under different λ. It can be seen that
the transient processes of the tracking errors are faster and the
steady-state errors decrease as λ increase. Under different initial
values x1(0) � 1.5 and 3, the comparisons of tracking per-
formance for the desired trajectory yd1 between the AFC, AC,
and PC are displayed in Figures 2–4. It is shown that the
tracking performance with the PC is better and the tracking
error is much smaller. Furthermore, the AFC can only ensure
the boundedness of tracking errors, and the PC guarantees the
asymptotic convergence of tracking errors, which is obvious in
Figure 2. In addition, the absolute mean and root mean square
values of tracking errors with the PC are smaller than the values
with AFC and AC. Figures 5–7 draw the comparisons of
tracking errors and tracking performance for the ideal tra-
jectory yd2, and the similar conclusion can be obtained as
Figures 2–4.,e inputs u are given in Figure 8, which are large
at the initial stage and converge rapidly to a range defined by
±10. ,e states x2 and adaptive parameters ϖ∗1 , ϖ∗2 are pre-
sented in Figures 9 and 10, which are all bounded. Finally,
Figure 11 shows the Nussbaum variables ς, which tends to
positive constants from the initial values 1 as time goes on.

4.2. Simulation of a 3-Order Robot. In order to demonstrate
the practicability, the developed controller is applied to the
following 3-order robot system [40].

_x1 � x2,

_x2 �
Km

M
x3 +

− N sin x1 − Bx2

M
+
τe

M
, _x3 �

1
L

V +
− Rx3 − Kex2

L
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(78)

z1 with λ = 0.1
z1 with λ = 0.5

z1 with λ = 1
z1 with λ = 3
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Figure 1: ,e tracking errors with different λ.
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where x1, x2, and x3 denote the angle, angular velocity,
and motor current of the manipulator, respectively. M is
the system inertia, Km � KNc represents the coefficient
between the current and moment with K being the
constant torque, and Nc expressing the joint reduction
ratio. Furthermore, τe represents the uncertain distur-
bance of torque by the external environment, L is the
armature inductance and unknown, Ke denotes the back
electromotive force constant, R displays the circuitous
resistance, and V is the input voltage. ,e formulae of B,
N, and M are introduced as follows:

B �
B0

Kτ

N �
m1dg

2Kτ
+

m2dg

Kτ

M �
J

Kτ
+

m1d
2

3Kτ
+

m2d
2

Kτ
+
2m2δ

2

5Kτ

(79)

where Kτ expresses the coefficient of the electromechanical
conversion of armature current to torque and B0 shows the
coefficient of viscous friction at the joint. g is the gravity

z1 with AFC and x1 (0) = 1.5
z1 with PC and x1 (0) = 1.5

z1 with AFC and x1 (0) = 3
z1 with PC and x1 (0) = 3
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Figure 2: ,e comparison of tracking errors between PC and AFC with yd1.
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Figure 3: ,e comparison of tracking errors PC and AC with yd1.
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coefficient, J denotes the rotor inertia, d represents the link
length, δ is the radius of the load, and m1 and m2 display the
mass of the link and load.Moreover, the parameter values are as

J � 1.625 × 10− 3
kg · m

2
,

d � 0.305m,

m1 � 0.506 kg,

m2 � 0.434kg,

Ke � 0.9V
s

rad
,

B0 � 16.25 × 10− 3N.m.s

rad
,

δ � 0.023m,

Kτ � 0.9N
m

A
,

L � 25 × 10− 3
H.

(80)

,e external disturbance τe is defined as the Gaussian
white noise written as wgn(1, L, 0.2) with L being the time
series.

,e initial condition vector is selected as x1(0), x2􏼂

(0),x3(0),ϖ1(0),ϖ2(0),
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Figure 4: ,e trajectories with x1(0) � 1.5.
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Figure 5: ,e comparison of tracking errors between PC and AFC with yd2.
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ϖ3(0),ς] � 0.1 rad, 0, 0, 0, 0, 0, 0.7􏼂 􏼃. ,e reference
trajectory is chosen to be a step signal. To satisfy the first
order differentiability, it is written as
yd � 0.5(tanh(p(t − 5)) + t1) with p � 2.

,e Nussbaum variable _ς, control laws α1, α2 u, and
adaptive laws _ϖ1, _ϖ2, _ϖ3 are defined as (19), (17), (32), (64),
(21), (35), and (65) with k1 � 10, k2 � 12, k3 � 20, q1 � 0.02,
q2 � 0.01, q3 � 0.025, σ1 � 15, σ2 � 12, σ3 � 28, and λ � 10.
,e other parameters are equal to 1.

Figures 12–15 show the simulation results of the 3-order
single-link robot. ,e angle tracking error is displayed in
Figure 12, which converges to the initial value 0.1ra d

rapidly and oscillates at the step time t � 5s. In Figure 13, the
output can track the reference trajectory well. ,is is a step
signal. ,e input voltage u is presented in Figure 14. It is
easily seen that the oscillation also occurs at the step time.
,e angular velocity x2 and motor current x3 are given in
Figure 15, respectively, both of which are bounded.
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Figure 6: ,e comparison of tracking errors between PC and AC with yd2.
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u with yd1
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Figure 8: ,e control inputs u with x1(0) � 1.5.
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Figure 9: ,e state variables x2 with x1(0) � 1.5.
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1 with yd1
2 with yd1
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Figure 10: ,e adaptive parameters ϖ1,ϖ2 with x1(0) � 1.5.
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Figure 11: ,e Nussbaum variables ς with x1(0) � 1.5.
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z1 with the proposed controllor
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5. Conclusion

In the article, an adaptive asymptotic tracking controller has
been designed for nonlinear systems with uncertain VCGs.
Compared with these existing achievements, the developed
control method could not only handle the VCGs in the form
of unknown nonlinear functions but also achieve the as-
ymptotic stability of the tracking error, which was carried
out without the approximation by fuzzy logic or neural
network and repetitive use of Nussbaum-type functions.
New adaptive laws were defined to compensate for unknown
virtual control gains, uncertain parameters, and external
disturbances. Finally, the proposed control scheme was
designed and applied to the control of a robot system. Both

theoretical analysis and simulation were used to validate the
effectiveness and practicability of the developed control
strategy. In the future, we plan to apply the proposed
controller to MIMO nonlinear systems by combining dead
zone, saturation, hysteresis, and so on.
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