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*is paper studies the adaptive event-triggered finite-time tracking of output-constrained high-order nonlinear systems with time-
varying powers. Due to the presence of multiple unknown powers and the consideration of event-triggered control, all the existing
control methods of output-constrained nonlinear systems are inapplicable. By introducing nonlinear mappings, finite-time per-
formance functions, and low-power and high-power terms into adding a power integrator technique and the relative threshold
strategy, an adaptive state-feedback controller is designed to eliminate the effects caused by the output constraint and time-varying
powers. It is proved that all the closed-loop signals are bounded, the asymmetric time-varying output constraint is not violated, and
the tracking error converges to a prescribed arbitrarily small region around zero in a preassigned finite time. Furthermore, the Zeno
phenomenon can be avoided. Two simulation examples demonstrate the effectiveness of this control scheme.

1. Introduction

Due to hardware limitations, performance requirements, or
safety specifications, state/output constraints are always
involved in many nonlinear systems. For example, the speed
and acceleration of motor vehicles should be restricted to
prevent possible accidents. In the process of operation, the
violation of state/output constraints may decrease system
performance or even make the system unstable. *erefore,
the research of constrained control for nonlinear systems
becomes extremely important and urgent. In the past de-
cade, barrier Lyapunov function (BLF) and nonlinear
mapping (NM), which were firstly put forward in <u>[1, 2]
</u>, respectively, have become two valid tools for handling
state/output constraints of nonlinear systems. *e value of
BLF/NM will tend to infinity when the state/output closes to
some constraints. As long as BLF/NM is bounded, the state/
output does not exceed these constraints. Compared with
the BLF-based constrained control method, NM-based
counterpart can directly deal with the original state/output
constraints, and thus, the undesirable feasibility conditions

in [3] can be removed. Based on these two methods, fruitful
results were obtained; see [4–19] and other papers.

Compared with traditional feedback linearized nonlin-
ear systems, due to the presence of higher powers, the Ja-
cobian linearization of more general high-order nonlinear
systems (also known as p-normal nonlinear systems) may be
neither feedback linearized nor controllable. Such inherent
obstacles make the control design more challenging and
difficult. Fortunately, with the development of a power
integrator technique [20], these obstacles can be delicately
overcome. By combining such a technique with different
types of BLF/NM, some interesting results on the stabili-
zation and practical tracking of constrained high-order
nonlinear systems have been obtained in [21–28]. However,
the powers of considered systems are constants and precisely
known.

Just like the boiler-turbine unit in [29] and the under-
actuated, weakly coupled, and unstable mechanical system
in [30], due to various operating conditions and the potential
aging of the hardening spring, the powers of these two
systems are unknown and variable. In view of these

Hindawi
Complexity
Volume 2022, Article ID 7466780, 15 pages
https://doi.org/10.1155/2022/7466780

mailto:youwutom@126.com
https://orcid.org/0000-0001-6868-5358
https://orcid.org/0000-0001-9091-9085
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7466780


applications, the study of nonlinear systems with unknown
powers is of vital importance. Recently, the authors in [31]
studied nonlinear systems with unknown constant powers,
and the stabilization of nonlinear systems with a single
unknown time-varying power was discussed in [32]. In the
presence of multiple unknown time-varying powers, Cui,
Xie, and Lie <u>[33, 34]</u> deeply investigated finite-time
stabilization and adaptive stabilization. Subsequently,
[35–40] proposed the constrained control methods for
nonlinear systems with multiple unknown powers.

Different from the traditional continuous sampling control
in all the aforementioned works, the event-triggered control
mechanism is a useful data scheduling method in networked
control systems and only requires control signals to be dis-
continuously sent to the actuator rather than periodically
sampled. Such a feature can effectively diminish the com-
munication overload and computational cost. In view of these
benefits, a number of efforts have been made for constructing
the event-triggered controllers. Particularly, Xing et al. [41]
proposed three original adaptive event-triggered control
strategies for strict-feedback nonlinear systems without state/
output constraints. Further in-depth studies on the event-
triggered control were discussed in some latest results [42–44].
Specially, Zhang et al. and Liu and Li <u>[43, 44]</u> con-
structed different kinds of event-triggered controllers for two
state-/output-constrained nonlinear systems. However, they
are unavailable for high-order nonlinear systems with un-
known powers. Besides, in view of faster convergence rates,
higher accuracies, and better disturbance rejection properties
[45], the finite-time stability needs to be further studied.

Based on these discussions, an interesting problem
arises: is it possible to design an adaptive event-triggered
finite-time tracking controller for output-constrained high-
order nonlinear systems with time-varying powers?

In this paper, we will substantially solve this problem.
Main contributions and difficulties are emphasized as
follows:

(1) *is is the first paper to study the event-triggered
control of output-constrained nonlinear systems
with time-varying powers. Due to the presence of
multiple unknown powers and the consideration of
event-triggered control, more complex nonlinear
terms will inevitably produce in control design, and
the constrained controllers in the existing results are
all inapplicable. To overcome these essential diffi-
culties, some NMs are first adopted to convert the
original output-constrained system into a new one.
*en, by introducing sign function, finite-time
performance functions, and low-power and high-
power terms into adding a power integrator tech-
nique and combining the relative threshold strategy,
an innovative adaptive event-triggered state-feed-
back controller is designed to guarantee the per-
formances of the closed-loop system. Furthermore,
the Zeno phenomenon does not occur.

(2) Compared with <u>[1–19, 22–28, 35–40, 43, 44]
</u> on nonlinear constrained control, the con-
sidered system is more general since it possesses

parametric uncertainties, multiple unknown time-
varying powers, and asymmetric time-varying out-
put constraint simultaneously.

(3) Compared with <u>[20–28, 31–40]</u> on the
continuous sampling control of nonlinear systems,
more attractive adaptive event-triggered control is
firstly adopted to reduce redundant data transmis-
sions and consume less communication resources in
the constrained control framework; see Example 2
for the detailed discussion.

*e rest of this paper is organized as follows. Section 2
gives a motivation example and preliminaries. Section 3
presents the main result of this paper, following two simu-
lation examples in Section 4. Section 5 concludes this paper.

Notations:Z+,R+,R, andRn denote the set of all positive
integers, the set of all nonnegative real numbers, the set of real
numbers, and the real n-dimensional space, respectively.C1 is
the set of all functions with continuous partial derivatives. For
a real vector x � [x1, . . . , xn]⊤ ∈ Rn, the norm ‖x‖ is defined
by ‖x‖ � (􏽐

n
i�1 x2

i )1/2. For any s ∈ R, sgn(s) denotes its sign
function, which satisfies sgn(s)� 1 if s> 0, sgn(s)� 0 if s� 0,
and sgn(s)� − 1 if s< 0, and ⌈s⌉p ≜ sgn(s)|s|p for positive p. For
a C1 function V(x): Rn⟶ R+, it is positive definite if
V(x)≥ 0, and V(x)� 0 if and only if x� 0. *e arguments of
functions are sometimes simplified, for example, a function
f(x(t)) can be written as f(x), f(·), or f.

2. Motivation Example and Preliminaries

2.1. Motivation Example. Consider the underactuated,
weakly coupled, and unstable system in Figure 1 [30]. *is
mechanical system contains a mass m1 on a horizontal
smooth surface and an inverted pendulum m2 supported by
a massless rod. *e mass m1 is interconnected to the wall by
a linear spring and to the inverted pendulum by a nonlinear
spring. Let x be the displacement of mass m1 and θ be the
angle of the pendulum from the vertical such that at x� 0
and θ� 0. *e springs are unstretched. A control force u acts
on mass m1. *e equation of motion for this system is
described as

θ
..

�
g

l
sin(θ) +

ks

m2l
⌈x − l sin(θ)⌉

p(t) cos(θ),

€x � −
k

m1
x −

ks

m1
⌈x − l sin(θ)⌉

p(t)
+

u

m1
,

(1)

where l is the length of the rod, g is the acceleration of
gravity, k and ks are spring coefficients, and y� x − l sin(θ) in
Figure 1. Assume that m1, m2, l, and ks are unknown
constant parameters which belong to a known interval [c, c]

with c≥ c > 0. Suppose that θ is small; equation (1) becomes

θ
..

�
g

l
θ +

ks

m2l
⌈x − lθ⌉

p(t)
,

€x � −
k

m1
x −

ks

m1
⌈x − lθ⌉

p(t)
+

u

m1
.

(2)
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*en, by using the change of coordinates

x1 � θ, x2 � θ
.

, x3 � x − lθ, x4 � _x3, (3)

system (2) becomes the following system:

_x1 � x2,

_x2 �
ks

m2l
⌈x3⌉

p(t)
+

g

l
x1,

_x3 � x4,

_x4 �
u

m1
−

k

m1
lx1 + x3( 􏼁 +

ks

m1
+

ks

m2
􏼠 􏼡⌈x3⌉

p(t)
− gx1.

(4)

*e unknown time-varying power p(t) reflects the po-
tential aging of the hardening spring, and the output y� x1 of
system (4) needs to be constrained in (− π/2, π/2) to fit actual
demands, which clearly illustrates the research motivation of
output-constrained nonlinear systems with unknown
powers.

*e corresponding networked control system including
the actuator, plant (4), sensor, controller, and two com-
munication networks is depicted in Figure 2.

2.2. Preliminaries. Lemmas 1–6 are used to enlarge in-
equalities in the following state-feedback control design and
analysis.

Lemma 1 (see [46]). Let r1(t), r2(t), and α(x, y) be some
positive continuous real-valued functions. For any ,

|x|
r1(t)

|y|
r2(t) ≤

r1(t)

r1(t) + r2(t)
α(x, y)|x|

r1(t)+r2(t)

+
r2(t)

r1(t) + r2(t)
α− r1(t)/r2(t)( )(x, y)|y|

r1(t)+r2(t)
.

(5)

Lemma 2 (see [46]). Let r(t)≥ 1 be a continuous real-valued
function. For any xi ∈ R, i� 1, . . ., n,

􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
r(t) ≤ 􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

r(t)

≤ n
r(t)− 1

􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
r(t)

. (6)

Lemma 3 (see [46]). If r(t) is a continuous real-valued
function and satisfies r(t)≤ r(t)≤ r(t), where r(t) and r(t)

are positive real-valued functions, for any x ∈ R,

|x|
r(t) ≤ |x|

r(t)
+|x|

r(t)
. (7)

Lemma 4 (see [47]). Let r(t)≥ 1 be a continuous real-valued
function. For any ,

⌈x⌉
r(t)

− ⌈y⌉
r(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ r(t) 1 + 2r(t)− 2
􏼐 􏼑 |x − y|

r(t)
􏼐

+|x − y ‖ y|
r(t)− 1

􏼑,
(8)

where |y|r(t)− 1≜ 0 if y� 0 and r(t)� 1.

Lemma 5 (see [48]). For given continuous function f(x, y)
with x ∈ Rm and y ∈ Rn, there exist smooth functions a(x)≥
0, b(y)≥ 0, c(x)≥ 1, and d(y)≥ 1 such that

|f(x, y)|≤ a(x) + b(y), |f(x, y)|≤ c(x)d(y). (9)

Lemma 6 (see [49]). For any ε> 0 and ] ∈ R, there hold

0≤ |]| − ]tanh
]
ε

􏼒 􏼓≤ 0.2875ε, − ]tanh
]
ε

􏼒 􏼓≤ 0. (10)

F = –kx
F = –ks [y]p(t)

m1 m2

x

u

l
θ

g

Figure 1: *e underactuated, weakly coupled, and unstable system.

Actuator Plant (4) Sensor

Controller

Network Network

u (t)

u (t)

x (t)

x (t)

Figure 2: Sketch of the networked control system for plant (4).
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3. Main Result

3.1. Problem Formulation and Assumptions. Inspired by (4),
we consider more general nonlinear systems

_xi � gi xi( 􏼁⌈xi+1⌉
pi(t)

+ fi xi, d( 􏼁, i � 1, . . . , n − 1,

_xn � gn(x)⌈u⌉
pn(t)

+ fn(x, u, d),

y � x1,

(11)

with the asymmetric time-varying output constraint

yd(t) − F1(t)<y(t)<yd(t) + F2(t), ∀t≥ 0, (12)

where xi � [x1, . . . , xi]
⊤ ∈ Ri, i� 1, . . ., n, x� xn, u ∈ R, and

y ∈ R are measurable states, control input, and output,
respectively, d ∈ Rr is an unknown constant vector, system
powers pi(t): R+⟶ R+, i� 1, . . ., n, are unknown time-
varying functions with pn(t)� 1, fi: R

i × Rr⟶ R, i� 1,
. . ., n − 1, fn: Rn × R × Rr⟶ R are unknown locally
Lipschitz continuous functions, gi: R

i⟶ R, i� 1, . . ., n,
are known C1 function, and yd(t): R+⟶ R denotes the
desired trajectory; finite-time performance functions
F1(t): R+⟶ R+ and F2(t): R+⟶ R+ are defined as

Fj(t) �

Fj0 −
t

ts

􏼠 􏼡e 1− ts/ts− t( ) + Fjs, t ∈ 0, ts􏼂 􏼁,

Fjs, t ∈ ts,∞􏼂 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

j � 1, 2,

(13)

with Fj0> 5/4 and Fjs> 0 being design parameters. System
(11) is called as the high-order nonlinear system if there
exists at least one pi(t)> 1. From Remark 2 in [50], it is easy
to prove that Fj(t)> 0 is decreasing and smooth, and there
exist known positive constants ρj1, ρj2, and ρj3 such that |
Fj(t)|≤ ρj1, | _Fj(t)|≤ ρj2, and | €Fj(t)|≤ ρj3, ∀t≥ 0. It is worth
mentioning that (13) plays a crucial role on the achievement
of finite-time tracking, and the preassigned finite time ts> 0
can be chosen prior to control implementation, which is
independent of initial conditions and design parameters.

*e control objective is to design a C1 adaptive event-
triggered state-feedback controller

u � u x, yd,Θ
∧

, F, _F􏼒 􏼓, Θ
∧
.

i � ζ xi, yd,Θ
∧

i, F, _F􏼠 􏼡, (14)

where Θ
∧

i � [Θ
∧
1, . . . ,Θ

∧
i]
⊤, Θ
∧

i ∈ R, i� 1, . . ., n, are auxiliary

variables used to handle parametric uncertainties, Θ
∧

� Θ
∧

n,
F � [F1, F2]

⊤, and ζ(·) is a continuous function such that the
following properties hold:

(O1) All the closed-loop signals are bounded on [0,∞)
(O2) Asymmetric time-varying output constraint (12) is

not violated
(O3) *e practical finite-time tracking can be fulfilled,

i.e., for any small constants F1s> 0 and F2s> 0, there
exists a preassigned finite time ts> 0 such that the
tracking error e(t)� y(t)− yd(t) satisfies e(t) ∈ Ωe ≜
e(t) ∈ R: − F1s ≤ e(t)≤F2s􏼈 􏼉, ∀t≥ ts

Remark 1. Although asymptotic tracking has better steady-
state performance, practical tracking has a larger applicable
scope than asymptotic one since it requires less restrictions
on the desired trajectory yd(t) and the considered system.
Actually, no continuous controller exists to achieve the
global or even local asymptotic tracking for the considered
system (5). *is can be verified by a two-dimensional high-
order nonlinear system in [51]. Hence, this paper focuses on
the practical tracking problem rather than the asymptotic
case.

To achieve (O1)–(O3), the following assumptions are
needed.

Assumption 1. Unknown time-varying powers pi(t), i� 1,
. . ., n, satisfy p≥ pi(t)≥ 1, where p is a known constant.

Assumption 2. For i� 1, . . ., n, there exist unknown con-
stants ϑi> 0 and known C1 nonnegative functions fi(xi)

such that

fi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ϑifi xi( 􏼁, i � 1, . . . , n. (15)

Assumption 3. *ere exists an unknown constant M> 0
such that |yd(t)| + | _yd(t)|≤M, ∀t≥ 0.

Remark 2. Assumption 1 means that p1(t), · · ·, pn(t) have a
common upper bound p. In addition, the restrictive rela-
tionship p1(t)≥ p2(t)≥ · · ·≥ pn(t) is no longer needed in this
paper.

Inequality (15) in Assumption 2 indicates the restriction
on system nonlinearities f1, . . ., fn, which allow the existence
of parametric uncertainties ϑ1, . . ., ϑn and do not necessarily
vanish in the origin. Hence, f1, . . ., fn require less prior
knowledge to implement the output tracking.

Assumption 3 describes the boundedness of yd(t) and
_yd(t). Compared with the existing works on state-/output-
constrained tracking control, no any bounded restriction is
imposed on high-order derivatives of yd(t) in this paper.

3.2. System Transformation. To begin with, we infer from
(12) that the constraint on y� x1 is equivalent to − F1(t)< e(t)
< F2(t), ∀t≥ 0. To ensure output constraint (12) and then
achieve finite-time tracking, inspired by [2] and (13), we
introduce NMs

ξ1 � T1(e) �
e

h1(e)
, ξi � Ti xi( 􏼁 �

xi

hi

, i � 2, . . . , n, (16)

where h1(e)� (F1 + e) (F2− e), hi � 1, i� 2, . . ., n. It is easy to
show that T1(e) is strictly increasing, smooth, and diffeo-
morphic with respect to e. Besides, ξ1⟶∞ when e⟶− F1
and e⟶F2. In other words, (6) is not violated when the
proper initial condition and the boundedness of the
transformed state ξ1 can be guaranteed in the closed-loop
system. From (5) and (10), we obtain a new transformed
system:
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_ξ1 � H1 x1, yd, F( 􏼁 g1⌈ξ2⌉
p1(t)

+ f1 − _yd􏼐 􏼑

+ G1 x1, yd, F, _F􏼐 􏼑,

_ξi � gi⌈ξi+1⌉
pi(t)

+ fi, i � 2, . . . , n − 1,

_ξn � gnu + fn,

(17)

where H1 � (F1F2 + e2)/h2
1 and G1 � − ( _F1F2 + F1

_F2+

( _F2 − _F1)e)e/h2
1.

3.3. State-Feedback Control Design. In view of, we let
X0 � β0 � α0 � 0 and specify the coordinate transformations

zi � ξi − αi− 1 Xi− 1( 􏼁, αi Xi( 􏼁

� − βi Xi( 􏼁 zi +⌈zi⌉
p

( 􏼁, i � 1, . . . , n,
(18)

where X1 � [x1, yd,Θ
∧
1, F, _F], Xi � [xi, yd,Θ

∧
i, F, _F], i� 2,

. . ., n, and the estimations Θ
∧

i ≥ 0 of are generated by the
adaptive laws:

_
Θ
∧

i � τi Xi( 􏼁 − σiΘ
∧

i, Θ
∧

i(0)≥ 0, i � 1, . . . , n, (19)

with σi> 0 being design parameters, and nonnegative C1

functions βi(·) and τi(·) will be determined later.

Remark 3. Compared with [34–37, 39, 40] on the adaptive
control of nonlinear systems with time-varying powers, we

relax the requirement Θ
∧

i ≥ 1 to Θ
∧

i ≥ 0 in (13). Moreover, the
simultaneous introduction of low-power term zi and high-
power term ⌈zi⌉

p in (12) is the key to deal with unknown
time-varying powers p1(t), . . ., pn(t).

Based on (11)–(13), we provide the detailed procedure of
control design in a recursive manner.

Step 1. Take the Lyapunov function V1 � z2
1/2 + 􏽥Θ21/2 with

􏽥Θ1 � Θ1 − Θ
∧
1. By (11)–(13), we have

_V1 � z1H1 g1⌈ξ2⌉
p1(t)

+ f1 − _yd􏼐 􏼑 + z1G1 − 􏽥Θ1
_
Θ
∧
1

� z1H1g1⌈α1⌉
p1(t)

+ z1H1g1 ⌈ξ2⌉
p1(t)

− ⌈α1⌉
p1(t)

􏼐 􏼑

+ z1H1f1 − z1H1 _yd + z1G1 − 􏽥Θ1τ1 + σ1 􏽥Θ1Θ
∧
1.

(20)

For the sake of consistency, we specify H2 � · · · �Hn � 1.
According to Assumptions 1–3, Lemmas 1–3, and
Θ1 � max 1, ϑ1+p

1 , M1+p􏽮 􏽯, one gets

z1H1f1 ≤ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1ϑ1f1 ≤Θ1ϕ11 X1( 􏼁 z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+p

+ M0, (21)

− z1H1 _yd ≤ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1M≤Θ1ϕ12 X1( 􏼁 z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+p

+ M0, (22)

z1G1 ≤ z1 ‖ G1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Θ1ϕ13 X1( 􏼁 z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+p

+ M0, (23)

Higi Higi( 􏼁
− 1

+ Higi( 􏼁
− 1/p

􏼐 􏼑
pi(t)

≥Higi Higi( 􏼁
− pi(t)

+ Higi( 􏼁
− pi(t)/p

􏼐 􏼑≥ 1,
(24)

zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
pi(t)

≥ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pi(t)

+ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ppi(t)

􏼒 􏼓

� zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+pi(t)

+ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+ppi(t) ≥ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

,

(25)

σi
􏽥ΘiΘ
∧

i � σi
􏽥Θi Θi − 􏽥Θi􏼐 􏼑≤ −

σi
􏽥Θ2i
2

+
σiΘ

2
i

2
, (26)

for each i� 1, . . ., n, whereM0 � p(1/(1 + p))1/p/(1 + p)> 0 is a
constant and ϕ1j≥ 0, j� 1, 2, and 3, are known C1 functions

independent of p1(t), . . ., pn(t). Since p1(t)≥ 1 and Θ
∧
1(t)≥ 0,

one has (1 +Θ
∧
1ϕ1)

p1(t) ≥ 1 + Θ
∧
1ϕ1 with ϕ1 � ϕ11 + ϕ12 +ϕ13.

From this, by choosing β1 � ((H1g1)
− 1 + (H1g1)

− 1/p)(1 +

Θ
∧
1ϕ1) and noting α1 � − β1(z1 + ⌈z1⌉

p), (18), and (19) when
i� 1, it yields

z1H1g1⌈α1⌉
p1(t)

� z1H1g1sgn α1( 􏼁 α1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p1(t)

� − z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌H1g1β
p1(t)
1 z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

􏼐 􏼑
p1(t)

≤ − 1 + Θ
∧
1ϕ1􏼒 􏼓 z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

.

(27)

Substituting (21)–(23), (27), and τ1≜ϕ1|z1|1 + p into (20)
and using (26) when i� 1, it yields

_V1 ≤ − 1 + Θ
∧
1ϕ1􏼒 􏼓 z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ z1H1g1 ⌈ξ2⌉
p1(t)

− ⌈α1⌉
p1(t)

􏼐 􏼑

+Θ1ϕ1 z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+p

+ 3M0 − 􏽥Θ1ϕ1 z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+p

−
σ1 􏽥Θ21
2

+
σ1Θ

2
1

2

− z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1+p

−
σ1 􏽥Θ21
2

+ z1H1g1 ⌈ξ2⌉
p1(t)

− ⌈α1⌉
p1(t)

􏼐 􏼑 + M1,

(28)

where M1 � 3M0 + σ1Θ21/2> 0.
Stepi (i� 2, . . ., n): for the sake of consistency, we specify

Hj � 1, j� 2, . . ., i. Suppose that there exists a positive definite
and C1 function Vi− 1 such that

_Vi− 1 ≤ − 􏽘
i− 1

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘
i− 1

j�1

σj

2
􏽥Θ2j + zi− 1Hi− 1gi− 1

· ⌈ξi⌉
pi− 1(t)

− ⌈αi− 1⌉
pi− 1(t)

􏼐 􏼑 + Mi− 1,

(29)

whereMi− 1> 0 is an unknown constant. In the following, we
prove that (29) still holds at this step. Take the Lyapunov

function Vi � Vi− 1 + z2
i /2 + 􏽥Θ2i /2 with 􏽥Θi � Θi − Θ

∧
i. By

(11)–(13) and (29), we have

Complexity 5



_Vi ≤ 􏽘
i− 1

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘
i− 1

j�1

σj

2
􏽥Θ2j + zigi⌈αi⌉

pi(t)
+ zi− 1Hi− 1gi− 1 ⌈ξi⌉

pi− 1(t)
− ⌈αi− 1⌉

pi− 1(t)
􏼐 􏼑

+ ziHigi ⌈ξi+1⌉
pi(t)

− ⌈αi⌉
pi(t)

􏼐 􏼑

+ zi fi − 􏽘

i− 1

j�1

zαi− 1

zξj

fj
⎛⎝ ⎞⎠ − zi

zαi− 1

zyd

_yd − zi 􏽘

i− 1

j�1

zαi− 1

zξj

gj⌈ξj+1⌉
pj(t)

− zi 􏽘

i− 1

j�1

zαi− 1

zΘ
∧

j

_
Θ
∧

j − zi 􏽘

1

l�0

zαi− 1

zF
(l)

F
(l+1)

− 􏽥Θiτi + σi
􏽥ΘiΘ
∧

i + Mi− 1.

(30)

According to Lemmas 1–3, Assumptions1–3, (13) and

(19),Θi � max 1, ϑ1+p
1 , . . . , ϑ1+p

i , M1+p􏽮 􏽯, andΘ
∧

j ≥ 0, one gets

zi− 1Hi− 1gi− 1 ⌈ξi⌉
pi− 1(t)

− ⌈αi− 1⌉
pi− 1(t)

􏼐 􏼑≤pi− 1(t) 1 + 2pi− 1(t)− 2
􏼐 􏼑 zi− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Hi− 1 gi− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pi− 1(t)− 1

+ αpi− 1(t)− 1
i− 1􏼒 􏼓 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤Θiϕi1 Xi( 􏼁 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ M0,

(31)

zi fi − 􏽘
i− 1

j�1

zαi− 1

zξj

fj
⎛⎝ ⎞⎠≤ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ϑifi + 􏽘

i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϑjfj

⎛⎝ ⎞⎠≤Θiϕi2 Xi( 􏼁 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ iM0, (32)

− zi 􏽘

i− 1

j�1

zαi− 1

zξj

gj⌈ξj+1⌉
pj(t) ≤ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

i− 1

j�1

zαi− 1

zξj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
gi ‖ ξj+1|

pj(t) ≤Θiϕi3 Xi( 􏼁 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+(i − 1)M0, (33)

− zi

zαi− 1

zyd

_yd ≤ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

zαi− 1

zyd

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
M≤Θiϕi4 Xi( 􏼁 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ M0, (34)

− zi

zαi− 1

zΘ
∧

j

_
Θ
∧

j ≤ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

zαi− 1

zΘ
∧

j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

τj + σjΘ
∧

j􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠≤Θiϕi5 Xi( 􏼁 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+(i − 1)M0, (35)

− zi 􏽘

1

l�0

zαi− 1

zF
(l)

F
(l+1) ≤ zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

2

j�1
􏽘

1

l�0

zαi− 1

zF
l

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ρj,l+2 ≤Θiϕi6 Xi( 􏼁 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ 4M0, (36)

where ϕij(·)≥ 0, j� 1, . . ., 6, are known C1 functions inde-
pendent of p1(t), . . ., pn(t). Substituting (25)–(30) and τi≜ ϕi|
zi|1+p into (30) and using (26), it yields

_Vi ≤ − 􏽘

i− 1

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+P

− 􏽘

j�1

j�1

σj

2
􏽥Θ2j + zigi⌈αi⌉

pi(t)
+ ziHigi ⌈ξi+1⌉

pi(t)
− ⌈αi⌉

pi(t)
􏼐 􏼑 +Θiϕi zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+(4 + 3i)M0 − 􏽥Θiϕi zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

−
σi

􏽥Θ2i
2

+
σiΘ

2
i

2
+ Mi− 1

≤ − 􏽘

i− 1

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘

i

j�1

σj

2
􏽥Θ2j + zigi⌈αi⌉

pi(t)
+ ziHigi ⌈ξi+1⌉

pi(t)
− ⌈αi⌉

pi(t)
􏼐 􏼑 + Θ

∧
iϕi zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ Mi,

(37)
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where Mi � Mi− 1 + (4 + 3i)M0 + σiΘ2i /2> 0. Similar to (27),

by choosing βi � (g− 1
i + g

− 1/p
i )(1 +Θ

∧
iϕi) and employing (18)

and (19), Hi� 1, and (1 + Θ
∧

iϕi)
pi(t) ≥ 1 + Θ

∧
iϕi with ϕi �

􏽐
6
j�1 ϕij, the virtual controller αi � − βi(zi + ⌈zi⌉

p) leads to

zigi⌈αi⌉
pi(t) ≤ − 1 + Θ

∧
iϕi􏼒 􏼓 zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

. (38)

By virtue of (37), (38) becomes

_Vi ≤ − 􏽘
i

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘
i

j�1

σj

2
􏽥Θ2j + ziHigi

· ⌈ξi+1⌉
pi(t)

− ⌈αi⌉
pi(t)

􏼐 􏼑 + Mi.

(39)

At Step n, inspired by the relative threshold strategy in
[41], we adopt the following event-triggered controller:

u(t) � ω tk( 􏼁, ∀t ∈ tk, tk+1( 􏼁,

tk+1 � inf t> tk ‖ e1(t)> δ|u(t)| + m􏼈 􏼉,

ω(t) � − (1 + δ) αntanh
gnznαn

ε
􏼒 􏼓 + m tanh

gnznm

ε
􏼒 􏼓􏼒 􏼓,

(40)

where e1(t)�ω(t)− u(t) denotes the measurement error,
0< δ < 1, m> 0, ε> 0, and m>m/(1 − δ) are all design pa-
rameters, and tk, k ∈ Z+, is the triggered time. It is shown
that the control signal u(t) will not change during t ∈ [tk,
tk + 1) and be updated from ω(tk) to ω(tk + 1) at t� tk + 1. For
t ∈ [tk, tk + 1), it follows from [34] that |ω(t) − u(t)|≤ δ|
u(t)| +m, and thus, there exist two continuous functions
λ1(t) and λ2(t) satisfying |λ1(t)|≤ 1 and |λ2(t)|≤ 1 such that
ω(t)� (1 + λ1δ)u(t) + λ2m, i.e.,

u(t) �
ω(t) − λ2(t)m

1 + λ1(t)δ
. (41)

Since for any a ∈ R and ε> 0, − a tanh(a/ε)≤ 0 holds
from Lemma 6, by [34], we get zngnω≤ 0. As λ1(t) ∈ [− 1, 1]
and λ2(t) ∈ [− 1, 1], we have zngnω/(1 + λ1(t)δ)≤ zn <i>gnω</
i>/(1 + δ) and |λ2(t)m/(1 + λ1(t)δ)|≤m/(1 − δ)<m. *ere-
fore, by considering (37) when i� n, ξn+1≜ u, pn � 1,
zngnαn ≤ − (1 + Θ

∧
nϕn)|zn|1+p from (32), (34), and (35), and

Lemma 6, one obtains

_Vn ≤ − 􏽘
n− 1

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘
n

j�1

σj

2
􏽥Θ2j + zngn

ω(t) − λ2(t)m

1 + λ1(t)δ
+ Θ
∧

nϕn zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ Mn

≤ − 􏽘
n

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘
n

j�1

σj

2
􏽥Θ2j

+ zngn − αntanh
zngnαn

ε
􏼒 􏼓 − αn + αn − mtanh

zngnm

ε
􏼒 􏼓 − m + m􏼒 􏼓

+ Θ
∧

nϕn zn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+p

+ Mn

≤ − 􏽘

n

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘

n

j�1

σj

2
􏽥Θ2j + zngnm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

zngnm

1 − δ

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + Mn + 0.557ε

≤ − 􏽘
n

j�1
zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1+p

− 􏽘
n

j�1

σj

2
􏽥Θ2j + Mn + 0.557ε.

(42)

3.4. Stability and Constraint Analysis. We state the main
result of this paper.

Theorem 1. Consider the closed-loop system consisting of (5),
(13), and (34) under Assumptions 1–3. For i� 1, . . ., n, if the
initial condition satisfies

− F1(0)< e(0)<F2(0),Θ
∧

i(0)≥ 0, (43)

then properties (O1)–(O3) in Section 3.1 hold, and the Zeno
phenomenon does not occur, i.e., there exists an interex-
ecution time t∗ > 0 such that {tk + 1− tk}≥ t∗, ∀k ∈ Z+.

Proof. *e closed-loop system is rewritten as
_ς(t) � h(ς(t), u(t)), where ς(t) � [x(t),Θ

∧
(t)]. It is clear

that h(·) is locally Lipschitz in ς(t). Hence, ς(t) is well defined
on the maximal interval [0, tf ) with 0< tf<∞.

*e following proof is divided into four parts. □

Part 1. By Lemma 3 and Assumption 1, we have z2
j ≤ 1+

|zj|
1+p, i.e., − z

1+p
j ≤ − z2

j + 1, j� 1, . . ., n. Hence, (36)
becomes

_Vn(t)≤ − λ1Vn(t) + λ2,∀t ∈ 0, tf􏽨 􏼑, (44)
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where λ1 �min1≤j ≤ n{2, σj} and λ2 �Mn+ 0.557ε+ n. By [37],
we deduce that

Vn(t)≤ e
− λ1t

Vn(0) + 􏽚
t

0
e

− λ1(t− τ)λ2dτ ≤
λ2
λ1

+ Vn(0) −
λ2
λ1

􏼠 􏼡e
− λ1t ≤

λ2
λ1

+ Vn(0).

(45)

*erefore, the boundedness of Vn(t) is ensured on [0, tf ),

so are zi(t) andΘ
∧

i(t), i� 1, . . ., n. In view of the boundedness
of ξ1(t)� z1(t) on [0, tf ) and (10), for − F1(0)< e(0)< F2(0),
yd(t) − F1(t)< x1(t)< yd(t) + F2(t) is obtained for all t ∈ [0, tf ).
*e continuous virtual controller α1(X1(t)) is bounded be-
cause of the boundedness of for all t ∈ [0, tf ), and
x2(t)� ξ2(t)� z2(t) + α1(t) is also bounded on t ∈ [0, tf ).
Similarly, we can recursively prove that αi− 1(Xi− 1(t)) and
xi(t)� ξi(t)� zi(t) + αi− 1(t), i� 3, . . ., n, are all bounded on [0,
tf ). Hence, we conclude that the actual controller u(Xn(t)) is
also bounded on [0, tf ).

Part 2. Next, we prove that tf �∞. If tf<∞, at least one
signal in the closed-loop system will tend to∞ when t� tf,
which is a contradiction to the boundedness of [x(t),Θ

∧
(t),

u(t)] on [0, tf ). *erefore, tf �∞ is proved, and ξ1 is
bounded on [0, ∞), which means that there exist positive

constants υ1, υ2 and positive functions F
⌣

1(t), F
⌣

2(t) satisfying
Fj(t) − F

⌣

j(t)≥ υj > 0, j� 1, 2, such that

− F1(t)< − F
⌣

1(t)≤ e(t)≤F
⌣

2(t)<F2(t), (46)

holds for all t≥ 0. By choosing the proper initial condition
− F1(0)< e(0)< F2(0) and Θ

∧
i(0)≥ 0 in (43) and repeating the

previous control design and analysis process, − F
⌣

1(t)≤ e(t)

≤F
⌣

2(t) and yd(t) − F1(t)< y(t)< yd(t) + F2(t), ∀t≥ 0, can be
ensured. Hence, all the closed-loop signals are bounded on
[0,∞), and asymmetric time-varying output constraint (6)
is not violated. It is worth mentioning that inequality (37)
prevents all the terms with h1(e(t))� (F1(t) + e(t)) (F2(t) −

e(t)) in the denominator from becoming unbounded, and
thus, the zero division does not occur.

Part 3. From (40), − F1(t)< e(t)< F2(t) holds for all t≥ 0,
which, together with (7), implies that e(t) ∈Ωe, ∀t≥ ts, with
Ωe being defined in (O3). Hence, the practical finite-time
tracking can be fulfilled.

Part 4. Finally, we prove that the Zeno phenomenon does
not occur. Since e(t)�ω(t) − u(t), ∀t ∈ [tk, tk + 1), and u(t)
remains u(k) in [tk, tk + 1), we have d(|e1|)/dt � d(e1 × e1)

1/2/
dt � sgn(e1) _e1 ≤ | _ω|. From (34), we obtain

_ω(t) � − (1 + δ) _αntanh
zngnαn

ε
􏼒 􏼓 +

αn zn _gnαn + zngn _αn + _zngnαn( 􏼁

cos h
2

zngnαn/ε( 􏼁ε
+

m zn _gnm + gn _znm( 􏼁

cos h
2

zngnm/ε( 􏼁ε
􏼠 􏼡. (47)

Since _zn(t), _αn(t), and gn(t) are continuous, we deduce
that _ω(t) is a continuous function. In view of the bound-
edness of all the closed-loop signals, there exists a constant
ω> 0 such that | _ω(t)|≤ω, ∀t≥ 0. Due to e1(tk)� 0 and
limt⟶tk+1

e1(t) � δ|u(t)| + m, the lower bound of the
interexecution time t∗ satisfies t∗ ≥ (δ|u(t)| + m)/ω≥ 0, and
the Zeno phenomenon can be avoided.

4. Two Simulation Examples

Example 1. Consider a reduced-order model of the boiler-
turbine unit:

_x1 � ⌈x2⌉
p1(t)

,

x2 � 1 + x
2
1􏼐 􏼑⌈u⌉

p2(t)
+

ϑ2x
2
1

1 + x
2
2
,

y � x1,

(48)

where x1, x2 are the drum and reheater pressures, u is the
position of the control valve, 1≤ p1(t)≤ 11/9, p2(t)� 1 are time-
varying powers, and ϑ2>0 is an unknown constant.*e desired

trajectory is chosen as yd(t)� 0.1 sin(t). Clearly, system (48) is a
special case of system (13), and Assumptions1–3 are satisfied
with p� 11/9, g1 � 1, g2 � 1 + x2

1, f1 � 0, and f2 � x2
1. In

order to achieve the practical finite-time tracking and satisfy the
actual demands, the time-varying output constraint yd(t)− F1(t)
< yd(t)< yd(t)+F2(t), ∀t≥ 0, needs to be guaranteed, where F1(t)
and F2(t) are defined in (13) with ts� 20s, F10� F20�1.2, and
F1s� F2s� 0.06.

According to control design in Section 3.3, by setting
e� − yd, h1 � (F1 + e) (F2− e), ξ1 � e/h1, ξ2 � x2, H1 � (F1F2+

e2)/h2
1, G1 � − ( _F1F2 + F1

_F2 + ( _F2 − _F1)e)e/h2
1, z1 � ξ1, and

z2 � ξ2− α1, the event-triggered controller and adaptive laws
are obtained as

u(t) � ω tk( 􏼁, ∀t ∈ tk, tk+1􏼂 􏼁,

tk+1 � inf t> tk ‖ e1(t)> δ|u(t)| + m􏼈 􏼉,

ω(t) � − (1 + δ) α2tanh
z2α2
ε

􏼒 􏼓 + mtanh
z2m

ε
􏼒 􏼓􏼒 􏼓,

_
Θ
∧

i � ϕiz
20/9
i − σiΘ

∧
i, i � 1, 2,

(49)

where
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e1 � ω − u,

αi � − βi zi +⌈zi⌉
11/9

􏼐 􏼑, i � 1, 2

β1 � H
− 1
1 + H

− 9/11
1􏼐 􏼑 1 + 􏽢Θ1ϕ1􏼐 􏼑,

β2 � g
− 1
2 + g

− 9/11
2􏼐 􏼑 1 + 􏽢Θ2ϕ2􏼐 􏼑,

ϕ1 � H
20/9
1 + G

20/9
1 ,

ϕ2 � 􏽘
6

j�1
ϕ2j,

ϕ21 � ϱ1H
20/9
1 z

20/9
1 2 + β1 sz1

+ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓 + sz2
􏼒 􏼓,

ϕ22 � f
20/9
2 ,

ϕ23 � d
20/9
x1

1 + x
220/81
2􏼐 􏼑,

ϕ24 � d
20/9
x1

,

ϕ25 � d
20/9
x2

τ1 + σ1 􏽢Θ1􏼐 􏼑
20/9

,

ϕ26 �
25
20

dx3
+

1
500

dx4
􏼒 􏼓

20/9
,

ϱ1 �
9 × 22/9

10
􏼠 􏼡

11
20

􏼒 􏼓
11/9 11

9
× 1 + 2− 7/9

􏼐 􏼑􏼒 􏼓
20/9

,

dx1
� H

− 2
1 +

9
11

H
− 20/11
1􏼒 􏼓

zH1

zx1
1 + 􏽢Θ1ϕ1􏼐 􏼑 sz1 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓 + H
− 1
1 + H

− 9/11
1􏼐 􏼑

􏽢Θ1
20
9

􏼒 H
11/9
1

zH1

zx1
+ G

11/9
1

zG1

zx1
sz1 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓 + β1
e
2

+ F
2
1

h
2
1

􏼠 􏼡 1 + z
2/9
1􏼐 􏼑􏼠 ,

dx2
� H

− 1
1 + H

− 9/11
1􏼐 􏼑ϕ1 sz1 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓,

dx3
� H

− 2
1 +

9
11

H
− 20/11
1􏼒 􏼓

zH1

zF1
1 + 􏽢Θ1ϕ1􏼐 􏼑 sz1 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓

+ H
− 1
1 + H

− 9/11
1􏼐 􏼑 􏽢Θ1

20
9

H
11/9
1

zH1

zF1
+ G

11/9
1

zG1

zF1
􏼠 􏼡􏼠 􏼡 sz1 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓 + β1
2 1 + e

2
􏼐 􏼑

1/2

h
2
1

⎛⎝ ⎞⎠ 1 + z
2/9
1􏼐 􏼑,

dx4
� H

− 1
1 + H

− 9/11
1􏼐 􏼑 􏽢Θ1

zG1

z _F1
􏼠 􏼡 sz1 + z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
11/9

􏼒 􏼓.

Figures 3 and 4 provide the responses of the closed-loop
system and the time interval of each triggered event. From
Figure 3, we know that the closed-loop signals x1, x2, Θ

∧
1,Θ
∧
2,

and u are bounded, the asymmetric time-varying output
constraint is not violated, and then the practical finite-time
tracking can be fulfilled.

Example 2. Consider a numerical example

_x1 � ⌈x2⌉
p1(t)

+ ϑ1x1,

_x2 � ⌈u⌉
p2(t)

+ ϑ2 x
2
1 + sinx2􏼐 􏼑,

y � x1,

(50)

where 1 ≤ p1(t) ≤ 21/19, p2(t) � 1 are time-varying powers
and ϑ1 and ϑ2 are unknown positive constants. *e de-
sired trajectory is chosen as yd(t) � 0.4 sin(t). Clearly,
system (48) is a special case of system (11), and
Assumptions1–3 are satisfied with p � 21/19, g1 � g2 � 1,
f1 � (1 + x2

1)
1/2, and f2 � 1 + x2

1. In order to achieve the
practical finite-time tracking and satisfy the actual de-
mands, the time-varying output constraint yd(t)− F1(t)
< y(t) < yd(t) + F2(t), ∀t ≥ 0, needs to be guaranteed, where
F1(t) and F2(t) are defined in (13) with ts � 40s,
F10 � F20 � 2.4, and F1s � F2s � 0.05.

Similar to Example 1, the event-triggered controller and
adaptive laws are obtained as
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Figure 3: Responses of the closed-loop system (42) and (43).
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u(t) � ω tk( , ∀t ∈ tk, tk+1􏼂 􏼁,

tk+1 � inf t> tk ‖ e1(t)> δ|u(t)| + m􏼈 􏼉,

ω(t) � − (1 + δ) α2tanh
z2α2
ε

􏼒 􏼓 + m tanh
z2m

ε
􏼒 􏼓􏼒 􏼓,

_
Θ
∧

i � ϕiz
40/19
i − σiΘ

∧
i, i � 1, 2,

(51)

where

e1 � ω − u,

αi � − βi zi +⌈zi⌉
12/19

􏼐 􏼑⊕, i � 1, 2,

β1 � H
− 1
1 + H

− 19/21
1􏼐 􏼑 1 + 􏽢Θ1ϕ1􏼐 􏼑,

β2 � 2 1 + ϕ2 􏽢Θ2􏼐 􏼑,

ϕ1 � H1f1􏼐 􏼑
40/19

+ H
40/19
1 + G

40/19
1 ,

ϕ2 � 􏽘
6

j�1
ϕ2j,

ϕ21 � ϱ1H
40/19
1 z

40/19
1 2 + β1 sz1

+ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
21/19

􏼒 􏼓 + sz2
􏼒 􏼓,

ϕ22 � f
40/19
2 + dx1

f
40/19
1 ,

ϕ23 � d
40/19
x1

1 + x
840/361
2􏼐 􏼑,

ϕ24 � d
40/19
x1

,

ϕ25 � d
40/19
x2

τ1 + σ1 􏽢Θ1􏼐 􏼑
40/19

,

ϕ26 �
17
40

40/19
d
40/19
x3

+
1

4000

40/19
d
40/19
x4

,

ϱ1 � 221/19
19
40

􏼒 􏼓
21
40

􏼒 􏼓
21/19

21
1 + 2− 17/19

19
􏼠 􏼡􏼠 􏼡

40/19

,

szi
� 1 + z

2
i􏼐 􏼑

1/2
, i � 1, 2,

dx1
� β1H1

40
19

+
21sz1

19
􏼠 􏼡 +

40
19

􏼒 􏼓 􏽢Θ1 sz1
+ z

40/19
1􏼐 􏼑

· H
− 1
1 + H

− 19/21
1􏼐 􏼑

zH1

zx1
1 + f

40/19
1􏼒 􏼓 + H

40/19
1 f

21/19
1

zf1

zx1
+ G

40/19
1

zG1

zx1
􏼠 􏼡􏼠 􏼡

+ 1 + 􏽢Θ1ϕ1􏼐 􏼑 sz1
+ z

40/19
1􏼐 􏼑 H

− 2
1 + H

− 40/21
1􏼐 􏼑

zH1

zx1
􏼠 􏼡,

dx2
� ϕ1 H

− 1
1 + H

− 19/21
1􏼐 􏼑 sz1

+ z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
21/19

􏼒 􏼓,

dx3
� β1

40
19

+
21sz1

19
􏼠 􏼡

2 _F1

1 + e
2

􏼐 􏼑
1/2

⎛⎜⎝ ⎞⎟⎠

+
40
19

􏽢Θ1 sz1
+ z

40/19
1􏼐 􏼑H

21/19
1 f

40/19
1

zH1

zF1
+ H

21/19
1

zH1

zF1

+ G
21/19
1

zG1

zF1
+ 1 + 􏽢Θ1ϕ1􏼐 􏼑 sz1

+ z
40/19
1􏼐 􏼑 H

− 2
1 + H

− 40/21
1􏼐 􏼑

zH1

zF1
,

dx4
�
40
21

􏽢Θ1 H
− 1
1 + H

− 19/21
1􏼐 􏼑G

21/19
1

2F1 1 + e
2

􏼐 􏼑
1/2

h
2
1

⎛⎝ ⎞⎠ sz1
+ z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
21/19

􏼒 􏼓.

Figures 5 and 6 provide the responses of the closed-loop
system (44) and (45) and the time interval of each triggered
event. By calculation, the number of triggered control signal

transmissions is 207, and the amount of continuous time
control sampling is 2072. Since the control signal can be
discontinuously sent to the actuator rather than periodically
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sampled in the traditional continuous sampling control, the
designed event-triggered controller reduces redundant data
transmissions and consumes less communication resources
in the constrained control framework.

5. Conclusions

For more general output-constrained high-order nonlinear
systems with unknown time-varying powers, this paper
investigated the adaptive event-triggered finite-time tracking
problem.

Some challenging problems are still unsolved:

(1) In this paper, pi(t)≥ 1 in Assumption 1 is assumed.
When pi(t)< 1, i� 1, . . ., n, system (11) is called as a
low-order nonlinear system. Recently, Cui and Xie
[33] constructed a state-feedback controller for low-
order nonlinear systems with unknown time-varying
powers, but it does not consider the output con-
straint and the event-triggered control. Hence, a
more challenging problem is can we design an
adaptive event-triggered tracking controller for
output-constrained low-order nonlinear systems
with unknown powers?

(2) Recently, some important results on systems with
stochastic noise, incomplete measurements, coding-
decoding mechanisms, and protocol scheduling have
been achieved; see [52–67] and other papers.
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Figure 5: Responses of the closed-loop system (44) and (45).
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Figure 6: Time interval of each triggered event.
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However, they do not consider the effects of the
output constraint. Hence, our subsequent works are
to consider stochastic systems with incomplete
measurements and coding-decoding mechanisms
and solve the output-constrained tracking problem
with protocol scheduling.
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