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In numerous internet of things (IoT) appliances, messages might require to be distributed to certain specified nodes or objects
with the multicast transmission. “'emulticast routing protocol can be divided into nongeographic based and geographic based.”
As locations of device are roughly extracted by GPS devices, geographic-oriented multicast routing schemes were chosen, because
it induces lesser overheads. Nevertheless, the extant geographic-oriented routing models are found to have particular disad-
vantages. After the advent of the IoT systems for remote healthcare, medical services can be rapidly provided to patients in rural
areas. 'e IoT network encapsulates flexible sensors in the environment to collect environmental information. 'is gathered
sensor information is sent to the nursing stations for timely medical assistance.'e IoTnetwork is wireless, which leads to security
breaches. 'erefore, there is a necessity to have a secured data transmission in the context of healthcare. Hence, this study intends
to propose a novel optimal route selection model in IoT healthcare by deploying optimized ANFIS. Here, the optimal routes for
medical data are selected using a new self-adaptive jellyfish search optimizer (SA-JSO) that is the enhanced edition of the extant
JSO model. Accordingly, the optimal route selection for medical data is performed under the consideration of “energy, distance,
delay, overhead, trust, quality of service (QoS), and security (high risk, low risk, and medium risk).” In the end, the performances
of adopted work are compared and proved over other extant schemes.

1. Introduction

'eWSNs are introduced in IoTand act a significant role to
give a wider range of appliances via sensors, like envi-
ronmental monitoring, smart homes, traffic supervision,
and smart grids [1]. A WSN includes sinks/receivers and
various distributed SNs that collaboratively gather and
convey data to carry out various missions [2]. Being built
on WSNs, offering consistent data deliverance is generally
expected for IoT-oriented appliances. 'is appliance needs
WSNs to offer reliable data deliverance that is considered as
the crucial aspect of data transmission. Nevertheless,
depending upon the diverse wireless media, WSNs are
vulnerable to signal fading or interferences that might
considerably reduce the QoS [3–5]. As a result, supporting
consistent data deliverance turns out to be a demanding
crisis in WSNs.

Recently, the IoTnetworks provide a lot of advantages in
the medical field for providing timely assistance to patients
even during the pandemic period. In healthcare, the IoTand
cloud resources are wholly utilized, and hence, they are said
to be the fundamental aspects of the healthcare context [6].
In between the computational resource, medical equipment,
and medical data transmissions from the cloud environment
to the cloud computing, the connection is supported by the
standard protocols in the cloud environment. Since the
cloud platform is open access, there is a huge chance for
security breaches to take place.'erefore, there is a necessity
to develop an efficient and secured data routing model for
reliable data transmissions.

In recent times, a proficient method to meet the con-
ditions of data reliability is deploying (opportunistic) geo-
graphic routing that does not portray the routing paths
before the transmission of data [7]. In comparing over
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multipath routing, geographic routing proffers enhanced
performances since no further interferences or signal con-
tentions subsist among nodes [8]. Being a conventional
routing model, geographic routing was a striking option
regarding the dynamic wireless link, as it does not require
maintaining routes from source to sinks [9].

'ereby, the amalgamation of “opportunistic routing and
geographic routing is known as geographic opportunistic
routing” [10, 11]. Conventional “geographic opportunistic
routing” models achieved higher reliability over wireless links.
Nevertheless, they endure from DoS attacks [12]. Malevolent
attackers might consciously transmit a larger count of illogical
data, intending to misuse the resources and to interrupt the
normal functions of the network. 'e IoT, smart sensors, and
mobile wearable devices are assisting in the development of
healthcare systems that are more pervasive, smarter, faster, and
easier to use. Security, on the other hand, is a big worry for the
IoT, with access control being one of the major issues. With
these systems increasing scale and presence, a crucial concern is
how to administer policies in a scalable and adaptable manner.
Table 1 describes the abbreviations used in this study.

'emajor contributions of the adopted methodology are
given below:

(i) An optimized ANFIS system is deployed to select the
most optimal routes for data transmission in the
context of healthcare.

(ii) A new self-adaptive jellyfish search model is intro-
duced for optimizing the membership function of
ANFIS.

'e remaining of this study is arranged as follows: the
second section reviews this topic. Section 3 tells about the
systemmodel of the developed EEG protocol. Sections 4 and
5 depict about description of multiobjective and optimized
ANFIS for data routing via the SA-JSO model. In addition,
Section 6 portrays about the deployed steps of the proposed
EEG routing protocol. 'e results and conclusions are given
in Sections 7 and 8.

2. Literature Review

2.1. Related Works. In 2017, Huang et al. [13] proposed an
EMGR for achieving EER. EMGR employed an “energy-
aware multicast tree,” created by source and destination
nodes depending upon the energy, for guiding multicast
message deliverance. Accordingly, the nodes were adaptively
selected for conserving energy. Simulated and analytic re-
sultants demonstrated that the developed model achieved
enhanced performances regarding lower complexity, energy
utilization, and overhead.

In 2020, Naghibi and Hamid et al. [14] suggested a
technique for dividing the network into certain cells in a
geographic way and applied 2 mobile sinks for collecting the
information sensed by cell nodes. Depending upon the
communiqué among mobile sinks and cells, the cells were
separated into 2 classes: “SCCs and MCCs.” When sinks
were motionless, SCCs transmit data to sinks in a direct
manner; however, MCCs applied the adopted EGRPM
model to transmit data to sinks.

In 2020, Hameed et al. [4] proposed an EEG routing
model for focusing upon energy utilization and throughput
of SNs. 'e adopted model applied the MSE approach to
resolving the sensor localization issue. In addition, routing
overhead was minimized by limiting the SN to sustain single
neighbor data. 'e adopted model reduced the energy holes
in the network by efficiently evaluating the energy utilization
amid SNs.

In 2019, Lyu et al. [15] proposed a SelGOR model for
defending against the DoS attack and for satisfying the needs
of reliability and authenticity in WSNs. By examining SSI,
SelGOR leveraged an SSI-oriented trust scheme for im-
proving the effectiveness of data freedom. Moreover, Sel-
GOR ensured data reliability by generating an entropy-
oriented model and was capable of isolating DoS attackers
and reducing the cost.

In 2021, Banyal et al. [16] have suggested a new method
for segmenting the network topology depending upon the
node’s characteristics. 'is model was accomplished by
means of “intelligent transmission.” 'e HiLSeR’s suggested
model was deployed for packet routing. For “topology
sectionalization and routing decision-making, hierarchical
learning, a multidimensional data conduct-oriented soft
clustering paradigm,” was deployed. By performing exper-
imentation, the efficiency of the proposed model was
evaluated over other models. For demonstrating the en-
hanced efficiency, diverse parameters like “Energy Unit per
Message, Dead node Percentage, Overhead Ratio, Average
Latency, and Success Ratio” were computed.

In 2019, 'angaramya et al. [17] suggested a novel
“Neuro-Fuzzy Rule-Based Cluster Formation and Routing
Protocol” for proficient routing of data in IoT-oriented
WSN appliances. 'e adopted scheme has provided con-
siderably superior network efficiency regarding “energy
consumption, packet distribution ratio, latency, and net-
work life span,” which was proved to form the outcomes.

In 2021, Pingale and Shinde [18] have suggested a novel
routing scheme for optimizing network lifetime by means of
the SFG model. 'e projected “SFG algorithm” had elected
the most excellent routes by merging the SFO and GWO
schemes.'e simulation of IoT initially appeared, along with
the execution of multipath routing in IoT. 'e SFG model
has chosen the optimal routes among the multipath ob-
tainable for routing depending upon “context awareness,
network lifetime, residual energy, trust, and latency.”

In 2019, Dhumane & Prasad [19] have adopted a
“multiobjective FGSA” for electing the optimal CH in an IoT
network for EER protocol. 'e EER in IoT was attained by
exploiting FGSA to find out the finest CH. 'e CH node in
MOFGSA was selected depending upon the fitness appraisal
of numerous criteria, together with “distance, latency,
connection lifetime, and energy.” MATLAB execution was
used to assess the simulated outcomes.

2.2. Review. Table 2 shows the review on EEG in IoT-WSN.
Initially, EMGR was implemented, which provides high
PDR, less overhead, and less complexity; however, wastage
of resources should be concerned more. 'e uses of the
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EGRPM algorithm are to have a higher life span and lower
delay, but the overhead is high. Furthermore, the ECMSE
model was implemented, which enhanced PDR and im-
proved throughput. However, network interference issues
are not deliberated. Similarly, the use of SelGOR resulted in
lower computational cost and high reliability. However,
delayed performance is not good. 'e uses of the HiLSeR
algorithm are to have higher network energy, maximum

alive nodes, lower latency, and lower traffic volume, but the
PDR is lower. Furthermore, in [17], an efficient distance-
dependent “Neuro-Fuzzy Rule-Based Cluster Formation
and Routing Protocol” was implemented, which expanded
network lifetime and improved PDR. However, the delay is
higher and the complexity is also high. In addition, the SFG
algorithm is introduced, which has a reduced number of
dead nodes, higher latency, and prolonged network life span.

Table 2: Review on conventional routing protocol in WSN.

Ref.
no. Proposed model Pros Cons

1 EMGR
(i) High PDR

(ii) Minimal overhead
(iii) Less complexity

(i) Wastage of resources should be
concerned more

2 EGRPM (i) Maximizes life span
(ii) Minimizes delay (i) No consideration of overhead

3 ECMSE
(i) Higher energy utilization
(ii) Improved throughput

(iii) Higher PDR

(i) Network interference issues are not
deliberated

4 SelGOR
(i) High reliability

(ii) Lower computational
cost

(i) Delay performance is not good

5 HiLSeR (i) High throughput
(ii) Enhances PDR

(i) Low PDR
(ii) High end-to-end delay.

6 “Neuro-Fuzzy Rule-Based Cluster Formation and
Routing Protocol”

(i) Higher energy utilization
(ii) Improved network life

span
(iii) Higher PDR

(i) High computational complexity
(ii) Higher delay

(iii) Higher end-to-end delay

7 SFG (i) Reducing data overflow
(ii) Lower bandwidth usage (i) Less convergence rate

8 FGSA

(i) Increased residual
energy

(ii) Maximum network
energy

(i) Lower count of alive nodes

Table 1: Nomenclature.

Abbreviation Description
ANFIS Adaptive neuro-fuzzy inference system
DoS Denial of service
EMGR Energy-efficient multicast geographic routing protocol
EER Energy-efficient routing
EEG Energy-efficient geographic
FGSA Fractional gravitational search algorithm
GPS Global positioning system
GWO Gray wolf optimizer
IoT Internet of things
MOFGSA Multiobjective FGSA
MCCs Multihop communication cells
MSE Mean square error
PDR Packet delivery ratio
SFG Sunflower-based GWO
SNs Sensor nodes
SelGOR Selective authentication-based geographic opportunistic routing
SSI Statistic state information
SCCs Single-hop communication cells
SA-JSO Self-adaptive jellyfish search optimizer
SFO Sun flower optimization
QoS Quality of service
WSN Wireless sensor network
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In addition, the convergence rate is smaller, and the run time
is longer. 'e FGSA algorithm is proposed, which offers
increased energy performance, higher network throughput,
less energy usage, and maximum network life; however, it
requires “extending the EER protocols in WSNs to mobile
networks.”

3. System Model of Developed IoT Protocol

In 1987, the first healthcare model was developed in the
Picker Institute by the Picker/Commonwealth program.'is
has paved the way for the development of the patient-
centered care services (PCCs) that are being commonly
utilized on these days. 'e major intention behind the PCCs
is to provide medical needs to the needy. After the advent of
wearable sensors, healthcare services based on IoTnetworks
are gaining huge attention among the research industry. In
the normal IoT-based data transmission, the data from the
source (patient) to the destination (healthcare center) take
place via the lowest hop count and the shortest distance.
Even though this model ensures link quality and reliable
transmission, the delay in the data transmission became an
unavoidable issue. 'is leads to delay medical services, and
hence, the network became less reliable. Moreover, the IoT
being battery-powered devices required huge costs for ini-
tialization and training. On the other hand, the unauthorized
or hacker IoT nodes might hack the sensitive medical data
during the data transmission, and they might make modi-
fications to it. As a result, the precise life of the patient might
be jeopardized.'erefore, there is a necessary route to secure
the medical data from source to destination via the IoTs.

4. Deployed Steps of Proposed Medical Data
Routing Protocol: An Overview

'e optimal data routing for routing the medical data amid
the set of “source node(S) and destination node (D)” with
minimal energy utilization is said to be a major challenge in
IoT-WSN. 'e adopted scheme attempted to triumph over
this confrontation by developing a novel EEG routing
model. 'e process taking place in the developed work is as
follows:

(i) 'e adopted scheme develops a novel medical data
routing model depending upon sixfold objective
functions (energy, distance, delay, overhead, QoS,
and trust).

(ii) 'roughout medical data routing, the majority of
optimal routes are chosen by optimized ANFIS,
wherein the membership functions are optimized.

(iii) 'e optimal route is selected via the SA-JSO model
that considers multiobjective functions. 'e archi-
tecture of this work is exposed in Figure 1.

4.1. An Illustration. 'e architectural representation of the
IoT healthcare system is manifested in Figure 2. 'e model
encapsulates the WBANs and a broader telemedicine

system. 'is model serves hundreds or thousands of indi-
vidual users.

Let there be two COVI-19 patients User 1 and User 2,
who have been admitted to a remote healthcare location
away from the hospital. Since it is being an epidemic situ-
ation, there are not enough medical resources.'erefore, the
patients User 1 and User 2 need to be continuously moni-
tored by the doctors. 'ese patients are embedded with
numerous body sensor nodes in the user’s belt, an ankle, a
knee, or the trunk for monitoring their heart rate, blood
pressure, and oxygen saturation as well. Each of the nodes is
capable of undergoing operations such as “sampling, pro-
cessing, and communication.” 'e coordinator (C), who has
greater energy and computing power, coordinates the whole
network on one individual for each user. It gathers data from
sensor nodes located on or within the human body. 'ere is
no personal server, such as a PDA or a PC, in this IoT
healthcare system. It has the potential to lower each user’s
spending. Using multiple hop routing, the gathered data of
the coordinator is sent to the access gateway (AG) via other
coordinators. 'e multihop routing protocol is utilized for
safe communication between IoT devices. Before building a
new network or integrating an existing one, the routing
protocol allows IoT devices to authenticate. To improve the
security of the communication, multilayer parameters are
used for authentication. AG may be connected to a hospital
server and a wired or wireless network appliance. To syn-
chronize nodes in the network, the AG and coordinators
send out periodic beacon packets. 'e AG also uses the
internet to send the data to themedical server. If a user leaves
the communication range (i.e., there is no other user
nearby), the coordinator begins locally buffering data. 'e
route link is restored when the user returns. Sensor and
event data are automatically uploaded by the coordinator.
'e localization strategy is utilized since the users’ location
information is also important in the IoT healthcare system.
'ere are a few reference nodes (RNs) in the vicinity. 'ey
are GPS enabled or preprogrammed with the location of
nodes.'e signal of RNs and the localizationmethodmay be
used by coordinators to determine their own positions. As
depicted in the projected model, the secured path for data
transmission takes based on the defined sixfold objective:
highest energy, lowest distance, lowest delay, lowest over-
head, highest QoS, and highest trust. A prominent role is
being played by these parameters during the selection of the
most prominent next-hop nodes for data transmission. 'e
optimized ANFIS model finds the majority of optimal
routes, and among the available next-hop paths that satisfy
the sixfold objectives (i. e., highest energy, lowest distance,
lowest delay, lowest overhead, highest QoS, and highest
trust), the optimal one is selected with the newly projected
SA-JSO model.

'e medical services can be provided when the medical
professional has analyzed the patient’s information. 'e
medical server keeps track of the users’ personal information
and their health data. 'e uncomplicated ailment is diag-
nosed by an expert method. If the patient’s condition is
critical, hospital specialists can determine a diagnosis based
on the patient’s information. Experts from all around the
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world can consult or collaborate over the internet. If the
patient needs an ambulance in an emergency, the system can
transmit the request to the nearest ambulance that is already
on its way. Figure 3 shows an illustration of the commu-
nication topology of IoT healthcare systems.

5. Description of Multiobjectives

“'e main objective of this study is to discover the most
optimum route or path for routing the medical data that
meet the specific criteria as expressed in equation (1),”
wherein fenergy, fdist, fdelay, fohead, ftrust, and fQoS refer to
fitness function related to energy, distance, delay, overhead,
trust (direct and indirect direct), and QoS factor,
respectively.

Ob � min
1

f
energy + f

dist
+ f

delay
+ f

ohead
+ f

trust
+ f

QoS
 . (1)

5.1. Energy. Energy is the vital factor that decides the net-
work life span. 'e battery cannot be re-energized as there is
no source of power. Nevertheless, transmitting data to BS
requires extra energy. In equation (2), E(ρl) signifies the
energy of lth hop, and di signifies the count of hops for
multihop routing.

Energy �
1
di



di

l�1
E ρl( . (2)

“'e energy consumed during communication E(Pl) is
in the form of energy required for transmitting packets ETX,
receiving the packet ERX, at idle state E1, and energy cost
EST.”

f
energy

� ETX + ERX + E1 + EST. (3)

'e energy consumed during the packet transmission
ETX is mathematically shown as per equation (4).

IoT Devices

Smart Home Smart Hospital

IoT

Ed
ge

 N
od

e
LocationsSmart City

Data
Collection

Cloud
Server

�ink Speak

Proposed Optimal Route Selection

Multi Objectives

Delay Energy Distance

Overhead Trust QoS
SA‑JSO
model

ANFIS

Membership
function

Optimal
route for

data
transfer

Figure 1: Architecture of the proposed routing model.

Complexity 5



Gateway

n1

n1

n1

n1

n1

n2

n2

n2

n2

n3

n3

n2 n3
n4

n4

n4

n3

n3

n7

C1

C2

User 1

User 2

User 4

User 5

User 3

n6

n5
n6

C5

C3

n5

C4
n4

n5

Figure 3: 'e communication topology of IoT healthcare systems: an illustration.

User 1

User 2

Raw Data
Transmission

Raw Data
Transmission

Access Gateway

Reference
Node

Reference
Node

User Data

User Data

Internet

patient Tracker

Emergency

Physician

Care taker

Figure 2: Architecture of the IoT healthcare system: an overview.

6 Complexity



ETX(M: e) �
Eete ∗M + Efr ∗M∗ e

2
, if e< e0

Eete ∗M + Epr ∗M∗ e
2
, if e≥ e0

.
⎧⎨

⎩ (4)

Here, ETX(M: e) signifies energy necessary to convey M

bytes of packets over eth distance, and Eete signifies electronic
energy as described in equation (5).” Also, Eagg signifies
“energy utilization during data collection.” Equation (6)
signifies the total energy needed for M packets at distance
Di. Equation (7) signifies the threshold energy e0.

Eete � ETX + Eagg. (5)

Eagg � Efre
2
. (6)

e0 �

���
Efr

Epr



. (7)

Accordingly, Epr signifies y “power amplifier energy” and
Efr signifies energy essential to employ a free-space system.

5.2. Delay. Delay is a significant QoS constraint for for-
warding data. “It is known as the hope ratio necessary for the
total number of routing nodes in the network” and is shown
in equation (8), wherein d signifies the traveled distance.

f
delay

�
d

speed
. (8)

5.3. Distance. 'e distance (fdistance) amid nodes is a vital
factor in portraying the network’s lifetime. 'e fitness for
fdistance is shown by equation (9), wherein v signifies node’s
speed and t signifies time.

f
distance

� v × t. (9)

5.4. Trust Model. All network hops include a higher trust
degree that might be deployed for assessing the trust level
among the respective nodes and hops nearby it. 'ere are 2
types of trust model: (i) direct trust and (ii) indirect trust,
which are shown in equation (9).

f
trust

� T
D

+ T
I

 . (10)

(i) Direct trust (TD): “'e direct trust is known as local
trust, and it presents the trust value as an agent to
determine the familiarities with the target agent.” It
is formulated as in equation (12), where Bv1 ,v2

(t)

correctly signifies forwarded packet count by node v2
to v1 at time t. In addition, Cv1 ,v2

(t) signifies packet
count transferred by node v2 from v1 at time t.

T
D

(t) �
Bv1 ,v2

(t)

Cv1 ,v2
(t)

. (11)

(ii) Indirect trust (TI): “It is determined from the
knowledge obtained through other hops. 'e

knowledge of other hops helps in deciding each
transaction.” It is formulated as in equation (13),
wherein q signifies the nearest node count.

T
I
(t) �

1
q



q

n�1
T

D
(t) (12)

5.5. QoS. 'e QoS is the procedure for managing the net-
work resources to reduce network jitter, latency, and packet
loss. 'e fitness function related to QoS fQoS is mathe-
matically formulated as in equation (14), wherein R signifies
node security.

f
QoS

� mean(R). (13)

5.6. Overhead. In sensor networks, the reception and
transmission of packets add overhead, and thus, it is es-
sential for communication. Header length and message
monitoringmust be reduced, as they could raise connectivity
costs. 'e increasing count of routing packets swapped
throughout the simulation is termed as routing overhead.
'e fitness regarding overhead is signified by fohead.

6. Optimized ANFIS for Data Routing via SA-
JSO Model

6.1. ANFIS Model. In this work, ANFIS is deployed for
optimal route selection for routing the medical data. It
usually contains five layers that are described as follows.

At the initial (fuzzy) layer, the membership degrees of all
linguistic variables are computed. For instance, if only 2
membership functions (MF) are there for every input X and
Y, the output of fuzzy layer is attained as in equations (15)
and (16), wherein μGi and μFi correspondingly signify
membership function of X and Y.

U
1
i � μGi(X), i � 1, 2 . . . n. (14)

U
1
i � μFi(Y), i � 1, 2 . . . n. (15)

Second layer: Here, the “AND part in the if-then rules” is
employed in the fuzzy system. “If-then fuzzy rules in ANFIS”
are described below, wherein n signifies rule count, and pi,
qi, and rai signify constraints, which are illustrated
throughout the training phase.

“Rule I: If X is Gi and Y is Fi, then
ui � piX + qiY + rai, i � 1, 2, . . . , n.”

'e output of the second layer is attained as shown in
equation (16).

U
2
i � wi � μGi(X) × μFi(Y), i � 1, 2, . . . , n. (16)

'ird layer: At this layer (normalized layer), the weights
computed at the prior layer are normalized by equation
(17).
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U
3
i � wi �

wi


n
i�1 wi

, i � 1, 2...n. (17)

Fourth layer: 'e system output is affected by every
node by multiplying its standard weight in “fuzzy if-
then rules” as shown in equation (18).

U
4
i � wiui � wi piX + qiY + rai( , i � 1, 2, . . . , n.

(18)

Fifth layer: At last, at the 5th layer, every input signal to
the layer is combined and this is said to be the output of
the system as shown in equation (19).

U
5
i � 

n

i�1
wiui, i � 1, 2, . . . , n. (19)

In this work, the membership function denoted by μ is
fine-tuned using the SA-JSO model.

6.2. Proposed SA-JSO Model. In this work, the membership
functions denoted by (μ) are optimally chosen via the SA-
JSO scheme. Figure 4 shows the representation for mem-
bership functions of ANFIS that are given as input for
optimization, wherein wn represents the entire count of
membership functions.

Even though the conventional JSO [20] model contains a
variety of enhancements, it suffers from specific limitations.
Hence, certain modifications are needed and a new algo-
rithm is developed. Generally, self-improvement is estab-
lished to be capable in conventional optimization schemes.
'e steps followed in the proposed SA-JSO are as follows.

'e JSO encompasses 3 rules: “(1) jellyfish either follow
the ocean current or move inside the jellyfish swarm, and a
mechanism called “time control” governs the switching
between these types of motions. (2) Jellyfish move in the
ocean to search for food. 'ey are more attracted to posi-
tions where the quantity of available food is greater. (3) 'e
quantity of food found is determined by the location and the
objective function.”

Ocean current: It includes numerous nutrients; as a
result, the jellyfish are fascinated by it. 'e orientation of
ocean current (Trend

������→
) is modeled as shown in equation

(20), wherein L∗ refers to the location of the present best
jellyfish in a swarm; μ refers to the average value of every
jellyfish location.

(Trend
������→

) � L
∗

− 3 × ra(0, 1) × μ. (20)

'us, the updated location of every jellyfish is specified
as in equation (21), wherein Li(it) refers to the location of ith

jellyfish at the time it.

Li(it + 1) � Li(it) + ra(0, 1) × Trend
������→

. (21)

Jellyfish swarm: A larger group of jellyfish is known as a
swarm, wherein the jellyfish travel about their own positions
(passive movement, type P) or a new position (active
movement, type S). While the swarm was produced, the

majority of jellyfish reveal P type of motion. Based upon
time, they gradually show type S movement. Type P is the
movement of jellyfish around their own locations. Con-
ventionally, the updated locality of every jellyfish is com-
puted based upon its position; however, as per the developed
SA-JSO model, the location is updated based upon pseu-
dorandom scalar integer (rai([1, 2])) as shown in equation
(22). In equation (23), Lbest(it) refers to the location of
jellyfish and rai([1, 2]) allows exploring the whole neigh-
borhood of the best jellyfish, it lies among 1 and 2, and lb and
ub correspondingly refer to lower and upper bound of
searching space.

Li(it + 1) � Lbest(it) +(−1)
rai([1,2])

× ra(0, 1) ×(ub − lb).

(22)

In addition, the proposed SA-JSO model includes an
adaptive convergence strategy as modeled in equation (23).

Li(it + 1) � Lbest(it) + ran∗ L
→

rand 1(it) − L
→

rand 2(it) 

+(1 − rand)
∗

L
∗

− L
→

rand 3(it) .

(23)

In equation (23), rand 1, rand 2, and rand 3 refer to the
indices of 3 solutions randomly picked from the populations
and ran refers to control constraint that lies among 0 and 1.

Moreover, the time control mechanism is introduced for
regulating the movement of jellyfish that deploys threshold
constant cth and time control function c(it). Here, c(it) is
computed as in equation (24), where itmax signifies maximal
iteration. Algorithm 1 explains implemented SA-JSO model.

c(it) � 1 −
it

itmax
  ×(2 × ra(0, 1) − 1)




. (24)

7. Application

'e principal areas of IoT applications are healthcare, the
environment, smart cities, and commercial, industrial, and
infrastructural fields. IoT can be defined as generating daily
information from an object and transferring it to another
one. Consequently, enabling communication between ob-
jects makes the range of IoT applications extensive, variable,
and unlimited. Hence, the developed ANFIS + SA-JSO
model can be used to find the location of nodes in prior and
forward the data packets toward the destination. At the same
time, the developed method can also be used in different
applications with different cases as shown in Table 3.

In healthcare programs, objects collect information
about patients and send it to remote nursing stations using
communication networks, especially the internet. Analysis
of information in nursing stations can lead to timely
treatment for patients and can also prevent potential risks
for patients. Given that some patients may be in critical
condition, the rapid and reliable transfer of data to the
nursing station can avoid death. Patient data transfer from a
remote point to a clinic or hospital, integration of medical
devices, and the possibility of data exchange between them
improve medical experiments in providing care. It also
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promotes interaction between physicians about the effect of
the drug, management and controlling various connecting
devices, the possibility of medically transmitting IoT in-
formation by physicians, accurate diagnosis of other health
problems and control patterns (heart rate, temperature,
blood pressure, and blood sugar levels in the body and
gastrointestinal tract), the possibility of transmission, and
the information used by the physician to process and per-
form the appropriate medical activity.

8. Results and Discussion

8.1. Simulation Procedure. 'e suggested EER protocol in
the IoT healthcare data routing model was implemented in
MATLAB. 'e data that support the findings of this study
are openly available in the UCI repository at https://archive.
ics.uci.edu/ml/datasets/heart+disease [21] reference num-
ber. “'ere are 76 attributes in this database, but all pub-
lished studies only use a subset of 14 of them. 'e Cleveland
database, in particular, is the only one that has been used by
machine learning researchers yet. 'e ‘goal’ field indicates
whether or not the patient has cardiac disease. It has an
integer value ranging from 0 (no presence) to 4. Experiments
with the Cleveland database have concentrated on simply
attempting to distinguish presence (values 1, 2, 3, and 4)
from absence (value 0).” 'e analysis was performed for two
groups: group 1 (long-distance data transfer, i.e., end-to-
end) and group 2 (short-distance data transfer (40% of
distance), and the simulation parameters considered for the
developed scheme are shown in Table 4. Every evaluation is
performed by correspondingly setting the node counts at
100, 250, 750, and 1,000. Accordingly, an assessment of the
proposed scheme was performed over the existing models
such as ANFIS +MFO, [22] ANFIS + SLnO [23]ANFIS +DA

[24], ANFIS + JSO, and Fuzzy +HHO, [25] regarding
“convergence analysis, fitness, life span, PDR, residual en-
ergy, and statistical evaluation.”

'e IoT-WSN for routing the medical data is simulated
in an area of 100m× 100m, and the node speed is pre-
determined as 2m/sec. 'e network is modeled in form of a
“graph G(V, E), with N counts of nodes denoted as V �

v1, v2, . . . vn  and m counts of edges E � e1, e2, . . . .em .”
'e network is considered as a homogeneous one, wherein
every node carries equivalent sensing area and processing
power as well. During node deployment, every node is as-
sumed to include a similar energy level. When a node is
employed, they are regarded as static and then every node in
the communiqué range transmits a HELLO message to-
gether with the node ID. 'e symmetric form of
communiqué occurs amid the SNs while they are in the
communiqué range R. 'e communiqué may be asymmetric
or symmetric. For symmetric communiqué, the node v1
arrives v2, and v2 arrives v1 as well. If the distance between v1
and v2 is lesser than R, then they both directly converse with
one another. If distance between v1 and v2 is superior to R,
nevertheless, there are no ways for them to directly com-
mune. 'e only cause following the drain of the node is its
energy exhaustion.

8.2. Statistical Analysis. 'e statistical analysis of the
implemented ANFIS + SA-JSO model over other traditional
models for varied metrics is shown in Tables 5 and 6 for 2
groups. “As meta-heuristic schemes are stochastic in nature,
every algorithm is executed for the number of times to attain
the statistic of the objective function.” 'e adopted
ANFIS + SA-JSO model demonstrates the superior out-
comes when evaluated over conventional schemes such as

Start
For i � 1 do
Compute time control as shown in (23)
If c(it)≥ 0.5

Jellyfish follow ocean current
else: jellyfish moves inside swarm

If ra(0, 1)> (1 − c(it))
Jellyfish position is updated based on proposed P type motion as shown in (21)
Introduce adaptive convergence strategy as modeled in (22)

else
Jellyfish exposes S type motion

end if
end if

end for
end

ALGORITHM 1: Implemented SA-JSO model.

L1 2 3 wn

Figure 4: Solution encoding.
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ANFIS +MFO, ANFIS + SLnO, ANFIS +DA, Fuzzy +HHO,
and ANFIS + JSO models. From Table 5, the proposed
ANFIS + SA-JSO model under the median case scenario
attained superior values over certain distinguished schemes.
In certain scenarios, the conventional schemes have
exhibited better values; however, the cost function of the
developed model has accomplished optimal values, and
therefore, this variation can be considered negligible.
Likewise, better results have been obtained by the proposed
work for group 2 in specific scenarios. 'us, the improve-
ment of the proposed NIS + SA-JSO model over the other
conventional methods is proved.

8.3. Convergence Analysis. Figures 5 and 6 describe the
analysis of the adopted ANFIS + SA-JSO scheme over tra-
ditional schemes such as MFO, SLnO, DA, and JSO for
group 1 and group 2 scenarios. Here, analysis is performed
by fixing the node counts for 4 variations such as 100, 250,
750, and 1,000, respectively. 'e evaluation is performed by
adjusting the iterations from 0, 5, 10, 15, 20, 25, and 30 to 35,
respectively. 'e resultants attained for group 1 by fixing
node counts at 100, 250, 750, and 1,000 are shown in Fig-
ure 6. On observing the analysis outcomes, the proposed
ANFIS + SA-JSO model has attained minimal values for all
node counts when compared to the existing schemes. Ini-
tially, from iteration 0 to iteration 5, the cost values are found
to be higher for proposed and evaluated models; however, as
the iteration count increases, better outputs are attained.
'at is, from iteration 5 to 30, the cost values go on reducing
for proposed and compared models; nevertheless, the
adopted ANFIS + SA-JSO scheme exhibits least values when
compared to the existing ones for both group 1 and group 2.
Moreover, it can be noticed that subsequent to the proposed
approach, the JSO approach has attained better outcomes
than MFO, SLnO, and DA models for both group 1 and
group 2. Predominantly, the adopted scheme is converged
better for node count of 1,000 for group 1, i.e., the presented
approach has accomplished a least-cost value (almost 0.01)
since it is enhanced via the ANFIS + SA-JSO optimization
theory. 'us, the overall evaluation shows the enhancement
of the presented model with the optimization-assisted
ANFIS technique. 'e optimized membership function of
ANFIS has thus ensured better efficacy to attain optimal
geographic routing for routing the medical data depending
upon the defined multiobjectives.

8.4. Analysis of Network Life Span. 'e life span of the
network is said to be a major aspect of WSN that is directly
accountable for increasing the network’s endurance. 'e
lifetime extension of the network is the most important

confront of the WSN. 'e majority of the existing works
have established novel schemes to prevail over this confront;
however, they did not offer much satisfactory outputs.
'ereby, this work focused on achieving the best routing
network with lower energy utilization, and this is clear from
the obtained outcomes as exposed in Figure 7. In consid-
ering group 1, the network life span is highly amplified for all
variations in the node count. Particularly, at node variations
of 500 and 800, the suggestedmodel has attained a higher life
span of the network (around 3), whereas at node variations
of 100 and 1,000, the suggestedmodel has attained a network
life span with the value of 2 for group 1. At node count� 200,
the life span of the ANFIS + SA-JSO is much better than
ANFIS +MFO, ANFIS + SLnO, ANFIS +DA, and
ANFIS + JSO, respectively. 'erefore, the ANFIS + SA-JSO
model is definitely the first rate for EEG routing, since it has
achieved the chief goal of lifetime growth.

8.5. Analysis of Fitness. 'e resultants acquired regarding
fitness for group 1 and group 2 scenarios are revealed in
Figure 8. As per equation (1), the fitness (considering energy,
distance, delay, overhead, and trust (direct and indirect
direct and QoS factor)) of the developed model should be
minimal, thereby ensuring better data transmission. Here,
on noticing the resultants, the developed ANFIS + SA-JSO
has accomplished minimal fitness for all node variations for
both group1 and group 2 scenarios. On examining the re-
sultants from group 1, when the count of nodes� 100, the
ANFIS + SA-JSO has accomplished the optimal fitness value
around 0, whereas, at other node variations, the
ANFIS + SA-JSO model has accomplished relatively higher
values of 10, 10, and 10 in that order.

Likewise, on observing the resultants from group 2,
when the count of nodes� 100, the ANFIS + SA-JSO has
acquired the optimal fitness value around 0, while, at other
node variations, the ANFIS + SA-JSO model has acquired
comparatively higher values of 10, 10, and 15 in that order.
Also, for group 2, the developed model has achieved the least
value of 15 at node variation of 200, whereas the existing
models such as ANFIS + SLnO, ANFIS +DA, ANFIS + JSO,
and ANFIS +MFO, and Fuzzy +HHO have acquired rela-
tively higher values of 700, 700, 700, 100, and 50 in that

Table 4: Simulation parameters.

Channel type Wireless
Antenna Omni antenna
Dimension X 100m
Dimension Y 100m
Total simulation time 10 s
Number of nodes 50, 100, 150, 200

Table 3: IoT healthcare applications.

Focus area Applications Device

Disease management system IoT healthcare service
providers

Independent handheld devices and
smartphones

Synthesis method for e-health to ensure high
availability New structure for e-health In connection with the patient’s body
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Table 5: Statistical analysis for adopted model over existing models for group 1 scenario.

Measures ANFIS + SLnO ANFIS +DA ANFIS + JS ANFIS +MFO Fuzzy +HHO [38] ANFIS + SA-JSO
Median 11.028 44.033 11.028 5.2934 25.672 5.2934
Worst 1988.4 2295.5 440.46 1049.9 94.783 61.553
Best 546.34 728.29 146.71 286.01 53.193 36.609
Mean 92.949 286.78 67.669 44.414 46.159 39.795
Std 963.32 1058.5 198.59 509.61 29.792 23.517

Table 6: Statistical analysis for adopted model over existing models for group 2 scenario.

Measures ANFIS + SLnO ANFIS +DA ANFIS + JS ANFIS +MFO Fuzzy +HHO [38] ANFIS + SA-JSO
Worst 3.368 77.616 3.368 3.368 20.32 3.368
Best 1882.8 1887.3 1887.3 3578.1 96.458 102.58
Median 498.51 657.48 594.06 922.35 42.099 53.468
Mean 53.965 332.49 242.76 53.965 25.809 53.965
Std 923.5 828.85 871.87 1770.9 36.378 48.128
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Figure 5: Convergence analysis of developed approach over compared approaches regarding group 1 scenario by fixing counts of nodes as
(a) 100, (b) 250 (c) 750, and (d) 1,000.
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order. 'us, the improvement of the developed model re-
garding fitness was established from the results.

8.6. Residual Energy. 'e remaining energy left after
transmitting and receiving medical data is known as residual
energy. 'e network with high residual energy has the
maximum network life span, and as a result, the reliability
will be higher for data transmission. Figure 9 shows the
resultants acquired for group 1 and group 2 scenarios re-
garding residual energy. Here, analysis is performed for
varied node variations such as 100, 250, 750, and 1,000. For

both group 1 and group 2 scenarios, the residual energy is
found to be higher for all node variations. Moreover, the
Fuzzy +HHO has acquired the nearby values as that of the
developed ANFIS + SA-JSO scheme for both scenarios;
however, the developed approach has acquired much su-
perior values than the Fuzzy +HHO scheme, thus proving
the supremacy of the adopted optimization-assisted ANFIS
model. In particular, for the group 2 scenario, the developed
approach at node count of 200 has exhibited a higher value
of 98, which is better than the existing ones. Hence, from the
overall assessment, it is apparent that the ANFIS + SA-JSO
model had achieved the top residual energy.
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Figure 6: Convergence analysis of developed approach over compared approaches regarding group 2 scenario by fixing counts of nodes as
(a) 100, (b) 250 (c) 750, and (d) 1,000.
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Figure 8: Analysis of PDR for developed approach over compared approaches regarding (a) group 1 and (b) group 2.
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Figure 7: Analysis of the life span of developed approach over compared approaches regarding (a) group 1 and (b) group 2.
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9. Conclusions

A novel medical data routing protocol was developed in this
research work depending upon the defined multiobjective
functions. 'roughout the routing, the most optimal routes
were chosen by optimized ANFIS, in which the membership
functions were optimized. 'e optimal route selection
considered energy, distance, delay, overhead, QoS, and trust.
Here, the ANFIS + SA-JSO model was deployed for opti-
mization. On observing the analysis outcomes, the proposed
ANFIS + SA-JSO model has attained minimal values for all
node counts when compared to the existing schemes. Ini-
tially, from iteration 0 to iteration 5, the cost values were
found to be higher for proposed and evaluated models;
however, as the iteration count increased, better outputs
were attained. 'at is, from iteration 5 to 30, the cost values
go on reducing for proposed and compared models; nev-
ertheless, the adopted ANFIS + SA-JSO scheme exhibited
least values when compared to the existing ones for both
group 1 and group 2. Also, for both group 1 and group 2
scenarios, the residual energy was found to be higher for all
node variations. Moreover, the Fuzzy +HHO has acquired
the nearby values as that of the developed ANFIS + SA-JSO
scheme for both scenarios; however, the developed approach
has acquired much superior values than the Fuzzy +HHO
scheme, thus proving the supremacy of the adopted opti-
mization-assisted ANFIS model. As a result, the adopted
routing model for medical data transmission was recom-
mended as a suitable one. In the future, this work may take
into account the time parameter, and it would also be
fascinating to apply our strategy to networks with hetero-
geneous propagation properties.
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