Hindawi

Complexity

Volume 2022, Article ID 7495651, 13 pages
https://doi.org/10.1155/2022/7495651

Research Article

WILEY | Q@) Hindawi

Interval Prediction Method for Solar Radiation Based on Kernel
Density Estimation and Machine Learning

Meiyan Zhao,' Yuhu Zhang,> Tao Hu(®,' and Peng Wang’

!School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
2College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China

Correspondence should be addressed to Tao Hu; hutao@cnu.edu.cn
Received 6 July 2021; Revised 21 December 2021; Accepted 27 January 2022; Published 18 February 2022
Academic Editor: Daniele Salvati

Copyright © 2022 Meiyan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Precise global solar radiation (GSR) data are indispensable to the design, planning, operation, and management of solar radiation
utilization equipment. Some examples prove that the uncertainty of the prediction of solar radiation provides more value than
deterministic ones in the management of power systems. This study appraises the potential of random forest (RF), V-support
vector regression (V-SVR), and a resilient backpropagation artificial neural network (Rprop-ANN) for daily global solar radiation
(DGSR) point prediction from average relative humidity (RHU), daily average temperature (AT), and daily sunshine duration
(SD). To acquire more accurate predictions of DGSR and examine the influence of historical DGSR on the performance of point
prediction models, two different model inputs are considered: (1) three meteorological variables and (2) the lags of DGSR and
three meteorological variables. Then, two interval prediction methods are developed by introducing the KDE to out-of-bag
(OOB), introducing kernel density estimation (KDE) to split conformal (SC) based on the three machine learning models. The two
methods for interval prediction are denoted as OOB-KDE and SC-KDE. The mean absolute error (MAE), mean relative error
(MRE), and Kendall rank correlation (Kendall) are used to assess the point prediction models. The performance of interval
prediction methods is evaluated by the prediction interval coverage probability (PICP), prediction interval normalized average
width (PINAW), and coverage width criteria (CWC). The following conclusions are drawn from this study. First, the V-SVR
model performs best with the lowest mean absolute error (MAE) of 0.016 and mean relative error (MRE) of 0.001. Second, the lags
of DGSR improve the prediction accuracy by about 30%. Third, the OOB-KDE and SC-KDE methods improved the quality of the
prediction interval (PI). OOB-KDE improved CWC by 81%, and SC-KDE improved CWC by 99.99%. Fourth, the best interval
prediction result is obtained using the SC-KDE method using the V-SVR model. The average difference between its PICP and
prediction interval nominal coverage (PINC) is only 3% of the PINC, and its PINAW is less than 0.007.

1. Introduction

Today, 85% of the worldwide energy demand is satisfied
using fossil fuels [1]. However, heavy dependence on fossil
fuel and limited refinement of nature as well as misman-
agement of waste sources has caused environmental crises
such as an increase in the average temperature of the Earth’s
surface caused by greenhouse gases [2]. Moreover, fossil
fuels are nonrenewable primary energy sources that cannot
satisfy the continuously increasing energy demand [3]. As an
alternative, solar energy is a renewable and clean energy
source that shows the greatest promise for satisfying the

energy demand [4], and it has many useful applications for
architectural design, evapotranspiration estimates, agricul-
ture, and atmospheric, land, ocean, and hydrologic models.
Precise global solar radiation (GSR) data are indispensable to
the design, planning, operation, and management of solar
radiation utilization equipment. However, direct GSR
measurements using instruments are costly and difficult to
perform in multiple regions. Therefore, a GSR prediction
method based on common meteorological data demands to
be developed [5]. Many GSR prediction methods have been
developed thus far. Usually, the models for SR prediction can
be classified into numerical weather prediction models,
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empirical models [6-8], time series models [9, 10], machine
learning models [11-15], and deep learning models [16-18].

Numerical weather prediction is based on a physics
process to establish a numerical weather prediction model,
and then the data of numerical weather prediction is put into
the numerical weather prediction model to obtain the
prediction value. Numerical weather prediction can usually
obtain accurate GSR prediction. However, it depends on
various means (such as radar observation and satellite ob-
servation) to obtain meteorological data, and the calculation
depends on numerical methods, so it is difficult to be used in
areas with poor scientific and technological resources.
Empirical models are a series of models that estimate solar
radiation based on linear or polynomial relationships be-
tween solar radiation and specific variables such as sunshine
duration and temperature. Empirical models have several
limitations, such as different cases presenting different re-
sults owing to the high randomness of actual data [19].
Studies have confirmed that empirical models have lower
prediction accuracy than machine learning models [20].
Deep learning is a subset of machine learning, which is
essentially a neural network with three or more layers. In the
field of solar radiation, deep learning models are mainly used
to deal with big data to meet the requirements of admirable
precision and the demands of the operator. With respect to
machine learning models, deep learning models pay more
computational expense.

In recent years, machine learning models have been used
in various applications and have displayed excellent pre-
diction performance. Commonly used machine learning
models include artificial neural networks (ANN), random
forest (RF), and support vector regression (SVR). Zeng et al.
[21] used an RF model to construct a high-density network
for the daily global solar radiation (DGSR). They demon-
strated that the RF model could accurately predict the DGSR
under different climatic and geographical conditions in
China. Moreover, they found that the RF method was su-
perior to a decision tree, backpropagation neural network
(BPNN), SVR, and multiple linear regression (MLR). Fan
et al. [22] assessed the performance of a support vector
machine (SVM) and four tree-based soft computing models
for predicting the diffuse horizontal solar radiation. They
found that the SVM model showed the highest prediction
accuracy and the strongest generalization ability among all
the models they tested. Sahin et al. [23] investigated the
ability of MLR and ANN models to estimate the monthly
average GSR in Turkey. They found that the ANN model
outperformed the MLR model. Overall, previous studies
suggest that the RF, SVR, and ANN models can be used to
predict solar radiation. Studies of DGSR prediction mostly
used the e-SVR algorithm [24] and the BPNN algorithm
[25]. Backpropagation (BP) is an excellent method that has
been widely used for recognizing complex patterns. How-
ever, its learning process requires a long time. Resilient BP
(Rprop) is a modified version of BP, and it outperforms
BPNN in terms of convergence speed, accuracy, and ro-
bustness of training parameters [26]. In e-SVR, a prior of the
parameter that represents the regression approximation
error must be specified. However, in practice, the error
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should be minimized. V-support vector regression (V-SVR)
is a modified version of e-SVR that can also serve as a model
for SVM to deal with regression issues; it affords the ad-
vantage of enabling the automatic adjustment of the width of
the e-tube [27]. In this light, this study compares the DGSR
prediction ability of the RF, V-SVR, and Rprop-ANN
models.

Most studies of GSR focused on point prediction, but in
the field of solar energy, the uncertainty of the prediction of
solar radiation is also important. There are many examples
of how probabilistic renewable energy predictions (in-
cluding solar) provide more value than deterministic ones in
the management of power systems [28]. The measurement
and recording of GSR data inevitably contain random noise,
and the noise-related uncertainty makes it difficult to widely
apply the point prediction method to solar energy utilization
technologies with high risk and low fault tolerance, such as
solar photovoltaics. The prediction reliability is important in
these applications; in particular, unreliable predictions often
result in huge losses. To avoid this problem, the error rate of
each prediction should be controllable; interval prediction
offers this possibility. Therefore, constructing a reliable
prediction interval (PI) for DGSR has great theoretical and
practical significance. However, typical approaches for
constructing the PI rely too strongly on the model hy-
pothesis or can only guarantee the prediction reliability in an
asymptotic case, resulting in low prediction reliability in
practical applications. The conformal prediction (CP)
framework [29, 30] is a good approach to overcome this
problem [31]. CP is a learning method that aims to com-
plement the predictions of traditional learning algorithms
with confidence measures, which are called underlying al-
gorithms. A conformal regressor is defined as a combination
of a CP and a specific underlying algorithm. It can construct
a PI for the inputs of the testing data. Since the CP
framework was developed, the reliability of CP has been
confirmed by many experiments and applications [32, 33].
Further, CP serves as a practical and effective nonparametric
method to construct a PI with high confidence. The out-of-
bag (OOB) [34] and split conformal (SC) [35] interval
prediction techniques are based on the CP framework. In
this study, we improved these two techniques based on
kernel density estimation (KDE) to obtain the OOB-KDE
and SC-KDE interval prediction algorithms.

First, this study compares and analyzes the applicability
of the RF, V-SVR, and Rprop-ANN models for the point
prediction of DGSR. Then we improved these two tech-
niques based on kernel density estimation (KDE) to obtain
the OOB-KDE and SC-KDE interval prediction algorithms.
It is the first time to apply the improved CP framework
methods to solar radiation interval prediction. It is also one
of the few studies on the uncertainty of solar radiation
prediction. The rest of this paper is organized as follows.
Section 2 introduces point prediction models and interval
prediction techniques. Section 3 includes a brief descrip-
tion of the dataset and evaluation indicator. In section 4,
the development of point prediction models and interval
prediction methods is presented in detail. Section 5 ana-
lyzes the point and interval prediction results. Finally,
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Section 6 presents the main conclusions drawn from this
study.

2. Methodology
2.1. Point Prediction Model

2.1.1. RF. RF [36, 37] is a popular and highly flexible ma-
chine learning model that is robust to data containing noisy
or missing values. RF combines classification and regression
trees (CART) and bagging. CART [38] is an approach to
partition a variable space according to a group of rules
embedded in a decision tree, in which each node is parti-
tioned based on a decision rule. Each decision tree comprises
decision nodes and leaf nodes. The decision node evaluates
the input sample through test functions and passes it to
different branches according to the characteristics of the
sample. Each decision tree eventually forms a multiple
nonlinear combination model. Bagging [39] adopts a
bootstrap resampling technique to obtain K subtraining
sample sets and further obtains K decision trees. These K
decision trees are integrated into the RF to improve the
prediction accuracy and generalization ability of the model.
Eventually, the outputs of the RF model are obtained using
the average of the output of K decision trees.

RF regression is very user-friendly in that only two
parameters need to be tuned: the number of trees (n,,..) and
the number of randomly selected features (mtry). Generally,
Nyee = 500 is sufficient to ensure the prediction accuracy of
the model and the convergence of the algorithm. Setting
mtry to one-third of the predictor is usually a good option
[40]. In this study, n.. is set to 500, and the grid search
method is used to tune mtry.

2.1.2. V-SVR. SVM is a supervised machine learning model
that can be used to solve classification and regression
problems. Unlike traditional machine learning methods that
use the empirical risk minimization principle, SVMs use
the structural risk minimization principle to reduce the
upper bound on the generalization error rather than re-
ducing the local training error. V-SVR [41], which is based
on the e-SVR [42] regression model, is an SVM model that
is used to deal with fitting regression problems. e-SVR uses
the principle of structural risk minimization to transform a
regression problem into a quadratic programming problem
by introducing the e-insensitive loss function and applying
the Lagrange multiplier method. In ¢-SVR, a priori of the
parameter ¢ that represents the approximation error of
regression must be specified; however, in practice, the error
must be minimized. V-SVR overcomes the problem of
prior selection in e-SVR by introducing the parameter v.
This study builds the V-SVR model using the kernlab R
package.

2.1.3. Rprop-ANN. An ANN is an information processing
technique that is inspired by the biological nervous system. It
uses an input dataset to approximate a potential nonlinear
function. The advantages of ANN techniques are that they

do not require mathematical computational knowledge
between parameters, are less computationally intensive, and
can solve multivariate problems easily. A BPNN [43] is a
typical feedforward neural network, which is one of the most
widely used types of learning models among ANN models. It
comprises an input layer, one or more hidden layers, and an
output layer. Figure 1 shows the architecture of BPNN with
N input variables and M output variables. The weights
between the input layer and the hidden layer are denoted as
W;;, and the weights between the hidden layer and the
output layer are denoted as W ;.

The major drawbacks of a traditional BPNN are the
slow learning speed and tendency to fall into a local
minimum. Rprop-ANN overcomes these drawbacks and
affords optimal results in terms of accuracy, convergence
speed, and robustness of the training parameters [44]. For
example, when the partial derivatives of the network
weights are the same at adjacent moments, Rprop-ANN
updates the network weights along the gradient decline
direction. To avoid missing a minimum value, when the
network weights have different partial derivative symbols at
adjacent moments, the current network weights are
returned to the previous ones.

2.2. Interval Prediction Method

2.2.1. KDE. The KDE method is one of the most popular
nonparametric density estimation techniques [45]. Let X be
a random variable with an absolutely continuous distribu-
tion function F. Further, let f be the corresponding density
function and {X,,...,X,,} be a sample generated by X.
Then, the KDE f (x) of f(x) is defined as

Feo = YK(*55) 8

where h(h>0) is a bandwidth parameter and K is a kernel
function. After the kernel function is determined, the
population quantile can be estimated by the KDE method.
Let F »(x) be the KDE of the cumulative distribution
function F(x). Then, F 4 (x) can be derived as follows:

B, (x) = roo F(2)dz = (nh)"! j Zn:K(Z 'hXi)dz

00 =1

(2)

- (nh)‘lir<z ),
i=1

where I' is the cumulative distribution function of the kernel
function K. Then, for « € (0,1) , the quantile function Qh
based on KDE is Qh (@) = IA*“,; (x). The kernel functions and
bandwidth are the parameters that most strongly influence
KDE. However, when the sample size is large enough, the
selection of the kernel function has little influence on the
estimation results [46]. Bandwidth selection methods in-
clude the reference method [47, 48] and least-squares cross-
validation [49]. This study uses a Gaussian kernel function
and the reference method for bandwidth selection; in other
words,
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FiGure 1: Schematic architecture of BPNN.
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where ¢ can be replaced by ¢ = min (S, Q/1.34) and Q is the
interquartile range.

2.2.2. OOB-KDE. The OOB method constructs PIs based on
the quantile of the empirical distribution of the prediction
error. Suppose that {(X,,Y;),...,(X,,Y,)} is a random
sample; then, let (X0, Y@)={(X,Y[j= 1,..., i-
1,i+1,...,n)}. For the sample (X;,Y;), the OOB method
uses (X@,Y®) to build an RF regression model to obtain
the prediction of Y;. Finally, the prediction error for this
sample is calculated as D, = Y, - Y;,i = 1,---,n, where Y, is
the prediction. Given a new sample (X,,,,Y,,,), the PI of
Y,., constructed using the OOB method is

Yn+1 + D[T’l, 04] > ?n+1 +D
2

n, lz—a] ] (4)

where Dy, .5 and Dy, ,_,) are the quantile of the empirical
distribution of [D,,...,D,] and Y,,, is the prediction of
Y, obtained using the RF model. The OOB method makes
full use of the sample data. More importantly, the coverage
of its PI converges to the theoretical interval coverage under
regular conditions. Unfortunately, the PI construction
method relies on the empirical distribution of the prediction
errors; therefore, the calculated quantile is not accurate
enough. The KDE method can give an accurate density
estimation [50]. The proposed OOB-KDE method is an
extension and improvement of the OOB method. For a given
regression algorithm &/, the OOB-KDE method obtains the
prediction error of Y; using o and (X®,Y ), estimates the
error distribution using the KDE, and eventually constructs
the PI of Y, ,; using the quantiles D* |, ,;»; and D", ;_y25
that is,

?n+1+D*[7’l,0€]’?n+l+D* nl-all (5)
2 [ 2 ]
where Y, is the prediction obtained by applying regression

algorithm /.
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2.2.3. SC-KDE. SC is proposed as an interval prediction
method based on the CP framework. Its computational cost
is a small fraction of that of the full conformal method. This
study improves the SC method based on the KDE method
and proposes the improved SC-KDE method. Let
{(X,,Y)),..., (X,,Y,)} be a training set; then, the SC-KDE
algorithm is summarized as follows:

(1) Randomly split training set into two equal-sized
subsets I, and I,

(2) Estimate true mean function using I,; that is,
i=d{(X,Y),iel}

(3) Obtain errors from I, using D; =Y, — u(X;),i € I,

(4) Estimate the density of errors using KDE and obtain
the quantiles D* (n/2.002] and D* (n/2,1-a/2)

(5) Then’ PI of Xn+1 is [ﬁ(Xn-v-l) +D* [n/2,a/2]> ﬁ(Xn+l)+
D* [n/2,1—tx/2]]

SC uses | (X;) —Y;| to calculate the errors of I,, and it
uses [f(X,,,,) —d,u(X,,;) +d] to construct the PI, where d
is the kth smallest value in the errors and
k= (1-a)(n/2+1). The SC method constructs a PI based
on the same D value; therefore, it is not applicable when the
distribution of prediction errors is skewed. The SC-KDE
method can effectively overcome this shortcoming by ap-
plying the KDE method and introducing two different
quantiles. The SC-KDE method uses Y; — fi (X;) to calculate
the errors, and it uses the KDE method to estimate the
quantiles D, and D,_,, of the error distribution. Finally,
the PI is calculated wusing [# (X)) + D" ynu2p

B (X)) + D" (o 1-ay )-

3. Dataset and Evaluation Indicator

3.1. Dataset. In this study, DGSR and daily meteorological
variable observation data from Hami station for January
2009 to December 2016 were used. Hami (93°31'E, 42°49'N)
is located in the eastern part of Xinjiang Uyghur Autono-
mous Region. It has a typical temperate continental arid
climate, with many sunny days throughout the year and an
average annual sunshine duration of 3358 h, making it one of
the regions with the longest sunshine duration in China. The
meteorological variables selected in this study include the
average relative humidity (RHU), daily average temperature
(AT), and daily sunshine duration (SD). The data used
undergoes strict revision and quality control to ensure that
the data collection time is continuous and complete and that
the data availability and accuracy are close to 100%. When
the data are collected, the whole dataset is divided into three
categories: training set, validation set, and test set. All data
used in this study were obtained from the National Mete-
orological Information Center (see Appendix for further
details of the data).

3.2. Evaluation Indicator. In this study, the mean absolute
error (MAE), mean relative error (MRE), and Kendall rank
correlation (Kendall) are used to evaluate the prediction
performance of the RF, V-SVR, and Rprop-ANN models.
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The calculation of MAE, MRE, and Kendall is detailed in
[51, 52]. The quality of PIs is quantitatively evaluated using
the prediction interval coverage probability (PICP), pre-
diction interval normalized average width (PINAW), and
coverage width criteria (CWC). PICP and PINAW are used
to evaluate the reliability and accuracy of the PI, respectively.
A small PINAW value indicates the high accuracy of the PI.
However, owing to the contradiction between PICP and
PINAW, one of them alone cannot be used to effectively
judge the quality of PI. Therefore, CWC is introduced as a
tradeoff between PICP and PINAW. CWC is expected to be
small for good solutions. The calculation of PICP, PINAW,
and CWC is detailed in [53]. Penalty factors in CWC
generally take larger values such as 50 [54]. In the present
study, the penalty factor was set as 25 in consideration of the
magnitude of the CWC value.

4. Model Development

4.1. Model Input and Feature Selection. The dataset selected
in this study includes DGSR and three meteorological
variables. In order to acquire more accurate predictions of
DGSR and examine the influence of historical DGSR on the
performance of point prediction models, the two different
model inputs are considered. One uses three meteorological
variables as model inputs. Another uses the lags of DGSR
and meteorological variables as a new model input. For
simplicity of representation, the two model inputs are
denoted as Input I and Input II. And the combination of the
data with respect to Input I and Input II is denoted as
original data (OD) and feature selection data (FSD), re-
spectively. The feature selection method to determine the
order of lags of the DGSR in Input II is the mean decrease
Gini index (MDGI) [55] calculated by RF. Figure 2 is the
result of feature selection expressed as a percentage of
MDGI. The ranking of the MDGI shows that the first two
lags accounted for 83% of all lags and were significantly
higher than the other lags. Therefore, the historical infor-
mation of the DGSR for the first two days is selected to
construct the new inputs.

4.2. Point Prediction Model Development. In the present
study, 40% of the dataset was used to construct models, 10%
was used to tune the parameters of the models, and the
remaining 50% was used to test the prediction performance
of the models. mtry was used as the tuning parameter for the
RF model, and kernel functions were used for the V-SVR
model. This study considers the radial basis kernel, poly-
nomial kernel, Laplace kernel, and linear kernel. The tuning
parameters of Rprop-ANN include the number of neurons
in the hidden layer (Hidden), activation function in the
output layer (Active), and threshold (Threshold) used to
specify when the model stops training. The optimal pa-
rameters of each model are searched by using grid search
with the criterion of the minimum MAE value. Figure 3
shows the flowchart of the point prediction of DGSR. Table 1
shows the results of tuning parameters of each machine
learning model.

80

MDGI [%]

1 2 3 4 5 6 7 8 9
Lags [Days]

FIGURE 2: MDGI ranks of 10 lags.

10 11 12 13 14 15

4.3. Interval Prediction Method Development. To examine
the performance of the proposed interval prediction tech-
nique, three different values for the prediction interval
nominal coverage (PINC) have been used: 0.8, 0.9, and 0.95.
Because the OOB and OOB-KDE methods do not specify the
training set ratio (TSR), three different TSR are used: 0.2, 0.5,
and 0.8. Considering the limitations of the SC and SC-KDE
methods regarding the data segmentation ratio, only the case
of an equal segmentation ratio is considered in both
methods. During the construction of the PI, the initial value
selection of the Rprop-ANN model is seen to influence the
constructed PI. To overcome this problem, we construct PIs
of the DGSR five times and use their average as the final
metric result. Figure 4 shows the flowchart of the interval
prediction of the DGSR.

5. Results and Discussion

5.1. Point Prediction. Table 2 illustrates the three machine
learning models results.

First, we compare the prediction performance of three
machine learning models in the OD. As we can see from
Table 2, the V-SVR has the best capability of predicting the
DGSR. The statistical indicator of V-SVR used for perfor-
mance evaluation indicates the lowest values of MAE and
MRE and highest values of Kendall when compared to RF
and Rprop-ANN model. The order of magnitude of MAE
and MRE for the V-SVR model is around one-tenth of those
for the RF and Rprop-ANN models. Both Rprop-ANN and
V-SVR provide better results compared to the RF model.

Next, we consider the prediction performance of three
models for the FSD. According to the table, the prediction
performance of the FSD for each model is similar to the OD.
The model performance decreases in the order of the V-SVR
model, Rprop-ANN model, and RF model.

Finally, we compare the ability of the OD and FSD to
predict the DGSR. Compared with the OD, the prediction
accuracy of the models constructed using the FSD is im-
proved significantly. For the RF, V-SVR, and Rprop-ANN
models, the MAE reduced by around 33%, 36%, and 52%,
respectively, and the MRE reduced by around 33%, 50%, and
50%, respectively. Further, Kendall of the RF and Rprop-
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TaBLE 1: Tuning parameters of each model.
Model Tuning parameters OD FSD
RF mtry 3 5
V-SVR Kernel Polynomial Linear
Hidden 1 1
Rprop-ANN Threshold 0.01 0.01
Active Tanh Tanh

Compare the prediction performance
of OD and FSD

v

OD outperformed FSD
Parameters trained in Iﬁ’—
point prediction

Interval prediction using OOB, Interval prediction using OOB,
OOB-KDE, SC and SC-KDE methods | | OOB-KDE, SC and SC-KDE methods

FiGure 4: Flowchart of interval prediction of DGSR.

TaBLE 2: Error statistics of different models for DGSR prediction.

oD FSD
V- Rprop- V- Rprop-
RE SVR ANN RE SVR ANN
MAE 0365 0.025 0.121 0.245 0.016 0.058
MRE  0.015 0.002 0.014 0.010  0.001 0.007
Kendall 0.986 1 0.997 0.993 1 0.999

ANN models is higher than that of the OD. These analyses
clearly indicate that FSD is more powerful in explaining the
variation mechanism of DGSR and provides higher pre-
diction accuracy.

To compare the predictive capability of each model
explicitly and visually on the OD and FSD, Figure 5 is a
Taylor diagram comparing predicted DGSR from REF,
V-SVR, and Rprop-ANN; Figure 6 illustrates the compar-
isons of the predicted DGSR (red) verse measured data

(blue) for the RF, V-SVR, and Rprop-ANN models in 2016.
The error of V-SVR and Rprop-ANN is lower than RF, and
the correlation of V-SVR and Rprop-ANN is higher than RF
in Figure 5. This proves that the V-SVR and Rprop-ANN
models perform much better than the RF model. The pre-
dicted values of SVR and ANN models follow the measured
data favorably in Figure 6, indicating that the prediction
accuracy is high. RF model can effectively reflect DGSR
fluctuations in spring and winter but cannot fit the DGSR in
summer and autumn. At the same time, it can be seen that
the FSD improves the fitting performance of the RF model to
a certain extent from both Figures 5 and 6.

Figure 7 shows scatter plots of the predicted DGSR verse
measured data as well as their MAE for all testing phases. All
scatter dots of the V-SVR and Rprop-ANN models are seen
to be close to the red line that represents y = x, indicating that
these models accurately predict not only the test samples for
2016 but also the complete test set. The scatter plots of MAE
show that the V-SVR model provides the highest prediction
accuracy. The scatter plot of the RF model clearly indicates
that it underestimates the DGSR when the real DGSR is
large.

The annual mean value of variables in the test set (Ta-
ble 3) shows that the annual mean value of DGSR in 2016
increased significantly by around 22%. However, other
variables did not increase significantly, indicating that, for
RF models, the existing variables are insufficient to explain
the sudden increase of DGSR in 2016.

5.2. Interval Prediction. In this section, we present and
compare the results of PIs. Table 4 shows the PICP, PINAW,
and CWC of PIs obtained by OOB and OOB-KDE for
different values of PINC and for different TSR. The PICP of
the PIs of the RF and V-SVR models obtained using the
OOB-KDE method is higher than that obtained using the
OOB method for all combinations of PINC and TSR. The
PICP of the Rprop-ANN model obtained using the OOB is
higher than that obtained using the OOB-KDE under only a
few conditions. These results proved that the OOB-KDE
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FIGURE 5: Taylor diagram comparing predicted DGSR from RF, V-SVR, and Rprop-ANN on OD and FSD.
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FIGURE 6: Fitting curve plot between measured and predicted DGSR.

method effectively improves the reliability of the PI. For all
TSR and for all PINC values, the PINAW of all PIs obtained
using the OOB-KDE method is higher than that obtained
using the OOB method. However, it is caused by the in-
herent contradiction between PICP and PINAW. The
composite metric CWC confirms that the PI of the OOB-
KDE method was significantly better than that of the OOB
method, with an average CWC reduction of approximately
81%.

To further explore the quality of the PIs obtained using
the OOB-KDE method for different TSR, the variations of

the PICP, PINAW, and CWC are shown in Figures 8-10,
respectively. Figure 8 shows that the PICPs of the RF and
V-SVR models have an obvious positive correlation with the
PINGC, indicating that the PI is reasonable to a certain extent.
The PICP of the Rprop-ANN model does not show a linear
trend related to the PINC owing to the mechanism used to
generate the results. Figure 9 shows that the acuity of the PIs
is optimal at a training set ratio of 0.2 and worst at a TSR of
0.8. Figure 10 shows that the quality of the PI obtained using
the OOB-KDE method for the RF and Rprop-ANN models
is negatively correlated with the TSR, and the optimal PI for
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FIGURE 7: Scatter plots and MAEs of test samples.

TABLE 3: Annual mean values of variables in test set.

Test samples

Year AT (°C) RHU (%) SD (h) DGSR (MJ/m?)
2013 10.81 42.56 9.75 16.33
2014 10.38 40.45 9.79 16.24
2015 11.47 45.08 9.22 15.55
2016 11.66 44.23 9.08 19.50
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TaBLE 4: Comparison of PIs obtained using OOB and OOB-KDE methods.
0.95 0.9 0.8
TSR Method Model PICP  PINAW CWC PICP PINAW CWC PICP  PINAW CWC
RF 0.890 0.297 1.628 0.771 0.168 4.394 0.662 0.118 3.835
O0B V-SVR 0.919 0.005 0.016 0.880 0.004 0.011 0.770 0.003 0.009
02 Rprop-ANN 0.903 0.754 3.196 0.840 0.583 3.196 0.746 0.413 2.006
’ RF 0.936 0.415 1.004 0.885 0.282 0.692 0.792 0.179 0.398
OOB-KDE V-SVR 0.929 0.006 0.016 0.898 0.005 0.01 0.820 0.004 0.006
Rprop-ANN  0.908 0.790 3.048 0.893 0.610 1.337 0.782 0.446 1.145
RF 0.823 0.134 3.34 0.771 0.110 2.877 0.654 0.063 2.487
OOB V-SVR 0.769 0.003 0.28 0.675 0.003 0.835 0.492 0.002 4.419
05 Rprop-ANN  0.739 0.153 30.048  0.809 0.336 3.605 0.854 0.242 0.305
' RF 0.887 0.182 1.061 0.830 0.118 0.797 0.732 0.078 0.505
OOB-KDE V-SVR 0.807 0.004 0.147 0.700 0.003 0.448 0.510 0.003 4227
Rprop-ANN 0.872 0.464 3.725 0.847 0.352 1.676 0.794 0.248 0.536
RF 0.810 0.112 3.821 0.764 0.076 2.353 0.550 0.039 20.242
O0OB V-SVR 0.897 0.004 0.019 0.824 0.003 0.023 0.726 0.003 0.022
0.8 Rprop-ANN 0.801 0.327 13.888 0.811 0.247 2.533 0.651 0.181 7.687
’ RF 0.812 0.115 3.738 0.767 0.080 2.304 0.676 0.050 1.16
OOB-KDE V-SVR 0.916 0.004 0.013 0.846 0.003 0.015 0.735 0.003 0.018
Rprop-ANN  0.750 0.305 45.571 0.802 0.245 3.084 0.685 0.174 3.258
s Y Y
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FIGURE 9: Histogram of PINAW for all prediction models.
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TaBLE 5: Comparison of PIs obtained using SC and SC-KDE methods.
0.95 0.9 0.8
Method Model PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC
RF 0.476 0.039 5463.329 0.451 0.038 2849.344 0.401 0.031 665.993
SC V-SVR 0.476 0.002 280.171 0.451 0 22.495 0.400 0.002 44.055
Rprop-ANN 0.476 0.020 2801.707 0.451 0.110 8248.102 0.400 0.137 3017.763
RF 0.950 0.254 0.508 0.901 0.153 0.302 0.808 0.104 0.189
SC-KDE V-SVR 0.956 0.002 0.004 0.908 0.004 0.007 0.814 0.003 0.005
Rprop-ANN 0.953 0.012 0.023 0.920 0.015 0.024 0.806 0.001 0.002

each model mostly occurs at a TSR of 0.2. Notably, the
V-SVR model performs best in terms of the acuity of the PI;
its PINAW values are all below 0.006 (Table 5).

Table 5 The indicators of PIs as obtained using the SC
and SC-KDE methods. These results indicate that the PI
obtained using the SC method has very poor reliability, and
its PICP is approximately 44% lower than the target PINC.
Compared with the PI obtained using the SC method, that
obtained using the SC-KDE method is greatly improved.
PICP increases by an average of 1.0l times, the order of
magnitude of CWC is significantly reduced, and the PINAW
of the Rprop-ANN model decreases by around 75% on
average. In addition, the PICP of the PI obtained using the
SC-KDE method is quite close to the target PINC with an
average difference of around 0.007, indicating that the SC-
KDE method produces a highly reliable PI. In terms of the
PIs obtained using the SC-KDE method, the V-SVR model is
found to provide the best results, with the highest PINAW
and CWC values of 0.007 being far lower than those of the
other two machine learning models. It not only ensures the
reliability of the PI but also achieves the highest accuracy.

6. Conclusion

In the case of solar radiation prediction, the machine
learning model has excellent performance. RF, V- SVR, and
Rprop-ANN are the most popular machine learning models.
Most of the previous research on solar radiation prediction

focused on point prediction. However, the uncertainty of the
prediction of solar radiation is also important. Many ex-
amples prove that probabilistic renewable energy predic-
tions (including solar) provide more value than
deterministic ones in the management of power systems. In
this study, the RF, V-SVR, and Rprop-ANN models are used
to predict the DGSR and to compare the ability of the OD
and FSD to explain its variation mechanism. In addition, the
improved OOB-KDE and SC-KDE interval prediction
methods are proposed for predicting the interval of GSR.
Comparisons are performed with the OOB and SC methods.
To demonstrate the performance of the PIs obtained using
the OOB-KDE and SC-KDE methods, various combinations
of PINC and TSR are considered. The following conclusions
can be drawn from this study:

(1) The point prediction results worsen in the following
order: V-SVR model, Rprop-ANN model, and RF
model. The V-SVR and Rprop-ANN models can
accurately describe DGSR fluctuations; however, the
RF model shows poor-fitting ability in the summer
and autumn.

(2) Compared with the OD, the FSD is more beneficial
for explaining the change mechanism of DGSR. For
the RF, V-SVR, and Rprop-ANN models, the MAE
decreased by 33%, 33%, and 36%, respectively, and
the MRE decreased by 33%, 50%, and 50%,
respectively.
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(3) The OOB-KDE and SC-KDE methods improved the
quality of the PI. The CWC of the PIs obtained using
the OOB-KDE method is around 81% lower than
that obtained using the OOB method, and the CWC
of the PIs obtained using the SC-KDE method is
around 99.99% lower than that obtained using the SC
method.

(4) The best interval prediction result is obtained using
the SC-KDE method with the V-SVR model. The
average difference between its PICP and PINC is
only 3% of the PINC, and its PINAW is less than
0.007.

The FSD shows better performance for the variation
mechanism of the DGSR because DGSR data contains strong
time-lag effects and is correlated with historical data. The
proposed interval prediction technique improves the per-
formance of the PI by estimating the actual error distri-
bution using the KDE method. In conclusion, this study
realizes accurate point prediction of the DGSR using the
V-SVR model and realizes highly reliable interval prediction
of the DGSR using the SC-KDE method. Our study con-
tributes greatly to the research and modeling of point and
interval prediction of solar radiation. And it will be a benefit
to the efficient and full use of solar energy. In the future,
more meteorological variables should be used to predict
solar radiation. Our study only considers three machine
learning models; therefore, the consideration of more ma-
chine learning models is also a direction for future research.
As mentioned above, probabilistic renewable energy pre-
dictions provide more value in the management of power
systems. In view of this, the applicability of the OOB-KDE
and SC-KDE methods in other renewable energies’ interval
prediction fields can be explored.
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