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*e double-diffusive convection is a significant physical phenomenon that arises in fluid mechanics. It is primarily associated with
a convection process in which two dissimilar density gradients with varying diffusion rates are considered.*e primary goal of this
study is to investigate the effects of double-diffusivity convection and partial slip with an inclined magnetic field on peristaltic
propulsion in an asymmetric channel for Oldroyd-4 constants nanofluids. *e flow of an Oldroyd-4 constant nanofluid is
mathematically modeled in the presence of double-diffusivity convection and a tilted magnetic field. Lubrication methodology is
applied to simplify the highly nonlinear system of partial differential equations (PDEs). *e numerical scheme is used to calculate
the solution of coupled nonlinear PDEs. Furthermore, the effect of changing the parameters associated with slip, thermophoresis,
Brownian motion, Grashof number of nanoparticles, Hartmann number, pumping, and trapping are investigated in this article. It
is noticed that the temperature rises as the Brownian motion and thermophoresis constraints increases.*is is because the growth
in the Brownian motion parameter indicates the increase in the kinetic energy of nanoparticles which results in warming up the
nanofluid. Also, concentration falls as the Brownian motion and thermophoresis constraints increases.

1. Introduction

*e peristaltic transportation of biological fluids has huge
number of applications in biomedical industry and hence
received huge attention from the researchers in last two
decades. Transport phenomenon of biological fluids is based
on peristaltic propulsion. *is phenomenon can be inter-
nally observed in the gastrointestinal tract, urine flow, blood
flow, male reproductive tract, esophageal swallowing, and
ureter and externally as worm’s movement. *is natural
process is caused by periodic relaxation and contraction of
muscles which produce a sinusoidal wave along the channel

or tube walls. Some of the worthwhile theoretical and ex-
perimental studies considering the peristaltic propulsion for
numerous basic fluid models are cited in references [1–6].
*ese studies have further been generalized for many non-
Newtonian fluid models like the Carreau model [7], Maxwell
model [8], Johnson–Segalman model [9], Williamson model
[10], Casson model [11], six-constant Jeffreys model [12],
Walter’s B model [13], hyperbolic tangent model [14],
Herschel–Bulkley model [15], Jeffrey model [16], Sisko fluid
[17], Oldroyd-4 model [18], Phan–*ien–Tanner model
[19], and Burgers’ model [20]. *e authors of these research
studies extended the work to new findings which may widen
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the horizon of their usage to biomedical engineering and
technology.

In the field of biomagnetic fluid dynamics (BFD), the
study of peristaltic flow is based on magnetohydrodynamic
(MHD) effects.*e study of these biological fluids (examples
of biofluids include blood, urine, and chyme) flows is im-
portant in bioengineering and medical sciences. *ese fluids
are broadly found in living organisms and influence of
magnetic field effects the flow greatly. Also, in peristaltic
MHD compressor and blood pump machines, MHD effects
on conductive physiological fluids become vital [21–25].

Nanotechnology is considered important in improving
as well as revolutionizing information technology, industry
sectors, homeland security, energy, food safety, medicine,
transportation, and environmental discipline. In this cen-
tury, many researchers and mathematicians are working on
the development of mathematics and physics of nanofluid
mechanics. *is is due to the fact that nanotechnology is
used in industry to get the optimum outputs in constrained
environment. It is, therefore, an attractive research area in
the modern fluid mechanics. Nanofluids are composed by
dissemination of nanosized materials/particles in the base
fluids (both viscous and inviscid liquids). It is known that the
term nanofluid was introduced first ever by J. C. Maxwell, a
Scottish scientist, in the late nineteenth century. Mostly,
modern work is based on the analysis of nanofluids made by
the Choi [26]. From this productive study, a vast number of
applications of nanotechnology can be found in micro-
channel cooling and reduction/enhancement in heat
transfer. *e bond of peristalsis with nanofluids has many
utilizations in biomedical science (e.g., radiotherapy for
cancer cure and drug delivery), chemical, and mechanical
engineering (pumps and transportation of chemicals). Re-
cently, such studies of nanoparticles along with different
flow geometries have been examined extensively in physi-
ological flows, such as references [27–35].

*e double-diffusive convection is an important physical
phenomenon arising in fluid mechanics. It is mainly asso-
ciated with such a convection process where two dissimilar
density gradients, having a diverse diffusion rate, are con-
sidered. *e literature review tells us that none of the
analysis has been considered for the double diffusion con-
vection with assumptions of creeping phenomena and low
Reynolds number. *e double diffusion convection and
peristaltic pumping have many applications of the innate
mechanism in industrial and chemical engineering. Because
of these applications, some authors have contributed to this
area with various fluid models. Few are cited in references
[36–42].

Incorporation of partial slips in fluid flows is essential in
the study of polymers and polishing the artificial heart valve.
To the best of our knowledge, the slip effects were first used
in the peristalsis by Chu and Fang [43]. Later, Akbar et al.
[44] further added these effects to examine the influence on
peristaltic flow of nanofluid. Also, these effects on hydro-
magnetic driven peristaltic flow were investigated by Abbasi
et al. in reference [45]. More recent works on these effects
can be viewed in references [46–50].

From the abovementioned discussion, the heat con-
vection impact and magnetic flux on double diffusion
convection cannot be neglected. *e study of the Oldroyd-4
constant nanofluid is studied in the literature but effects of
double diffusion and partial slip with inclined MHD are not
studied yet. So, the rationale of our current research is to
show how magnetic field and slip boundaries affect peri-
staltic flow and heat transfer with double diffusion
convection.

2. Flow Equations

*e equations that describe flow in an incompressible fluid
are as follows [36, 37]:

divV � 0,

ρf

dV

dt
  � divτ + ρf + g 1 − Θ0( ρf0 βT T − T0( 

+ βC C − C0( 

− ρp − ρf0  Θ − Θ0( ,

(ρc)f

dT

dt
  � k∇2T +(ρc)p DB(∇Θ · ∇T)

+
DT

T0
 ∇T · ∇T} + DTC∇

2
C,

dC

dt
� Ds∇

2
C + DTC∇

2
T,

dΘ
dt

� DB∇
2Θ +

DT

T0
 ∇2T.

(1)

In the abovementioned equations, temperature is rep-
resented by T, concentration, by C, nanoparticle volume
fraction, byΘ, V represents velocity, d/dt illustrates material
time derivative, f stands for body force, τ describes stress
tensor, g is acceleration, ρf represents base fluid density,
particles density is represented ρp, ρf0

describes fluid density
at T0, (ρc)p denotes the thermal capacity of nanoparticles,
(ρc)f refers fluid heat capacity, βT describes fluid volu-
metrical thermal expansion coefficient, βC stands for fluid
volumetrical solutal expansion coefficient, DTC denotes
Dufour diffusively, Soret diffusively is denoted by DCT, DB is
coefficient of Brownian diffusion, DT coefficient of ther-
mophoretic diffusion, Ds stands for solutal diffusively, and
thermal conductivity is represented by k.

*e Oldroyd-4 constant fluid stress tensor in [18] is
defined by the following equations:
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τ � − PI + S,

S + λ1
DS

Dt
+ λ3tr(S)A1 � μ 1 + λ2

D

Dt
 A1,

A1 � (∇V) +(∇V)
∗
,

DS

Dt
�

dS

dt
− (∇V)S − S(∇V)

∗
.

(2)

Where (λ1, λ3) represents relaxation times, λ2 is retardation
time, μ is denoted by viscosity, ∗ is used for transpose, and
A1 is Rivilin–Ericksen tensors.

3. Mathematical Formulation

We assume that an incompressible peristaltic flow and
electrically conducting of Oldroyd-4 constant nanofluid in 2
dimensional conduit having width equal to d1 + d2, in the
Cartesian coordinates system. *e channel’s center is sup-
posed to be along horizontal line, and cross-sectional area is
assumed to be beside the vertical line. Conduit boundary is
assumed to be moving with constant speed and shape like
sinusoidal wave train. Temperatures, solvent concentrations,
and nanoparticle concentrations of the lower and upper
walls are (T1,T0), (C1C0), and (Θ1Θ0), respectively. Fixed

magnetic field at an angle β is applied on the flow. It is
assumed that electric field is zero and the Reynolds number
is low so that it produces insignificant induced magnetic
field as compared to applied magnetic field.

*e geometric shape of wall is specified in Figure 1 and
mathematical expression is defined as follows[3]:

H1 � Y � d1 + d3cos
2π
λ

(X − ct) ,

H2 � Y � − d2 − d4cos
2π
λ

(X − ct) + φ ,

(3)

where (d3d4) illustrates wave amplitudes, d1 + d2 is channel
width, λ illustrates wavelength, t indicates time, and c is wave
velocity.*e range of phase difference ( φ) is 0≤φ≤ π. When
φ � 0, the channel is symmetric without a phase wave and at
φ � π, the channel with a phase wave. Furthermore, the
constraints φ, d1, d2, d3, and d4 satisfy the condition d2

3 +

d2
4 + 2d3d4cosφ≤ (d1 + d2)

2 *e velocity field in 2− direc-
tional and dimensional flow is. V � (U(X, Y, t)),

V(X, Y, t), 0)

*emotion equations in 2− dimensional incompressible
flow comprising Oldroyd-4 constant nanofluid are as
follows:

zU

zX
+

zV

zY
� 0, (4)

ρf

z

zt
+ U

z

zX
+ V

z

zY
 U � −

zP

zX
+

z

zX
SXX(  +

z

zY
SXY(  − σB

2
0cosβ(Ucosβ − Vsinβ)

+ g 1 − Θ0( ρf0 βT T − T0(  + βC C − C0(  − ρp − ρf0  Θ − Θ0( ,

(5)

ρf

z

zt
+ U

z

zX
+ V

z

zY
 V � −

zP

zY
+

z

zX
SYX(  +

z

zY
SYY( 

+ σB
2
0sinβ(Ucosβ − Vsinβ),

(6)

(ρc)f

z

zt
+ U

z

zX
+ V

z

zY
 T � k

z
2
T

zX
2 +

z
2
T

zY
2  +(ρc)p DB

zΘ
zX

zT

zX
+

zΘ
zY

zT

zY
 

DT

T0
 

zT

zX
 

2

+
zT

zY
 

2
⎡⎣ ⎤⎦

⎫⎬

⎭ + DTC

z
2
C

zX
2 +

z
2
C

zY
2 ,

(7)

z

zt
+ U

z

zX
+ V

z

zY
 C � Ds

z
2
C

zX
2 +

z
2
C

zY
2  + DTC

z
2
T

zX
2 +

z
2
T

zY
2 , (8)

z

zt
+ U

z

zX
+ V

z

zY
 Θ � DB

z
2Θ

zX
2 +

z
2Θ

zY
2  +

DT

T0
 

z
2
T

zX
2 +

z
2
T

zY
2 . (9)

Using the Galilean transformation between fixed and
wave frames as follows:
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v � V,

y � Y,

u � U − c,

x � X − ct,

p(x, y) � P(X, Y, t),

(10)

Defining the dimensionless quantities as follows:

x �
x

λ
, u �

u

c
, y �

y

d1
, v �

v

c
, δ �

d1

λ
, d �

d2

d1
, t �

ct

λ
, h2 �

H2

d2
, h1 �

H1

d1
, b �

d4

d1
, p �

d
2
1p

μcλ
,

a �
d3

d1
, Pr �

(ρc)f υ
k

,Re �
ρfcd1

μ
, υ �

μ
ρf

, Le �
υ

Ds

, Ln �
υ

DB

, u �
zψ
zy

, v � − δ
zψ
zx

,

M �

��
σ
μ



B0d1, θ �
T − T0

T1 − T0
, c �

C − C0

C1 − C0
, λ2 �

λ2c
d1

, λ3 �
λ3c
d1

, S �
μc

d1
S, NTC �

DCT C1 − C0( 

k T1 − T0( 
,

Grt �
gd

2
1 1 − Θ0(  T1 − T0( ρfβT

μc
, Grc �

g 1 − Θ0( ρfβc C1 − C0( d
2
1

μc
,Ω �
Θ − Θ0
Θ1 − Θ0

, λ1 �
λ1c
d1

,

GrF �
g ρp − ρf  Θ1 − Θ0( 

μc
d
2
1, Nt �

(ρc)pDT T1 − T0( 

T0k
, Nb �

(ρc)pDB Θ1 − Θ0( 

k
,

NCT �
DCT T1 − T0( 

C1 − C0( Ds

.

(11)

Where Grt, ReGrFNCTGrcPrNTCcMNtΩ, Le, θ, Nb, Ln, and
δ stands for thermal Grashof number, Reynolds number,
nanoparticle Grashof number, Soret parameter, solutal

Grashof number, Prandtl number, Dufour parameter,
solutal (species) concentration, Hartmann number,
thermophoresis parameter, nanoparticle fraction, Lewis

T1, C1, Θ1

T0, C0, Θ0
H2

H1

d2

d3

B0

d1

d4

β
Y

X

λ
ϕ|

Figure 1: Geometry of the problem.
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number, temperature, Brownian motion, Lewis number of
nanofluid, and wave number, respectively.

Now, using (10) and (11), (4) is identically satisfied and
equations (12)–(16) (after omitting bars) in the wave frame
becomes as follows:

Reδ ΨyΨxy − ΨxΨyy  � −
zp

zx
+ δ

zSxx

zx
+

zSxy

zy

− M
2cosβ Ψy + 1 cos β + Ψxδ sin β 

+ Grtθ + Grcc − GrFΩ,

(12)

Reδ3 ΨxΨxy − ΨyΨxx  � −
zp

zy
+ δ2

zSyx

zx
+ δ

zSyy

zy

+ M
2δsinβ Ψy + 1 cosβ

+Ψxδsinβ,

(13)

RePrδ Ψyθx − Ψxθy  � θyy + δ2θxx  + NTC δ2cxx + cyy 

+ Nb δ2Ωxθx + θyΩy ,

(14)

ReδLe Ψycx − Ψxcy  � δ2cxx + cyy  + NCT δ2θxx + θyy ,

(15)

ReδLn ΨyΩx − ΨxΩy  � δ2Ωxx +Ωyy 

+
Nt

Nb

δ2θxx + θyy .
(16)

Now, imposing constraints of Re − > 0 (low Reynolds
number) and δ≪ 1 (long wavelength), the equations. (19)-
(23) are now reduced as follows:

0 � −
zp

zx
+

zSxy

zy
− M

2cos2β Ψy + 1 

+ Grtθ + Grcc − GrFΩ,

(17)

0 � −
zp

zy
, (18)

z
2θ

zy
2 + NTC

z
2
c

zy
2 + Nb

zθ
zy

zΩ
zy

  + Nt

zθ
zy

 

2

� 0, (19)

z
2
c

zy
2 + NCT

z
2θ

zy
2 � 0, (20)

z
2Ω

zy
2 +

Nt

Nb

z
2θ

zy
2 � 0, (21)

Now, taking pressure out of (17) and (18) yields the
following expression as follows:

z
2
Sxy

zy
2 − M

2cos2β
z
2Ψ

zy
2 + Grt

zθ
zy

+ Grc

zc

zy
− GrF

zΩ
zy

� 0, (22)

where the dimensionless equation for Sxy is obtained from
equation (7)and expressed as follows:

Sxy �
1 + 2η1 z

2Ψ/zy
2

 
2

1 + 2η2 z
2Ψ/zy

2
 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

z
2Ψ

zy
2 , (23)

in which η1 � λ2λ3 and η2 � λ1λ3. Now, if η1 � η2 the model
of Oldroyd-4 constant fluid reduces to viscous fluid.

*e expression for Q (mean flow) is computed in the
dimensionless form as follows:

Q � F + 1 + d, (24)

where

F � 
h1(x)

h2(x)

zΨ
zy

dy � Ψ h1(x) − h2(x)( ,

h1(x) � 1 + acos2πx,

h2(x) � − d − bcos(2πx + φ).

(25)

For the problem under investigation, the slip boundary
conditions in dimensionless forms are defined as follows:

Ψ �
F

2
,
zΨ
zy

+ ε1Sxy � − 1 ony � h1(x),

Ψ � −
F

2
,
zΨ
zy

− ε1Sxy � − 1 ony � h2(x),

θ + ε2
zθ
zy

� 0, ony � h1,

θ − ε2
zθ
zy

� 1, ony � h2,

c + ε3
zc

zy
� 0, ony � h1,

c − ε3
zc

zy
� 1, ony � h2,

Ω + ε4
zΩ
zy

� 0, ony � h1,

Ω − ε4
zΩ
zy

� 1, ony � h2.

(26)

If ε1, ε2ε3ε4 � 0 in the parameters, then no slip conditions
exist.

3.1. Special Cases. In the absence of slip conditions
(ε1 � ε2 �ε3 �ε4 � 0), M � 0, Grt � 0, Grc � 0, GrF � 0, and
η1 � η2 the findings of reference [4] can also be recovered as
a limited case of existing problem.
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4. Numerical Solution and Graphical Outcomes

Numerical simulations become essential as analytical solu-
tions can only be found for a limited number of cases.
Numerical simulations provide us an alternative mean to
understand the problem and its solution without wasting the
real resources that are involved in the study. We can develop
a comprehensive understanding of the flow situations using
modern tools available in the form of software’s like:
MATLAB, MATHEMATICA, and ANSYS. *e main ob-
jective of the present work is to evaluate the consequence of
double-diffusion convection and partial slip on magneto-
Oldroyd-4 constants nanofluids with peristaltic propulsion
in an asymmetric channel. *e exact solutions of the
equations (24)-(29) are not easy to evaluate due to coupled
and highly nonlinear characteristics. *erefore, the

regressive equations are numerically solved in MATHE-
MATICA by using built-in command ND-Solve. Solutions
are utilized in obtaining pressure gradient, pressure rise, and
streamlines for different flow parameters. *e graphical
results are also established employing numerical solutions to
verify that numerical data are accurate and to examine the
impact of a variety of flow parameters.

4.1. Effects of the Hartmann Number. *e Hartmann
number is described as ratio of electromagnetic force to
viscous force. It is a regular occurrence in fluid flows
passing via magnetic fields. Figures 2(a) to 2(c) explain
the impact of velocity profile, pressure rise, and pressure
gradient on the Hartmann number M. As Hartmann
number enhances, the magnitude of the velocity profile
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Figure 2: Influence of the Hartmann number (M) on uΔp and dp/dx.
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Figure 3: Continued.
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significantly reduces in channel’s center and tends to
increase near peristaltic walls (see Figure 2(a)). Fur-
thermore, the profile of velocity has a parabolic shape. In
fact, enhancing magnetic number causes the Lorentz
force to increase, which tends as a retarding force and
slowing fluid motion. Figure 2(b) depicts M′sresponse to
pressure rise. It is illustrated in Figure 2(b) that increasing
M causes pressure rise to increase in peristaltic
(Q> 0,Δp> 0), retrograde (Q< 0,Δp> 0), and free
(Δp � 0) pumping zones. Moreover, it reduces in the
augmented (Q> 0,Δp< 0) pumping zone due to higher
values of M. *e pressure gradient continues to decrease
as the Hartmann number rises (see Figure 2(c)).

4.2. Effects of Nanoparticle (GrF), Solutal (Grc), and=ermal
(Grt)GrashofNumbers. In fluid dynamics and heat transfer,
the Grashof numbers are described by ratio of buoyancy to
viscous force that acts on a fluid. *e consequence of
nanoparticle, solutal, and thermal Grashof numbers on
velocity profile is illustrated in Figures 3(a) to 3(c). *e
magnitudes of the flow velocity rises when y ∈ [− 0.2, 0.35]

by enhancing GrF, while opposite phenomenon occurs when
y ∈ [0.35, 0.87]. Here magnitude of velocity field drops
(see Fig. 3(a)). *is happens because nanoparticles vis-
cosity drops, causing the velocity to decrease. In
Figure 3(b) and 3(c), it is noted that magnitudes of fluid
velocity drops when y ∈ [− 0.2, 0.35] but it increases when
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Figure 3: Influence of nanoparticle (GrF), solutal (Grc), and thermal (Grt) Grashof numbers on u, Δp, and dp/dx.
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y ∈ [0.35, 0.87] by enhancing Grc and Grt. In most in-
stances, thermal buoyancy serves to slow down the flow in
the regime. *e behavior of pressure rise for GrF, Grc, and
Grt is demonstrated in Figures 3(d) to 3(f ). It is noted in
Figure 3(d) that in all peristaltic regions (augmented
(Q> 0,Δp< 0), free ( Δp � 0), augmented (Q> 0,Δp< 0),
and retrograde (Q< 0,Δp> 0)) the pressure rise drops by
rising GrF values. On the other hand, Grc and Grt exhibit the
opposite trend. Here, pressure rises in all peristaltic zones are
increased by boosting Grc and Grt values (see Figure 3(e) and
3(f)). *e roll of pressure gradient for Grc and GrF are
explained in Figure 3(g) and 3(h). It is indicated in Figure 3(g)
that the pressure gradient significantly increases when values

of Grc increases. *e pressure gradient tends to reduce when
GrF increases (see Figure 3(h)).

4.3. Effects of Soret (NCT) and Dufour (NTC) Parameters.
*e outcomes of Soret and Dufour constraints are shown in
Figures 4(a) to 4(h). It is shown in Figures 4(a) and 4(b) that
NCT and NTC have a similar behavior on the velocity profile,
as already explained in Figure 3(a). Figures 4(c) and 4(d)
depict the impact of NCT and NTC on temperature profile.
*e temperature increases by increasing NCT and NTC. It is
only because temperature has a direct connection with the
constraints of Soret and Dufour. *e concentration and
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Figure 4: Effects of Soret (NCT) and Dufour (NTC) parameters on u, θ, c, and Ω.
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nanoparticle fraction profiles decrease by enhancing NCT

and NTC values (see Figures 4(e) to 4(h)). Its because
random motion reacts with micromixing and random
collision tendency of solid nanoparticle, spreading the solid
nanoparticles and lessening solute concentration.

4.4. Effects of the Brownian Motion (Nb) Parameter.
Figures 5(a) to 5(d) look at the impact of the Brownian
motion on dp/dxθc and Ω. It is clear from Figure 5(a) that
by increasing Nb values pressure gradient drops. *e
temperature and nanoparticle fraction increase by increas-
ing Nb values (see Figures 5(b) and 5(c)). When the
Brownian motion gets more vigorous, the nanoparticles are

effectively transferred from wall to fluid. *e temperature
rises as Nb rises as an outcome of this interaction. Fur-
thermore, nanoparticle volume fraction has a direct rela-
tionship withNb.*e adverse trends are noted for the case of
concentration. Here, by rising Nb values, the concentration
drops (see Figure 5(d)). In nature, the nanofluid is just a two-
phase fluid, and stochastic mobility of isolated nanoparticles
increases energy exchange rates while dropping concen-
trations in the fluid flow.

4.5. Effects of the=ermophoresis (Nt) Parameter. *e roll of
velocity, concentration, temperature, nanoparticle fraction,
and pressure gradient on Nt are indicated in Figures 6(a)–
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Figure 6: Continued.
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6(e).*e outcomes of altering the thermophoresis coefficient
on the flow velocity are seen in Figure 6(a). When value of
thermophoresis parameters rises the magnitude of flow
velocity, it increases in the zone y ∈ [− 0.2, 0.3]. Further-
more, it tends to fall when y ∈ [0.3, 0.86]. *e velocity of
fluid is maximum near the channel’s center. *e role of Nt

on temperature is shown in Figure 6(b). It shows that Nb and
Nt have an identical behavior of fluid temperature, as al-
ready shown in Figure 5(b). *e slightly different effects are
noted for the case of concentration and nanoparticle fraction
(see Figures 6(c) and 6(d)). Here, due to the rising tendency
of Nt, the concentration and nanoparticle fraction decreases.
*e occurrence of pressure gradient is elaborated in
Figure 6(e). It is noted in Figure 6(e) that pressure gradient
falls as thermophoresis parameter rises.

4.6. Effects of Slip Parameters (ε1 − ε4). *e outcomes of
parameters of slip-on velocity, concentration, temperature,
nanoparticle fraction pressure gradient, and pressure rise are
shown in Figures 7(a) to 7(g). It is noted in Figure 7(a) that
nature of velocity curve is parabolic. Moreover, by increasing
parameter of velocity slip, the magnitude of flow velocity
tends to fall when y ∈ [− 0.2, 0.1] and y ∈ [0.65, 0.86] but
reverse effects are noted when y ∈ [0.1, 0.65], here magni-
tude of flow velocity increases. *e impact of temperature
slip ε2 is shown in Figure 7(b). It is indicated in Figure 7(b)
that by enhancing temperature slip ε2 temperature drops in
the region y ∈ [− 0.2, − 0.1] but it tends to rise in region
y ∈ [− 0.1, 0.65]. *e kinetic energy of particles of fluid
increases due to slip which rises the fluid temperature.
Figures 7(c) and 7(d) depict the influence of parameters of
slip concentration ε3 and slip nanoparticle fraction ε4. *ere
is a fall in concentration and nanoparticle fraction in the
region y ∈ [− 0.2, 0.65] due to the rising values of slip pa-
rameter of concentration and slip factor of nanoparticle

fraction. Furthermore, opposite effects are noted in the
region y ∈ [0.65, 0.85] (see Figure 7(c) and 7(d)). *e
particle of fluid is interrupted less by the walls of channel, so
concentration drops as the value of ε3 increases. Hence, the
rate of mass transfer of nanoparticles is slowed. *e role of
pressure rise on velocity slip ε1 is drawn in Figure 7(e). It is
indicated in Figure 7(e) that pressure rise reduces in aug-
mented and retrograde pumping zones but increases in
augmented region by increasing velocity slip constraints.
*e pressure gradient increases due to the increasing be-
haviour of velocity slip constraints ε1 and nanoparticle slip
factor ε4 (see Figures 7(f) and 7(g)).

4.7. Effects of Non-Newtonian Parameters (η1 and η2). To
discuss the roll of non-Newtonian parameters η1 and η2 on
pressure rise, pressure gradient, and velocity, Figures 8(a) to
8(e) are displayed. It is exhibited in Figures 8(a) and 8(b) that
η1 and η2 shows similar behavior on pressure rise. It is il-
lustrated in Figures 8(a) and 8(b) that by increasing η1 and
η2, pressure rise increases in peristaltic and free and ret-
rograde pumping areas but reduces in the augmented region.
*e pressure gradient is maximum at channel’s center, but
near the channel wall’s pressure gradient drops due to the
increasing values of non-Newtonian parameters η1 and η2
(see (Figures 8(c) and 8(d)). It is shown in Figure 8(e) that M

and (η1, η2) have an identical behavior on fluid velocity, as
already explain in Figure 2(a).

4.8. Trapping Phenomenon. Trapping is an unusual occur-
rence in peristaltic propelling flows. It is begun by the de-
velopment of a fluid mass that internally moves and is
enclosed by streamlines of peristaltic wave. Streamlines
capture the mass bolus of fluid and move it forward using
waves of peristaltic at high flow rates and significant

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

dp
(d

x)

0.2 0.4 0.6 0.8 10
x

Nt = 0.1
Nt = 0.3
Nt = 0.5

(e)

Figure 6: Effects of Nt on u, θ, c, Ω, and dp/dx.
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occlusions. It is indicated in Figure 9 that due to the in-
creasing behavior of velocity slip factor ε1 size of trapped
bolus increases and amount of trapped bolus reduces in both
upper and lower portion of channel. By increasing non-
Newtonian parameters, η2 streamlines show that the trapped
bolus size enhances (see Figure 10). In Figure 11, it is il-
lustrated that the trapped bolus volume grows as the thermal
Grashof number Grt rises. *e reverse behavior is noted for
the Hartmann number M case. Here, the size reduces by
rising values of M (see Figure 12).

Table 1 shows the comparison with the existing
literature.

5. Conclusion

*emain objectives of this paper are to examine the effect of
double-diffusion convection and partial slip with a tilted
magnetic field on peristaltic movement in an asymmetric
channel for the Oldroyd-4 constants nanofluids. A nu-
merical methodology is used to solve nonlinear system of
PDEs. *e impact of several physiological parameters on
flow quantities is visually depicted. Based on our analysis, it
was found that the nanoparticle fraction and concentration
profile decrease by boosting slip factors of concentration and
nanoparticles. Also, the velocity profiles can be controlled by
adjusting the parameters under observation (like slip pa-
rameter, non-Newtonian parameter, and diffusivity pa-
rameters). *roughout the velocity profiles, it is observed
that velocity tend to increase, reach its maximum value, and
then decreases to meet the boundary condition while
moving from one end to the other. It was also found that the
profile of temperature rises as the Brownian motion and
thermophoresis constraints increases.*is is because growth
in the Brownian motion parameter indicates the increase in
the kinetic energy of nanoparticles which results in warming
up the nanofluid. Physically, thermophoresis demonstrates
the temperature difference of nanofluid in the channel walls,
and as a result, the temperature rises as the values of the
associated parameters are increased. Also, concentration
drops as the Brownian motion and thermophoresis con-
straints increases. Another main finding of the study is that
shape of trapped bolus decreases as the Hartmann number

increases. *is means that by making electromagnetic forces
dominant as compared to viscous forces can be effective in
drug delivery. Lastly, the confined bolus size grows as the
thermal Grashof number rises since buoyancy force becomes
dominant as compared to viscous forces.

Nomenclature

C: Solutal concentration
M: Hartmann number
T: Temperature
Pr: Prandtl number
GrF: Grashof number of nanoparticles
Le: Lewis number
Ω: Nanoparticle volume fraction
Nb: Brownian motion parameter
DB: Brownian diffusion coefficient
DT: *ermophoretic diffusion coefficient
Re: Reynolds number
Grt: *ermal Grashof number
Ds: Solutal diffusively
NTC: Dufour parameter
Nt: *ermophoresis parameter
Ln: Nanofluid Lewis number
(ρc)f: Heat capacity of fluid
(ρc)p: Heat capacity of nanoparticle
NCT: Soret parameter
DTC: Dufour diffusively
Grc: Solutal Grashof number
DCT: Soret diffusively

Small alphabets

u: Axial velocity
v: Transverse velocity
g: Acceleration due to gravity
b: Wave amplitude
d1, d3: Channel width
p: Pressure
k: *ermal conductivity
t: Time
d2, d4: Wave amplitudes
c: Propagation of velocity

Table 1: A comparison with the existing literature.

y � h(x)
Velocity profile u(x)

Present work (with partial slip) Viscous fluid [4](without partial slip)
0.919093 − 0.973134 − 1
0.80702 − 0.958414 − 0.960643
0.694947 − 0.945033 − 0.932377
0.582873 − 0.933854 − 0.914322
0.4708 − 0.925582 − 0.9056
0.358727 − 0.920802 − 0.90533
0.246653 − 0.919989 − 0.912633
0.13458 − 0.923532 − 0.926632
0.0225065 − 0.931737 − 0.946445
− 0.0895668 − 0.944838 − 0.971194
− 0.20164 − 0.963001 − 1
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Greek symbols

δ: Wavelength
Ψ: Stream function
ρp: Nanoparticle mass density
(ρc)p: Nanoparticle heat capacity
c: Solutal concentration
ω: Magnetic field inclination angle
βT: Volumetric coefficient of thermal expansion
βC: Volumetric coefficient of solutal expansion
ε3: Concentration slip parameter
ε4: Nanoparticles slip parameter
ε1: Velocity slip parameter
ε2: Temperature slip parameter
δ: Wave number
Θ: Temperature
ρf: Fluid density
ρf0

: Fluid density at T0.
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