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Multilabel classifcation is a key research topic in the machine learning feld. In this study, the author put forward a two/two-layer
chain classifcation algorithm with optimal sequence based on the attention mechanism. Tis algorithm is a classifcation model
with a two-layer structure. By introducing an attention mechanism, this study analyzes the key attributes to achieve the goal of
classifcation. To solve the problem of algorithm accuracy degradation caused by the order of classifers, we adopt the OSS (optimal
sequence selection) algorithm to fnd the optimal sequence of tags. Te test results based on the actual dataset show that the
ATDCC-OS algorithm has good performance on all performance evaluation metrics. Te average accuracy of this algorithm is
over 80%.Temicroaverage AUC performance reaches 0.96. In terms of coverage performance, its coverage performance is below
10%. Te comprehensive result of single error performance is the best. Te loss performance is about 0.03. Te purpose of the
ATDCC-OS algorithm proposed in the study is to help improve the accuracy of multilabel classifcation so as to obtain more
efective data information.

1. Introduction

Multilabel classifcation, a commonly used method in big
data analysis, aims to associate multiple labels to a sample at
the same time. Te ubiquity of multilabel data in real-life
scenarios makes multilabel classifcation methods a popular
research topic. However, in real-life applications, the in-
tegrity of the labels is usually not guaranteed. Due to poor
data collection and the high cost of labeling and other
reasons, only part of the labels in those samples is marked.
Tere are many ambiguous examples in the real world.
Sample instances are of a certain probability to be calibrated
to diferent attributes. Many multilabel classifcation algo-
rithms come into being. Usually, it is very challenging to
extend the theory of single-label classifcation to multilabel
classifcation. With the development of machine learning,
multilabel classifcation algorithms can be applied to im-
aging, recommendation systems, medical diagnosis,

information retrieval, and many other felds [1–8]. In recent
years, an ocean of research works accepted by top confer-
ences (e.g., ACL, AAAI, COLING, KDD, NIPS, ICDM,
CIKM, INTERSPEECH, ICML, and IJCAI) proposed
technologies and solutions for multilabel classifcation. Te
multilabel classifcation theory is a heated topic in data
mining, which has attracted wide attention in the machine
learning community.

Tere are two commonly used methods to construct a
multilabel classifcation model: algorithm adaptation and
problem transformation. Te algorithm adaptation method
is to adjust the existing algorithms (e.g., AdaBoost and
decision trees) to solve multilabel classifcation issues. Te
performance of the algorithm adaptation method often
remains poor. Te problem transformation method splits a
multilabel classifcation task into several single-label clas-
sifcation tasks. Ten, the classical single-label classifcation
theory is utilized to solve the problem, which brings the
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trained single-label classifers together as a super-classifer
through linear combination. In this study, we investigate the
multilabel classifcation theory algorithm based on problem
transformation.

Tere are many existing problem transformation
methods, such as the BR method [9], the CC theory [10], the
MBR model [11], and the DLMC-OS algorithm [12].
However, these methods usually ignore the correlation
among labels, the randomness of label sequences, and the
redundant interactive label information, which reduces the
accuracy of classifcation. Te problem transformation
method uses extended attributes to dig out the correlation
between labels, but for diferent classifcation tasks, the
importance of feature attributes is usually ignored during the
process, which decreases the sensitivity of the classifers.
Terefore, we try to introduce an attention mechanism into
the methods. Such attention mechanism method [13] is a
bionic process based on how the human brain works. It is
widely used in machine learning in areas such as speech
recognition, image recognition, natural language processing,
and so on. Te attention mechanism usually calculates the
probability mapping from an input to diferent outputs. Te
result with the largest probability will be chosen as the
output, which has a great impact on considering the cor-
relation between multiple attributes and labels. Ten, we
propose an attention mechanism-based multilabel classif-
cation algorithm, based on the double-layer chain structure.

In the proposed algorithm (algorithm of two/double-
layer chain classifcation with optimal sequence based on
attention mechanism, ATDCC-OS), we integrate three
multilabel classifcation frameworks (including BR, MBR,
and CC) and an attention mechanism into a chain structure
with two layers. Tis structure exploits a binary association
classifcation framework. In layer one, it carries out the
initial classifcation. In layer two, the chain-based classifer
utilizes an updating process to complete the fnal classif-
cation, which interacts with the label information coming
from the output of layer one. In particular, we put an at-
tention mechanism in layer two and use the output of layer
one to calculate the probability of fnal classifcation results.
Tus, this can fnd important information between diferent
attributes and can improve the fnal classifer accuracy for
diferent tasks. However, there is a random chain order
problem in ATDCC-OS. We leverage the optimal sequence
selection (OSS) algorithm to solve this issue. OSS integrates
several variables and methods (including the hierarchical
traversal algorithm, PageRank, Kruskal’s algorithm, and
mutual information) to decide labels’ priority. Ten, the
priority rank is used to help ATDCC-OS to assign classifers
and construct the chain classifcation model.

In this study, the main contributions are as follows: (1) A
double-layer structure multilabel classifcation model is
constructed to fully integrate the advantages of three clas-
sical classifcation models. At the same time, an attention
mechanism is introduced to further analyze the infuence of
key attributes on classifcation results to optimize traditional
classifcation. (2)Te OSS algorithm is proposed to solve the
problem of low classifcation accuracy due to the existence of
random chain order in the chain classifcation model. It is

applied to improve the second layer of the chained classi-
fcation model. Tis classifcation model does not depend on
any classifcation algorithm separately. Experiments on
benchmark datasets validate the efectiveness of the pro-
posed approach by comparing it with the state-of-the-art
methods in terms of predictive performance.

Te rest of this study includes the following: Section 2
deals with related work. Section 3 displays the proposed
ATDCC-OS method. Ten, we introduce the datasets used
in the experiments and perform some simulations to verify
the proposed method and discuss the experimental results in
Section 4. We conclude our work in Section 5.

2. Related Work

2.1. Multilabel Classifcation Method. Te multilabel classi-
fcation approach has received much attention and is widely
used in various felds, including text classifcation, scene and
video classifcation, and bioinformatics. Te multilabel
classifcation includes two common methods: problem
transformation process and algorithm adaptation process.
Te former changes a multilabel problem into one or several
single-label issues [11] and uses basic classifcation algo-
rithms, such as Naive Bayesian, supporting vector machine
[14], k-nearest neighbor algorithm, and so on to solve them.
Te latter transforms the existing algorithms so that they can
solve the multiclassifcation problem, e.g., ML-RBF method
[15, 16], ML-kNN approach [17, 18], rank-SVM classifca-
tion [9], and associated classifcation algorithm [19, 20].

BR (binary relevance) [9] is a common method of
problem transformation, which transforms the multilabel
classifcation issue into several binary relevance problems
where it trains a binary classifcationmodel one by one for all
labels. However, BR is often overlooked because it cannot
efectively use the correlation between labels. Te MBR
based on BR was proposed [11], which was constructed as a
two-layer model. Layer one in MBR is taken as the input of
layer two as a sample attribute to consider label correlation.
However, the problem of the label value redundancy is
ignored in the training process of layer two.

Te CC method was proposed by the authors in [10],
where the chain is exploited to build the correlation among
all labels. It converts all classifers into the linear stochastic
data chain and adds previous classifers’ output to the data
sample attribute set and takes it as the input to the next
classifer. However, there are many disadvantages to the
random chain. First, in the CC training process, the classifer
output is input as a new attribute together with the original
attribute into the next classifer. So, the former classifers in
the chain have a greater impact on classifcation than the
latter classifers. Te order of classifers in the chain afects
the classifcation result. Second, CC considers the correla-
tion of attributes, but two linked classifers can use the
correlation between adjacent attributes, and the other cor-
relation between attributes cannot be used. Finally, the order
of classifers in the chain is randomly assigned, so the CC
model is not unique, which makes the model have strong
randomness and ruins the stability of the algorithm [21, 22].
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Te two-layer classifcation model, DLMC-OS, is pro-
posed to solve the classifcation problem [12]. In this model,
the output of the frst-level classifer is forwarded to the
second-level classifer as an extended feature. Each classifer
in the second layer of the model passes the latest classif-
cation results backward through a chain to consider the
correlation between labels. Tis approach suppresses the
classifer chain randomness, but it cannot obtain the unique
classifer sequence in the chain.

2.2. Attention Mechanism. Te attention mechanism
method [23–25] is derived from the study of human vision,
which simulates the perspective interest of human vision
when observing. When the human eye scans the global
image, the part of the information that assists the judgment
is tracked dynamically in the image, and irrelevant infor-
mation is ignored. Tis process can efectively decrease or
reduce the amount of information processing when the eyes
recognize images by paying more attention to part infor-
mation. Te modern attention mechanism is adopted for
machine translation, and it greatly improves the perfor-
mance of the model [26]. In 2014, Google Brain published an
article on the attention mechanism [27]. Te article pointed
out that when viewing an image, people do not frst look at
the image pixels but pay more attention to the image’s
specifc parts based on their requirements. In addition, as
humans, we will focus on the required attention locations in
the future based on previous observations of images. Te
authors designed a new architecture named transformer. In
a transformer, the self-attention mechanisms are extensively
utilized to perform text representations [28], which break
away from the traditional RNN/CNN. In recent years,
transformer-style models achieved many good results in
various tasks. Subsequently, attention mechanisms have
become more common and are widely used in classifcation
tasks, such as sentiment classifcation [29], musical instru-
ment recognition [30], visual recommender systems [31],
multilabel text classifcation [32], and multiple protein
subcellular location prediction [33].

3. ATDCC-OS

3.1. Preliminaries. We set χ ∈ Rd and Y ∈ RL as the input
domain and output domain, respectively. Tere are d-di-
mensional attributes in the input domain and L-dimensional
labels in the output domain. Instance x belongs to a subset of
attributes. We use the set Lvector xi ∈ χ to represent that x is
the input and y is the output. If the label j is related to x,
then yj � 1, or yj � 0. Te set
D � (xi, Yi)|1≤ i≤m􏼈 􏼉represents the trained multilabel
classifcation model, where xi ∈ χ is an attribute vector
(xi1, xi2, · · · , xid)T with d dimensions and Yi ⊂ c indicates a
label set corresponding to xi. To construct a multilabel
classifer, we let H: χ⟶ 2c. Hf � (H

f
1 , H

f
2 , · · · , H

f
L ) and

Hs � (Hs
1, Hs

2, · · · , Hs
L) as the frst and second layers of the

multilabel classifer, respectively. cf � (y
f
1 , y

f
2 , · · · , y

f
L ) and

cS � (yS
1, yS

2, · · · , yS
L) are the outputs of the frst and second

layers.

3.2. Te ATDCC Framework. By referring to algorithm
DLMC-OS, we construct the double-layer chain classifca-
tion based on the attention mechanism (ATDCC). ATDCC
converts the multilabel classifcation issue into a series of
binary classifcation issues, each one of which is independent
of others. In layer one, ATDCC performs binary transfor-
mation on labels and constructs some classifers between
attributes and labels. After training, the classifers of each
binary classifcation model can be obtained [12]. ATDCC
completes the binary classifcation of instances in layer one
and then makes the classifcation results as the extended
attributes transfer to layer two. In layer two, ATDCC
constructs a classifcation method with a chain structure by
realizing the updating process of dynamic feedback. It ex-
ploits the classifer chain to transfer and change the labels. It
realizes the interaction among labels and optimizes the
classifcation result. ATDCC utilizes correlation among all
labels for multilabel classifcation through label information
interaction within layers and labels information transfer
between layers.

3.2.1. ATDCCFirst-Layer. ATDCCFirst-layer follows the idea of a
binary correlation classifcation model. It constructs a
classifer with a binary structure for all labels. Tese binary
classifers are combined as classifcation one, as shown in
Figure 1.

In step one, assume there is an annotated dataset with a
size being L. ATDCCFirst-layer constructs an attribute set for
all labels by using the following equation:

D
f
yk

� xi, yk( 􏼁|1≤ i≤m􏼈 􏼉,

whereyk �
1, ifyk ∈ Yk,

0, otherwise.
􏼨

(1)

In step two, some binary algorithms B (such as SMO) are
utilized to create the binary classifer of the training instance:
H

f
yk
←B(D

f
yk

).
In step three, we use the obtained binary classifer to

classify and predict the unseen instance X.

H
f
yk

: X × 0, 1{ }
L− 1⟶ 0, 1{ },

y
f

k � H
f
yk

(X)|X ∈ X ×(0, 1)
k− 1

, 1≤ k≤ L􏽮 􏽯.
(2)

Finally, the prediction result of each classifer (i.e.,
cf � (y

f
1 , y

f
2 , . . . , y

f
L ), as shown in Figure 1(b)) is the output

of the unseen instance in the frst layer of ATDCC, inte-
grating these output cf with the attribute set of samples to
build a new attribute set x′ � (xi, cf)|1≤ i≤m􏼈 􏼉. Let x′ be
the input of layer two in ATDCC.

3.2.2. ATDCCAT-Layer. Te attention mechanism is usually
exploited in sequence-to-sequence learning paradigms. For
diferent multilabel classifcation tasks, the attribute map-
ping weights between the two layers of ATDCC are diferent.
Te attention mechanism method can capture the weight
value of all attributes in samples according to requirements.
It can improve the fnal accuracy of classifcation results.
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ATDCCAT-layer uses the attention mechanism men-
tioned above to dynamically compute the extended attri-
butes’ weights. Te layer two model can adapt to the
requirement of the current classifcation task by adjusting
the weight value of the transfer attributes between the two
layers in ATDCC.

In step one, according to the original sample attributes’
dimension of the frst layer to defne weight matrix W, the
tanh function is exploited to train ATDCCAT-layer to capture
correlations between input attributes and label i. Te trained
model can be expressed as

eij � tanh Wijxij
′ + b􏼐 􏼑, (1≤ i≤m), (3)

where W and b, respectively, denote the weight matrix and
the model’s bias.

In step two, ATDCCAT-layer uses a softmax function to
transform the output of equation (3) to a probability value
and then obtains the weight value of the attention scores.

Wij
′ � softmax eij􏼐 􏼑 �

exp eij􏼐 􏼑

􏽐
j�1
m exp eij􏼐 􏼑

. (4)

Finally, the extended attribute set is weighted based on
the attention weights obtained from equation (4):

x″ � 􏽘
i�1

m

xij
′ωij
′. (5)

Te parameters in our model are optimized by carrying
out the minimization of the feedback result of the loss
function.Te cross-entropy loss in equation (6) is used as the
loss function. Te following equation calculates the accu-
mulated loss derived from actual and predicted labels for
each instance:

J(θ) � −
1
l

􏽘

k�1

l

logp yk|yk
′( 􏼁. (6)

3.2.3. ATDCCSecond-Layer. ATDCCSecond-layer is the second
layer of the ATDCC model (Figure 2), which uses the
classifcation structure with a chain and exploits an updating
process to classify instances in the second time.Te attribute
set of each binary model expands the correlation of the
classifcation labels before the instance to create the chain
structure of classifers. Te attribute set of all binary models
is augmented via the 0/1 label estimation value obtained in
layer one as well as the whole prior binary correlation es-
timations from layer two. In the second layer, the correla-
tions between each label are fully applied. Given the attribute
set, each classifer in the chain will learn and predict the
binary association of labels.

In step one, ATDCCSecond-layer creates the extended
attribute vector Ds

yk(1≤ k≤ L) for each class label as shown
in the following equation.

D
s
yk

� wixi, wi+1y
f
1 , · · · , wi+k−1y

f

k−1, wi+k+1y
f

k+1, · · · , wi+Ly
f
L􏽨 􏽩, y

f

k􏼐 􏼑|1≤ i≤m􏽮 􏽯, (7)

where W represents the set of attributes’ weight value.
In step two, we use binary approach B (such as SM) to

learn the constructed extended attribute vector (O) to create
the binary classifer, Hs

yk←B(Ds
yk).

In the third step, use the constructed binary classifer to
classify and predict the unseen instance X.

D
s
yk

� wixi, wi+1y
f
1 , · · · , wi+k−1y

f

k−1, wi+k+1y
f

k+1 · · · , wi+Ly
f
L􏽨 􏽩, y

f

k􏼐 􏼑|1≤ i≤m􏽮 􏽯. (8)
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Figure 1: Te frst layer of ATDCC: (a) the training procedure of ATDCC First-layer and (b) the test procedure of ATDCC First-layer.
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In the model training process, we use the latest predicted
label value to change each sample attribute set’s label value.
For example, for the third classifer HS

y3
in a chain, the next

sample’s attribute variable is [x, ys
1y

s
2, y

f
3 , y

f
4 , . . . , y

f
L ] in-

stead of [x, y
f
1 , y

f
2 , y

f
3 , y

f
4 , . . . , y

f
L ].

Finally, ATDCC evaluates the classifcation prediction
result cs � (ys

1, ys
2′ , . . . , ys

L) of each classifer as the fnal
classifcation for the unseen instance.

3.3. OSS Method. In the MBR model, the sequence of the
classifers in the chain is randomly arranged. If the classi-
fcation accuracy of the classifer at the core of this chain is
very low, an error will be propagated via a backward way
along this classifer chain, decreasing the classifer’s accu-
racy. Tis further leads to lower classifcation correctness
and accuracy for the whole chain. As the number of labels
increases, the randomness of the OSS classifer chain also
increases rapidly. Te algorithm DLMC-OS can reduce the
classifer chain’s randomness, but the optimal label recog-
nition sequence cannot be determined due to the non-
uniqueness of the root node. Te most efective method is to
sort the sequence of the chain. Te sequence of the classifer
needs to be ranked according to attributes and the char-
acteristics of the chain classifcation model. For this reason,
the following constraints are proposed to search for the
optimal chain sequence:

(A) Te label list is ordered according to a sequence
which contains all label information

(B) Te label sequence satisfes the greatest correlation
of labels

(C) Te label list sequence is optimal under current
conditions

Under these design rules, we propose OSS in the model,
which integrates mutual information and PageRank with the
Kruskal algorithm and the hierarchical traversal method to
fnd an optimal label sequence. Te chain classifcation
model uses sequences as the rules to assign the order of each
classifer, and the second layer will optimize the ATDCC
with the OSS algorithm.

3.3.1. Subalgorithm Related with OSS

(1) Mutual Information (MI) Teory. In the information
theory and probability theory, mutual information
(MI) is used to evaluate the interdependence be-
tween two random variables, so we can obtain the
“information amount” of a stochastic variable by
observing the other random variables. Equation (9)
shows the MI of the two variables. In current in-
formation technologies, the probability theory and
information theory have been widely used. Te MI
theory is widely exploited in research works. In the
machine learning feld, MI can be utilized to select
the features [34, 35]. Te search engine often uses MI
among phrases and contexts to fnd discover se-
mantic clusters [36]. In statistical mechanics, MI is
usually used to solve mechanical problems together
with Loschmidt’s paradox [37, 38].
Based on the MI application, we evaluate the cor-
relation between labels by capturing MI among la-
bels. Ten, we exploit it as edges’ weight in the fully
connected graph.

(2) PageRank. PageRank (PR) is used to overcome the
page ranking issue in the detailed link analysis
process, which was proposed in reference [39]. Te
key idea of this algorithm includes that the page’s
importance is related to the number as well as the
detailed quality of another page that points to this
page. Tis algorithm is applied in Google’s search
engine [40]. Te importance of a Webpage can be
quantifed by the number of links in the link
structure, rather than relying on specifc search re-
quests. Twitter uses a personalized PageRank to show
users’ another account [41]. In this study, we use
PageRank and priority search to build the custom-
ized PageRank algorithm to decide a very important
label to act as the chain’s frst node. Tis can
overcome the issue of nonuniqueness of the chain
head.

(3) Edge Weight-Based Graph Algorithm. Usually, the
connection between diferent entities can be
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Figure 2: Te second layer of ATDCC: (a) the training procedure of ATDCCSecond-layer and (b) the testing procedure of ATDCCSecond-layer.
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formulated as a graph with edge weights [42]. Te
weight of an edge may represent cost, length, or
capacity, depending on the current problem to be
solved [43–46]. In the model, we exploit this
weighted graph method to create the graph with a
fully connected relationship related to the labels in
Algorithm 1.

(4) Detailed Kruskal’s Algorithm Idea. In this study, the
referred Kruskal’s algorithm is utilized to seek a tree
with minimum spanning [47]. We use Kruskal’s
method to seek a tree with the largest label spanning.
Tis can provide a basis to create a sequence in which
the association with labels is the largest.Te designed
algorithm is shown in Algorithm 2.

(5) Breadth-First Based Search Method. In this study, the
breadth-frst based search (BFS) is an algorithm used
for seeking the available paths of the graph, which
traverses or searches the tree or graph data struc-
tures. Ten, we use PageRank to fnd the starting
point and use BFS to traverse the spanning tree with
the maximum label to construct the resulting label
order, as shown in Algorithm 3.

3.3.2. Te OSS’s Detailed Design Framework. Te detailed
design steps for the OSS algorithm in this study are shown in
Figure 3.

Step 1. Calculate the MI of the correlation between labels.
Assuming that there are N labels y1, y2, . . . , yn, we use
formula (9) to calculate the MI on any two labels yi and yj,
and the MI must be nonnegative.

Defnition 1. Te formula of MI calculation is

I yi, yj􏼐 􏼑 � 􏽘
yiyj

p yi, yj􏼐 􏼑log
p yi, yj􏼐 􏼑

p yi( 􏼁p yj􏼐 􏼑
⎛⎝ ⎞⎠. (9)

Step 2. Construct a fully connected graphG via labels, where
the labels are the graph’s vertices, and MI volume among
labels acts as edges’ weights. Utilize the Kruskal algorithm to
build the label tree with the maximum weight. Ten, invert
the mutual information value to obtain the maximum
weight spanning tree.

Step 3. Use the PageRank algorithm to sort each label in the
dataset by “voting” and decide on the label node whose PR
value is the highest. Tis node acts as the root node that
belongs to a tree with the maximumweight. It is also selected
to act as the frst node of the traversal algorithm that is
hierarchical. Tis can overcome the issue of not unique head
label in the chain.

Step 4. Use Kruskal’s algorithm to generate a minimum
weight label tree (MWT) used for the fully connected graph
G. Te label tree includes the whole labels and the entire

edges. Tese edges connect the label nodes. Te weighted
sum is the largest.

Step 5. Traverse the MWTwith the label nodes obtained by
BFS and PageRank to obtain the label sequence. Use this
sequence as a guide for constructing the sequence of each
classifer in a chain to overcome the uncertainty issue for the
classifcation, as shown in Algorithm 4.

3.4. Te ATDCC-OS Framework. Te ATDCC-OS design
framework is plotted in Figure 4. Figure 4 shows that the
ATDCCFirst-layer and ATDCCSecond-layer are the frst and
second layers. We utilize the OSS approach to optimize the
chain structure in the ATDCC-OS framework. Ten, we can
seek an optimal sequence of labels. According to the best and
optimal serials, we train each classifer in our model. We
utilize this attention mechanism layer between layer one and
layer two to fnd important attributes and features from the
current task. In such a case, we can build a better classifer in
layer two, as shown in Algorithms 5 and 6.

4. Experiments

To validate the method, we perform some simulations and
use the experimental results to analyze the performance of
the proposed algorithm. In the simulation, we analyze the
algorithm (ATDCC-OS) presented in this study with other
algorithms of multilabel classifcation (including DLMC-OS
and BR and CC and MBR) via fve metrics. We then take
seven datasets as the multilabel benchmark.

4.1. Test Datasets. We utilize the standard datasets provided
on the Mulan [48] platform as the multilabel benchmark.
Table 1 describes each dataset and related statistical data in
the simulation. N, F, and L represent instances’ numbers,
attributes’ numbers contained in each instance, and labels’
numbers in the dataset, respectively. Te notation label
cardinality (LCard) represents the normal measure as shown
in [49]. LCard denotes the average label number associated
with an instance.

4.2. Evaluation Methods. Te evaluation indicator is a
measure that directs the indication of the algorithm’s per-
formance. To better evaluate the method, we used mean
accuracy, coverage rate, single error, ranking loss rate, and
microaverage AUC to analyze the performance of ATDCC-
OS.

(1) Average precision: average precision [12] is an ac-
curate metric, which associates recall with precision
to sort search results. It reviews a mean score of
labels with a higher rank than a specifc tag. Te
larger the value of the average precision is, the better
the classifer will be. Te average precision can be
expressed as
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avgprecD(H) �
1
P

􏽘

P

i�1

1
Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
y∈Yi

y′|rankC x, y′( 􏼁≤ rankC xi, y( 􏼁, y′ ∈ Yi􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

rankC xi, y( 􏼁
, (10)

Where rank(.) is a sort function.

Input label values to construct a label map with weights:
Input Y � y1, y2, . . . , yL􏼈 􏼉

Output: G
(1) G← {}
(2) G.V←Y
(3) For each (u, v) in G.V
(4) Calculate the mutual information of MI (u, v) according to Defnition 1.
(5) G.E←MI (u, v)
(6) G←G(V, E)
(7) Return G

ALGORITHM 1

Constructing the minimum spanning tree of labels based on Algorithm 1:
Input: G (V, E)
Output: MWT

(1) MWT← {}
(2) For v ∈G, then V is:
(3) Make the set (v)
(4) For (u, v) in G. E is ordered according to weight (u, v) via an increasing way:
(5) If set(u) ≠ set(v):
(6) MST�MST ∪ {(u, v)}
(7) Let it Union (u, v)
(8) Return MWT←MST

ALGORITHM 2

Hierarchical traversal to get the label sequence:
Input: MWT (V, E)
Output: OS

(1) Queue Q← {}
(2) For each v ∈MWT.V:
(3) Q←Q∪ (v)

(4) while(Q! � ∅)

(5) v←Q.head, w←Q.next
(6) while(w! � ∅)

(7) Q←Q∪ (w)

(8) end while
(9) end while
(10) end for
(11) OS←Q

(12) Return OS

ALGORITHM 3
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Figure 3: Te OS computation process.

Find labels’ optimized chain order:
Input: Variable D � (x1, x2, · · · , xn|y1, y2, · · · , yL)

Output: OS(y1, y2, . . . , yL)

(1) ⊳Calculate mutual information according to Defnition 1
(2) fori � 1, 2 . . . , L

(3) forj � i + 1, 2, . . . , L

(4) Iij←MI(yi, yj)

(5) ArrayA←Iij

(6) End for
(7) End for
(8) ⊳Make a fully connected graph
(9) G←Edge − weightedgraph(L, A)

(10) ⊳Determine the root node by PageRank
(11) V←PageRank(D)

(12) ⊳Get the maximum weight label Tree
(13) T←Kruskal(G, V)

(14) ⊳Get the optimal sequence
(15) OS(y1, y2, . . . , yL)←Breadth − firstsearch(T)

(16) Return OS

ALGORITHM 4

X

H
1

f

H
1

f

y
1

f y
2

f y
3

f y
L

f

y
1

s y
2

s y
3

s y
L

s

H
2

f

H
2

f

H
3

f

H
3

f

H
L

f

H
L

f

[x,y
2

f ,y
3

f,..., y
L

f] [x,y
1

s ,y
3

f,..., y
L

f] [x,y
1

s ,y
2

s,..., y
L

f] [x,y
1

s ,y
2

s,..., y
L-1

f]

Attention1 Attention2 Attention3 AttentionL

ω11, ω12, ω13, ..., ω1n, ω1n+1,..., ω1n+d

ω′11, ω′12, ω′13, ..., ω′1n, ω′1n+1,..., ω′1n+d

x11, x12, x13, ..., y1

f ,y
2

f,..., y
L

f

Dense

tanh

sof max

ATDCC – OSAT–Layer 

AT
D

CC
 –

 O
SSe

co
nd

–L
ay

er
 

AT
D

CC
 –

 O
SFi

rs
t–

La
ye

r 

OSS

...

...

...

...

Figure 4: Te DCC-OS model’s design framework.
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(2) Coverage [12]: coverage indicates that the algorithm
can cover all possible labels. Tis metric describes
how far or how deep we are to go in the tag list on
average to include possible labels related to the
document. At the perfect recall level, coverage is
loosely related to accuracy. Te smaller the value of
coverage is, the better the algorithm will be. Te
coverage can be calculated as

coverageD(H) �
1
P

􏽘

P

i�1
max rankf xi, y( 􏼁 − 1, (11)

Where notation rank(.) denotes a sort and ranking
function related to the classifer H(.).

(3) One-error metric [50]: one-error metric is used to
indicate the proportion of examples where the top
label does not fall into the selected label set. Te
bigger this metric is, the worse the algorithm will be.
Te one-error metric can be expressed as

one − errorD(H) �
1
P

􏽘

P

i�1
argmaxy∈cf xi, y( 􏼁 ∉ Yi􏽨 􏽩

�����

�����,

(12)

D is the training set, L is the labels’ number
TRAINING D � (xi, Yi)|i � 1, 2, . . . , m􏼈 􏼉

(1) ⊳Train the frst-layer classifer
(2) forj � 1, 2, . . . , L

(3) D
f
yj
←

(4) dox←[xi1, xi2, . . . , xim]

(5) D
f
yj
←x∪yj

(6) H
f
j←Β(D

f
yj

)

(7) end for
(8) ⊳Use the OSS algorithm to obtain the label priority order to guide the training of the second-layer classifer
(9) forj � sort1, 2, . . . , LbyOSS(D)

(10) Ds
yj
←

(11) dox←[xi1, xi2, . . . , xim, y1, . . . , yj−1, yj+1, . . . , yL]

(12) ⊳Compute attribute value weights using the attention mechanism
(13) W← Wi1, Wi2, . . . , Wim+L􏼈 􏼉

(14) W←attention(x)

(15) x′←x × W

(16) Ds
yj
←x′ ∪yj

(17) Hs
j←Β(Ds

yj
)

(18) yj � Hs
j(x′)

(19) End for

ALGORITHM 5

Classify(x): classify new instance X
(1) Global cf � (y

f
1 , y

f
2 , · · · , y

f

L )cs � (ys
1, ys

2, · · · , ys
L)

(2) ⊳Classify x for the frst time using the frst-layer classifer
(3) forj � 1, 2, . . . , L

(4) dox←[xi1, xi2, . . . , xim]

(5) y
f
j←H

f
yj

(x)

(6) End for
(7) ⊳Classify x for the frst time using the second-layer classifer
(8) x′←[x, y

f
1 , y

f
2 , . . . , y

f
L ]

(9) forj � sort1, 2, . . . , LbyOSS(D)

(10) dox″←x′ × Wj
′

(11) ys
j←Hs

j(x″)
(12) End for
(13) ⊳Get the fnal classifcation result
(14) cs←(ys

1, ys
2, . . . , ys

L)

(15) Returncs

ALGORITHM 6
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Where f(.) stands for a function associated with a
classifer H(.) with multiple labels.

(4) Ranking loss metric [12]: the ranking loss metric is
related to those situations in which the classed labels
of samples are not sorted in order, that is, in the label

serials, the classifed labels (that are not related to the
researched instance) fall into the previous related
labels. Te bigger this indicator is, the better the
algorithm performance will be. Te ranking loss
metric can be expressed as

rlossD(H) �
1
P

􏽘

P

i�1

1
Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Yi| × y′, y″( 􏼁|f xi, y′( 􏼁≤f xi, y″( 􏼁, y′, y″( 􏼁 ∈ Yi × Yi}|.􏼈

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

(13)

(5) Microaveraged AUC [50]: this metric shows the area
covered by a ROC curve graph. Its value is from 0.1
to 1. Tis metric is directly exploited to review the
classifer’s performance. Te smaller this metric is,
the worse this algorithm will be. Te microaveraged
AUC metric is

AUCmicro � | (x′, x″, y′, y″)|f(x′, y′)≥f(x″, y″),􏼈

(x′, y′) ∈ S+, (x″, y″) ∈ S− }|/|S+||S−|, where f(.) is a real-
valued function [51] and the following equations can be
obtained:

S
+

� xi, y( 􏼁|y ∈ Yi, 1≤ i≤p􏼈 􏼉. (14)

S
−

� xi, y( 􏼁|y ∉ Yi, 1≤ i≤p􏼈 􏼉, (15)

where they denote label pairs’ sets which are related or
unrelated.

4.3. Experimental Setting. We use the dataset provided by
the Mulan platform to evaluate all algorithms. Te Mulan
[48] is an open-source dataset used for classifcation with
multiple labels, which is based onWeka. In this study, we use
SMO as a basis for classifcation algorithms. Four diferent
classifers are utilized to carry out comparisons, including
the DLMC-OS algorithm, the MBR algorithm, the CC al-
gorithm, and the BR algorithm. We select 80% of instances
from every dataset to act as training datasets, while we
choose the rest to act as testing datasets. We adopt Adam
[52] as the optimizer during the training process. We list the
default parameters of Adam’s hyperparameters as follows:
let alpha be 0.001, set beta1 to be 0.9, let beta2 be 0.999, and
set epsilon to be 10−8. Our simulation platform includes the
Intel(R) Xeon(R) E5-2630 CPU, 128GB RAM, as well as the

operating system Centos 7.6. We design and implement the
algorithms in the Java (JDK 1.8) running environment.

4.4. Results and Discussion. Figures 5–10 show the perfor-
mance comparison among ATDCC-OS, DLMC, MBR, CC,
and BR algorithms, using mean accuracy, coverage metric,
single error metric, ranking loss metric, and microaverage
AUC metric. We use the metric of the mean ranking (Ave.
rank) parameter to review diferent classifcation results of
the algorithms [53]. In these fgures, each color represents an
algorithm and the name of the algorithm has been listed in
the upper left corner of the graph. Te number on the top of
each bar is the performance rank of the algorithms in the
dataset. In Figures 5–9, the ordinate y-axis denotes the
results of the evaluation, while the abscissa x-axis stands for
the names of the dataset. In Figure 10, x-axis denotes the
name of the algorithm, while y-axis shows the average rank
of algorithms in all datasets.

Figure 5 shows the accuracy of each algorithm in each
dataset. Te ATDCC-OS method proposed in the study has
the best performance in the dataset. Compared with other
methods, except for the lowest accuracy in the yeast dataset,
the accuracy in other datasets is the highest. Among them,
the accuracy in the datasets of fags, emotions, and the
medical dataset is over 80%.

In Figure 6, we can see the comparison of the micro-
average AUC performance of the algorithms. Te ATDCC-
OS algorithm is also the most excellent and stable in terms of
microaverage AUC performance. Te performance of this
algorithm is the best except for that in the birds dataset, and
the performance in the medical dataset is 0.96.

Figure 7 shows the comparison of the coverage per-
formance of each algorithm. Te lower the coverage, the

Table 1: Datasets with multiple labels.

Dataset N F L LCard Type
Flags 194 19 7 3.392 Images
Emotion 593 72 6 1.87 Music
Birds 654 300 21 1.104 Audio
Medical 978 1449 45 1.245 Text
Enron 1702 1001 53 3.38 Text
Yeast 2417 103 14 4.24 Biology
BibTeX 7395 1836 159 2.40 Text
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better the performance of the algorithm. Te coverage
performance of the ATDCC-OS algorithm proposed in the
study is optimal in all datasets, and its coverage performance
is less than 10% in fags, emotions, birds, medical datasets,
and yeast datasets.

Te single error performance of each algorithm is shown
in Figure 8. Te performance of the proposed ATDCC-OS
algorithm in this graph is relatively unstable compared with
other algorithms. However, from a comprehensive per-
spective, the performance of this algorithm is still good, and

1.2

1

0.8

0.6

0.4

0.2

0

Av
er

ag
e P

re
ci

sio
n

Flags Emotion Birds Medical

Dataset

Enron Yeast Bibtex

2 2
2

2
2

2

2

4
4

4

4
4

4

4

5 5

5

5
5

5

5

3
3

3

3

3

3

3

1 1
1

1
1

1

1

BR
CC
MBR

DLMC-OS
ATDCC-OS

Figure 5: Te average precision of algorithms.

M
ic

ro
-a

ve
ra

ge
d 

AU
C

Flags Emotion Birds Medical

Dataset

Enron Yeast Bibtex

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

3 3

3

3

3
3

2

4
4

4

4

4
4

45
5

5

5

5
5

5

2 2

2

2

2
2

2

1

1

1

1

1

1

1

BR
CC
MBR

DLMC-OS
ATDCC-OS

Figure 6: Te microaveraged AUC performance of algorithms.

Complexity 11



the performance in the fags, birds, Enron, and BibTeX
datasets is the best. In the emotion dataset, the performance
of this algorithm is second only to that of the MBR
algorithm.

From Figures 5–9, we can see that ATDCC-OS shows the
optimal classifcation performance, while algorithm DLMC-
OS presents better performance. However, other methods
indicate worse performance. For all reviewing metrics, the
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mean precision metric and microaveraged AUC metric
directly indicate the performance of the classifers.Te larger
the values, the better the performance of the algorithms.
According to Figures 5 and 6, we can see that the algorithm
ATDCC-OS proposed in this study and the method DLMC-
OS demonstrate much better performance compared with
other algorithms. Tis is because they utilize a two-layer
classifcation structure and the label information interaction

to create detailed classifers. Tis design structure takes into
consideration the interrelationship between labels. At the
same time, the algorithm ATDCC-OS also exploits the
classical attention mechanism theory to improve the sen-
sibility of classifers and adapt them to a variety of tasks.
Tree indicators, namely, coverage, ranking loss, and the
one-error metric are often exploited to decide and fnd ir-
relevant labels in classifcation results. As shown in
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Figures 7–9, we fnd that the algorithm ATDCC-OS and the
previous algorithm DLMC-OS also demonstrate better
performance compared with the rest of the algorithms, while
the BR approach presents a medium performance. TeMBR
method and the CC approach are the worst in this metric.
Tis is because the algorithm ATDCC-OS and the previous
approach DLMC-OS utilize optimization algorithms to train
all classifers in order. Te randomness of serials in the CC
method and the MBR approach directly leads to poorer
performance. On the contrary, the BR method does not take
into account the sequence of the labels, while it shows better
performance.

Te loss performance of each algorithm is shown in
Figure 9. Among them, the ATDCC-OS algorithm is the
most excellent in terms of loss performance. In all datasets,
the performance of this algorithm is one level better than
other algorithms. In the medical dataset, the loss perfor-
mance is about 0.03.

From Figure 10, we can see the comprehensive per-
formance ranking of the comparison algorithms in various
indicators. Among all the indexes, the ATDCC-OS algo-
rithm has the best performance. Te comprehensive per-
formance of the DLMC-OS algorithm is second only to that
of the ATDCC-OS algorithm, and the subsequent perfor-
mance is diferent in diferent algorithms.

Figure 10 shows the mean ranking performance metrics
of the fve classifers for mean accuracy, coverage metric,
single error metric, ranking loss metric, and microaverage
AUC metric.

From our simulations, we can fnd that our algorithm
ATDCC-OS outperforms the rest of the algorithms for most
of the datasets, while it performs poorly in yeast and birds.
As we all know, this algorithm cannot obtain the best
performance for all types of diferent test datasets [10]. Te
algorithm performance is related not only to the detailed
structure of the algorithm but also to the dataset’s detailed
type and size, as well as labels’ balance in our test dataset.

Figures 11 and 12 show the plots of the percentage of
training data versus average precision and ranking loss.
Tese two fgures illustrate how the percentage change of
training data afects the enhancement of performance. In
this experiment, we take the emotions dataset as an example
for both comparisons.

Figure 11 shows the change curve for average precision
under the two pairs of classifers scale with respect to the
percentage of training data. From Figure 11, we observe that
the average precision is elevated for the four classifers when
the percentage of training data increases. When the per-
centage of training data is between 10% and 30%, the ac-
curacy of all algorithms foats up and down. When the
percentage of training data is over 30%, the average precision
of the ATDCC-OS and DLMC-OS rises steadily, while MBR
needs to reach 40%, and CC and BR need to reach 60%.
Overall, as the training data increase, ATDCC-OS shows
better performance than DLMC-OS, followed by MBR and
BR, while CC is the worst.

From Figure 12, we can see the results of the comparison
in terms of ranking loss. In this fgure, as the percentage of
training data increases, the ranking loss of ATDCC-OS and

DLMC-OS tend to decrease steadily, compared to MBR, CC,
and BR.When the training data is between 10% and 40%, the
ranking loss of each algorithm is unstable, among which the
MBR fuctuates the most, followed by CC and BR, while
ATDCC-OS and DLMC-OS perform better. When the
dataset is larger than 40%, the ranking loss curves of all
algorithms show a downward trend. ATDCC-OS still
presents the lowest loss in such a scenario.

5. Conclusion

In this study, we propose a simple and efective multilabel
classifcation model (ATDCC-OS) that integrates the mul-
tilabel classifcation framework of three classic problem-
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conversion types. It fully explores all kinds of advantages of
every method to resolve these issues without considering the
correlation among labels when performing classifcations. In
order to further improve the performance of classifcation,
the algorithm solves the problem of nonreal-time label in-
formation interaction in the second-layer chained classif-
cation model by introducing the idea of “update
replacement.” At the same time, the algorithm dynamically
calculates the weight values of all feature attributes through
an attention mechanism in order to add more important
attribute features to the current classifcation target for each
classifer. It is helpful to add the classifcation sensibility of
classifers, which greatly improves the preciseness of clas-
sifcation. Five diferent metrics are utilized to describe
diferent algorithms on seven diferent datasets. Te results
of the experiments show that the proposed method obtains
high predictive performance compared with the state-of-
the-art multilabel classifcation methods in most cases. In
terms of average accuracy, the average accuracy of the
ATDCC-OS algorithm is basically the highest in all datasets,
and the accuracy in fags, emotions, and the medical dataset
is more than 80%. In the microaverage AUC performance,
the performance of the ATDCC-OS algorithm in all datasets
is the best except for that in the bird’s dataset, and the
performance in the medical dataset is 0.96. In terms of
coverage performance, the ATDCC-OS algorithm has the
best coverage performance in all datasets, and its coverage
performance is less than 10% in some datasets. In single
error performance, this algorithm has the best compre-
hensive performance. In the loss performance, the algorithm
has a loss performance of about 0.03 in the medical dataset.
Based on the above results, it is concluded that the per-
formance of the proposed ATDCC-OS algorithm is the best.
Tis is only the preliminary result of this study. In the future,
we will further optimize the algorithm to solve the problem
of time complexity caused by the model structure, and we
will also try to apply the algorithm to solve classifcation
problems in everyday work and life. Finally, we hope that the
research work in this study can provide some reference and
assistance to researchers or scholars in the feld of multilabel
classifcation of problem transformation types.

Data Availability

Te data used and/or analyzed during the current study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was supported by the Key Research Project of
Education Department of Sichuan Province of China
(18ZA319).

References

[1] R. Wang, R. Ridley, X. Su, W. Qu, and X. Dai, “A novel
reasoning mechanism for multi-label text classifcation,” In-
formation Processing &Management, vol. 58, no. 2, Article ID
102441, 2021.

[2] J. Cai, W. Sun, J. Guan, and I. You, “Multi-ECGNet for ECG
arrythmia multi-label classifcation,” IEEE Access, vol. 8,
pp. 110848–110858, 2020.

[3] H. Chougrad, H. Zouaki, and O. Alheyane, “Multi-label
transfer learning for the early diagnosis of breast cancer,”
Neurocomputing, vol. 392, pp. 168–180, 2020.

[4] J. Saha, C. Chowdhury, and S. Biswas, Review of Machine
Learning and Deep Learning Based Recommender Systems for
Health informaticsDeep Learning Techniques for Biomedical
and Health Informatics, pp. 101–126, Springer, Cham, 2020.

[5] J. Wu, V. S. Sheng, J. Zhang et al., “Multi-label active learning
algorithms for image classifcation: overview and future
promise,” ACM Computing Surveys, vol. 53, no. 2, pp. 1–35,
2021.

[6] M. Bogaert, J. Lootens, D. Van den Poel, and M. Ballings,
“Evaluating multi-label classifers and recommender systems
in the fnancial service sector,” European Journal of Opera-
tional Research, vol. 279, no. 2, pp. 620–634, 2019.

[7] G. N. Karagoz, A. Yazici, T. Dokeroglu, and A. Cosar, “A new
framework of multi-objective evolutionary algorithms for
feature selection and multi-label classifcation of video data,”
International Journal of Machine Learning and Cybernetics,
vol. 12, no. 1, pp. 53–71, 2021.

[8] Z. M. Chen, X. S. Wei, and P. Wang, “Multi-label image
recognition with graph convolutional networks,” CVPR,
vol. 27, 2019.

[9] G.Wu, R. Zheng, Y. Tian, and D. Liu, “Joint ranking SVM and
binary relevance with robust low-rank learning for multi-label
classifcation,” Neural Networks, vol. 122, pp. 24–39, 2020.

[10] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifer
chains: a review and perspectives,” Journal of Artifcial In-
telligence Research, vol. 70, pp. 683–718, 2021.

[11] K. Feng, C. Li, M. Zhang, and X. Liu, “Simulation and
computational study of CFD on tube MBR membrane as-
sembly,” Discrete Dynamics in Nature and Society, vol. 2021,
no. 7-8, pp. 1–8, 2021.

[12] J. Li, P. Wei, S. Yang, J. Wu, P. Liu, and X. He, “Crystal-KMC:
parallel software for lattice dynamics Monte Carlo simulation
of metal materials,” Tsinghua Science and Technology, vol. 23,
no. 4, pp. 501–510, 2018.

[13] C. Pan, J. Tan, D. Feng, and Y. Li, “Very short-term solar
generation forecasting based on LSTM with temporal at-
tention mechanism,” in 2019 IEEE 5th International Con-
ference on Computer and Communications (ICCC), Chengdu,
China, December 2019.

[14] Q. Ai, Y. Kang, A. Wang, X. Li, and F. Li, “An efective semi-
supervised multi-label least squares twin support vector
machine,” IEEE Access, vol. 8, pp. 213460–213472, 2020.

[15] X. Xu, D. Shan, S. Li, T. Sun, P. Xiao, and J. Fan, “Multi-label
learning method based on ML-RBF and laplacian ELM,”
Neurocomputing, vol. 331, pp. 213–219, 2019.

[16] F. Javed, J. Ahmed, and M. Hayat, “ML-RBF: predict protein
subcellular locations in a multi-label system using evolu-
tionary features,” Chemometrics and Intelligent Laboratory
Systems, vol. 203, Article ID 104055, 2020.

Complexity 15



[17] X. Zhu, C. Ying, J. Wang, J. Li, X. Lai, and G. Wang, “En-
semble of ML-KNN for classifcation algorithm recommen-
dation,” Knowledge-Based Systems, vol. 221, Article ID
106933, 2021.

[18] D. Zhu, H. Zhu, X. Liu et al., “CREDO: efcient and privacy-
preserving multi-level medical pre-diagnosis based on ML-
kNN,” Information Sciences, vol. 514, pp. 244–262, 2020.

[19] D. Jiaman, Z. Shujie, L. Runxin, F. Xiaodong, and J. Lianyin,
“Association rules-based classifer chains method,” IEEE
Access, vol. 10, pp. 18210–18221, 2022.
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