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River segmentation of remote sensing images is of important research significance and application value for environmental
monitoring, disaster warning, and agricultural planning in an area. In this study, we propose a river segmentationmodel in remote
sensing images based on composite attention network to solve the problems of abundant river details in images and the in-
terference of non-river information including bridges, shadows, and roads. To improve the segmentation efficiency, a composite
attention mechanism is firstly introduced in the central region of the network to obtain the global feature dependence of river
information. Next, in this study, we dynamically combine binary cross-entropy loss that is designed for pixel-wise segmentation
and the Dice coefficient loss that measures the similarity of two segmentation objects into a weighted one to optimize the training
process of the proposed segmentation network. -e experimental results show that compared with other semantic segmentation
networks, the evaluation indexes of the proposed method are higher than those of others, and the river segmentation effect of
CoANet model is significantly improved. -is method can segment rivers in remote sensing images more accurately and co-
herently, which can meet the needs of subsequent research.

1. Introduction

Semantic segmentation of remote sensing images is widely
used. -e river is an important feature target, which has
important influences on the ecological environment,
climate change, and human activities. -erefore, the ac-
curate extraction of river information from remote
sensing images has great application values and is of great
significance for planning and construction of watercourse,
monitoring of water and soil resources, and compre-
hensive management of watershed [1–3]. River segmen-
tation plays an important role in the process of extracting
river information.

-e traditional river segmentation methods of remote
sensing images mainly include morphology, wavelet
transform, clustering, threshold, and partial differential
equation. Sghaier et al. [4] proposed a river extraction al-
gorithm combining partial literal science measurement and

shape-related knowledge to separate rivers and lakes from
images; Youssefi et al. [5] put forward a river segmentation
method based on the Bayesian classifier, which should first
establish the training map through morphological evalua-
tion and then improve the segmentation results using the
Bayesian method; Kang et al. [6] adopt a Gabor filter and
morphological operator to enhance river information and
achieve noise suppression and then give the river segmen-
tation through an automatically determined universal
threshold; and Tian et al. [7] use the corner feature, texture
feature, and entropy feature of remote sensing river images
to input SVM for training and divide each pixel into river or
background by decision function, while Han et al. [8]
proposed an improved active contour model, which takes
the median absolute deviation as the external energy con-
straint term to design a new energy weight to accelerate the
model evolution and complete the task of river
segmentation.
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With the continuous innovation of remote sensing
technology, the details of the background information of
surface features in remote sensing images are more abun-
dant, and the non-river interference noise is quite complex,
which leads to the increasing difficulty of target information
extraction and river information recognition. In addition,
the above algorithms are mostly semi-automatic, and subtle
changes in the recognition images will lead to a lot of work in
adjusting manual parameters. Besides, the algorithm itself
has problems such as poor robustness, low recognition
accuracy, and tedious process, which bring great challenges
to river segmentation. In recent years, deep learning has
become a heated topic in the study of artificial intelligence.
Deep learning theory represented by convolutional neural
network typically has made some achievements in the field
of image classification [9–11], semantic segmentation
[12, 13], feature extraction [14], smart grid [15, 16], etc. -e
method based on a convolutional neural network is able to
complete the modeling process through automatic learning
of features, avoiding the incomplete modeling process
caused by human intervention in the early stage. -e fully
convolutional network (FCN) [17] converts the last three
layers of the network into 1 × 1 convolutional kernel,
classifies images at the pixel level, and solves the problem of
image segmentation at the semantic level. Ronneberger et al.
[18] build the U-Net network based on FCN, take inverse
convolution as the up-sampling structure, and achieve
feature information fusion using the splicing technique to
obtain more spatial information; Badrinarayanan et al. [19]
proposed the SegNet network, removing the fully connected
layer in the network and directly connecting the one-to-one
corresponding encoding and decoding network to retain a
large amount of useful feature information in the images and
improve the accuracy of network segmentation; Yu et al. [20]
raised BiSeNet network, which is mainly composed of spatial
path and context path, extracting high-dimensional non-
linear features and low-dimensional spatial features, re-
spectively, so that the network has a broad receptive field and
rich spatial feature information to realize explicit image
segmentation; and using LinkNet [21] as the backbone
network, Zhou et al. [22] add dilated convolution layer [23]
in the central region to maximize the range of receptive field
and promote multi-scale feature fusion without causing
resolution loss of feature map, trying to keep the details of
the object space.

-e key to river segmentation of remote sensing images
lies in the identification of the associated river pixel infor-
mation in the images. However, in the actual segmentation
task, it is difficult to establish an efficient segmentation
model due to the interference of some nonassociated pixels,
such as bridge, shadow, riverbank, and river-like road. To
solve these problems, we propose a river segmentation al-
gorithm based on composite attention network, named
CoANet, which combines attention modules with dilated
convolution layer and forms a new central region between
encoding and decoding to improve the accuracy of river
segmentation of remote sensing images. -e proposed at-
tentive and similarity-sensitive framework makes the pro-
posed method a good solution that is capable of segmenting

detailed river region, including tributary, riverbank, and
bridge.

2. River Segmentation Model in Remote
Sensing Images

2.1. Network Model. -is study selects D-LinkNet network
architecture for river segmentation in remote sensing im-
ages. -e model uses LinkNet with precoder as its backbone
network, which is composed of coding area, central area, and
decoding area.-emain idea of the model is to complete the
segmentation by encoding the river information to the
feature information and then the decoding area mapping the
feature information processed by the central area to the
space. For the river segmentation task, the use of the dilated
convolution layer in the central area can enhance the re-
ceptive field of the feature points in the central region of the
network, ensuring that the information is not lost, and
meanwhile, the resolution of the feature map is not reduced.

In this model, the coding area is composed of an initial
convolution module with a size of 7 × 7 and stride� 2 and
four residual modules. -e residual module uses the pre-
trained ResNet34 [24] structure and adopts the jump con-
nection to enhance the generalization and characterization
ability. As the core of the central region, the dilated con-
volution layer module employs the connection mode of
series and parallel connection. Besides, a composite atten-
tion module is added to the original structure of the central
region to accurately obtain information on the road feature.
-e decoding area adopts the residual network bottleneck
connection structure with 1 × 1 convolution kernel [25]
shown in Figure 1 to improve the network computing ef-
ficiency and also uses the up-sampling of the transposed
convolution to restore the original image size. -e author of
this study takes D-LinkNet as the basic framework and
constructs a river segmentation model based on composite
attention mechanism with a repeated attention module in
the central region, as shown in Figure 2.

2.2. Attention Module. -e essence of the attention mech-
anism applied to the neural network is the distribution of a
series of attention coefficients, namely the weighted pro-
cessing of important features, to complete the emphasis on
important information and the suppression of irrelevant
information. For the river segmentation of remote sensing
images, the main role of the attention module is to select the
river region as the focus position from the complicated
background, generating a more discriminative feature
representation. To achieve the above goal, this study pro-
poses a composite attention mechanism, which combines
the attention of channel domain [26] and spatial domain
[27] effectively. -e composite attention module proposed
will be described in detail below.

2.2.1. Composite Attention Mechanism. Woo et al. proposed
the convolutional block attention module (CBAM) [28],
which adopts the serial structure of channel attention branch
and spatial attention branch. Park et al. proposed a
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bottleneck attention module (BAM) [29], which simply adds
the attention results of channel dimension and spatial di-
mension, making it difficult to identify small tributaries
under complicated background in the river segmentation
task. -erefore, to better extract features and integrate
feature information, we propose a composite attention
mechanism, as shown in Figure 3.

-e feature matrix Z ∈ Rh×w×c of any layer passes
through the channel attention branch and the spatial at-
tention branch in parallel to obtain the channel weight
matrix Wu and the spatial weight matrix Wv, respectively. By
multiplying the channel weight matrix Wu and the feature

matrix Z, the network can conduct weight assignment
according to the importance of different characteristics of
the input image. -e results are multiplied by the spatial
weight matrix Wv, so that the interference of the background
can be removed to obtain the location information of the
salient region of each feature map. In the whole process, two
attention branches are applied to the feature matrix, and the
composite operation of attention on the feature matrix is
completed. Finally, in the form of residuals, the results are
injected into the feature matrix Z, and the feature matrix Z′
with attention is obtained. -e whole process can be
expressed as follows:

Conv [(1×1), (m/4, n)]

Transposed-
Conv [(3×3), (m/4, m/4), stride=2]

Conv [(1×1), (m/4, n)]

Figure 1: Residual network bottleneck structure with 1× 1 convolution kernel.
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Figure 2: Composite attention network for river segmentation.
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Z′ � Wv ∗ Wu ∗Z(  + Z

� σ(V)∗ (σ(U)∗Z) + Z.
(1)

In formula (1), Z represents the input feature matrix and
Z′ represents the output result. U and V represent channel
and spatial feature matrix, respectively. Wu and Wv rep-
resent channel and spatial weight matrix, respectively. σ
represents the softmax function, assigning the weight pa-
rameters of 0-1 to ensure that the sum of all weights on this
dimension is 1.
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In formulas (2) and (3), c represents the number of
channels, while h × w stands for the size of each feature map.

2.2.2. Channel Attention Mechanism. In the traditional
methods of channel attention, such as squeeze and excitation
networks (SeNet) [30] and BAM [29], the average pooling is
adopted to compress the spatial dimension, which fails to
extract the texture features fully. However, CBAM [28]
directly adds the global average pooling and max pooling
results of the input feature matrix, making the combination
too simple. To fully retain the river texture information in
the segmentation task, the author of this study adopts the
method of splicing the two pooling results, as shown in
Figure 4.

-e function of the branch is to allocate the weight of the
input feature matrix Z ∈ Rh×w×c in dimension C according
to the importance of each feature map. -e original feature
matrix is compressed and mapped from space h × w × c to
space 1 × 1 × c by adopting the global average pooling and
max pooling. -e pooling results of the two are spliced, and
feature map U with dimension 1 × 1 × c is obtained to
remove the interference of spatial location information.
Since the channel number of the original input feature map
is C, it needs to go through two 1 × 1 convolution kernels to
reduce the number of channels to further extract the channel
features, and r represents the channel compression ratio. In
addition, the FBR(·) transformation is performed between
the two convolution kernels, as shown in the following
formula:

FBR(·) � Relu(BN(·)). (4)

-at is, using normalization and ReLU activation
function successively. -e attention branch of the above
channel can be expressed as follows:

U � Conv1×1 ReLU BN conv1×1(concat(max pooling(Z), avgpooling(Z)))( ( ( . (5)

In formula (5), U represents the channel feature matrix
and BN is normalization, while ReLU is the activation
function. After the channel feature matrix U ∈ R1×1×c passes
through softmax, the weight matrix Wu ∈ R1×1×c is obtained.

2.2.3. Spatial Attention Mechanism. Spatial attention is
designed to remove the interference of image background
information, such as the algorithm CBAM [25] using the
pooling method to compress the channel in the spatial
branch, BAM [26] using serial convolution, and dilated

convolution to realize channel compression. To better
eliminate the background information interference and
obtain more abundant information about river features, the
author of this study adopts the two-way parallel convolution
structure when compressing the channel, as shown in
Figure 5.

V1 � Conv1×1 ReLU BN conv1×1(Z)( ( ( , (6)

V2 � Conv1×1 ReLU BN conv1×3 Conv3×1(Z)( ( ( ( , (7)

Softmax

Softmax
spatial

Attention

Channel
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Z Z’h

w
c c

w

h

Figure 3: Proposed composite attention mechanism network structure.
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V � V1 ⊗V2, (8)

-e two parallel branches apply 1 × 1 and 3 × 3 con-
volution kernels to realize feature extraction of the input
feature matrix Z ∈ Rh×w×c to obtain diversified feature in-
formation. To reduce the calculation amount and save the
calculation cost, the 3 × 3 convolution kernel is decomposed
into 3 × 1 and 1 × 3 convolution kernels. Based on the re-
sults, the two branches are transformed by FBR(·) and
convoluted to map the feature information to space
h × w × 1. For feature descriptors V1 and V2, multiplying the
corresponding elements, the spatial feature matrix
V ∈ Rh×w×1 is obtained by the feature fusion of the two
matrices to obtain more abundant spatial information. -e
above spatial attention branch can be expressed as follows:In
the formula, V1 is the feature descriptor obtained by the
upper branch in Figure 5; V2 is the feature descriptor ob-
tained by the lower branch; and V stands for spatial feature
matrix, while ⊗ represents the multiplication of the cor-
responding elements of the matrix.

In the river segmentation task, we visualize the weights
of the final outputs of attention network. Figure 6 shows that
the network with attention mechanism is more expressive in
the river region. -e yellow region with higher brightness in
the attention network indicates that the features are clas-
sified as rivers with higher reliability, and it is easier to
identify the location of the river.

2.3. Network Framework Diagram. -e attention mecha-
nism is used in neural networks, usually in the form of

encoder-attention-decoder. According to the D-LinkNet
segmentation network structure shown in Figure 2, an at-
tention mechanism can be introduced in the central area to
improve network performance. Since D-LinkNet is an end-
to-end neural network structure without complicated
learning parameters and no need for a large number of
redundant calculations, the attention module can be directly
added to the network. Based on the above analysis, the
author of this study adds the proposed composite attention
model to the network, as shown in Figure 7, aiming at
reducing complicated background interference in the river
segmentation task, enhancing river feature information, and
effectively improving the accuracy of river segmentation.

In the structure frame diagram with the attention
composite module shown in Figure 7, the pretrained
ResNet34 is connected to the left side of the attention
module, which is used as an encoder to fully activate the
network’s representational ability. Connected to it on the
right are the five branches added to the dilated convolution
operation module, which forms the central area of the
network together. As a special pooling operation, the dilated
convolution has the advantage of increasing the range of the
receptive field without losing feature information, which can
output richer feature information in the task of river seg-
mentation with the composite attention module. -e green
arrow in the figure indicates the network depth, which is 4, 3,
2, 1, and 0 (0 means identity mapping), and the corre-
sponding receptive field size is 15, 7, 3, 1, and 0. -is
structure can complete multi-depth and multi-size feature
fusion without loss of resolution. Subsequently, a 1 × 1
convolutional layer, sigmoid function, and ReLU activation
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Concat

Conv
1 × 1

Conv
1 × 1

Global-average-pooling

Z h

w
c

(1 × 1 × c)

(1 × 1 × c)
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FBR (∙)

Figure 4: Proposed channel attention branch network.
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Figure 5: Proposed spatial attention branch network.
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function are used to obtain the probability map of river
prediction, and the binary image of the river segmentation
prediction of remote sensing images is obtained according to
the preset threshold.

2.4. Construction of Loss Function 2. -e loss function is an
important part of the deep learning network, which is used
to calculate the differences between the network prediction
result and the real label to optimize the network parameters
through back propagation update. At present, in the field of
deep learning semantic segmentation, the most widely used

loss function is cross-entropy [20]. D-LinkNet uses the Dice
coefficient (DICE) loss and binary cross-entropy (BCE) loss
functions [22] to constitute the form of DICE+BCE loss
function, among which BCE satisfies the “maximum entropy
principle” to optimize the network output so that the pre-
dicted output is consistent with the real label, while DICE is a
set similarity measurement function used to measure the
similarity between two samples. -e author presents a new
weighted loss function based on the original DICE+BCE
loss function. By weighting the two losses, the performance
of the network model for river segmentation and prediction
is optimized:

Figure 6: Visual map of attention network.
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μ + λ � 2. (11)

In formula (9), μ and λ represent the weight parameter of
DICE and BCE, respectively, n is the serial number of the
current iteration sample, N stands for the batch size, P is the
prediction probability graph of the output, and Y is the real
label.

3. Experimental Results and Analysis

3.1. Data Set. In this study, the Landsat 8 satellite image is
selected to make experimental data set. Landsat 8 satellite
was successfully launched by the National Aeronautics and
Space Administration (NASA) on February 11, 2013. -e
satellite carries two sensors, namely the operational land
imager and the thermal infrared sensor. Landsat 8 is con-
sistent with Landsat 1–7 in terms of spatial resolution and
spectral characteristics. -e satellite has 11 bands, with a
spatial resolution of 30 meters in bands 1–7 and 9–11, and a
full-color band with a resolution of 15 meters. -e satellite
can achieve global coverage every 16 days. -e images
studied in this study are all real color images synthesized in
4, 3, and 2 bands, which are close to the real color of the
ground objects. -e images are flat and gray, which can be
used in river segmentation. To make the algorithm more
general, as shown in Figure 8, data acquisition possesses the
following characteristics including wide distribution of re-
gions, diversity of geomorphic features, and diversity of river
morphology. In the process of acquisition, to apply the
collected image to the segmentation network proposed in
this study, the size of each sample is 1024×1024. 18000
remote sensing satellite images are gathered as a river
segmentation data set, and we further split it into a training
set with 10800 training images, a validation set with 3200
validation images, and 3200 test images for performance
testing. -erefore, in this study, the ratio of training/vali-
dation/test samples is 6: 2: 2.

With the deepening of the network, the parameters that
need to be learned also increased, which will easily lead to
the overfitting of the network. To solve this problem, the
author of this study uses data enhancement methods to
increase the amount of data, so as to enable these parameters
to work normally and improve the network generalization
performance. As shown in Table 1, the existing data are
appropriately translated, flipped (horizontal and vertical),
rotated, randomly clipped, and operated by changing the
HSV saturation. Figure 9 shows the results after using the
data enhancement methods.

3.2. Experimental Environment and Setting of
Hyperparameter. To verify the river segmentation effect of
the proposed network model, an objective evaluation is
made, and a control experiment is established, and the
software and hardware environment configuration of all
experiments in this study is shown in Table 2.

-e input of the network is the image with 1024×1024
pixel. -e initial learning rate is set as 0.0002, the mo-
mentum factor as 0.9, and the batch size as 8. -e learning
rate is adjusted four times, and the optimization algorithm
adopts stochastic gradient descent (SGD). -e training
process is iterated 150 times in total, and the learning rate is
multiplied by 0.8 every 30 epochs. After that, the training
model is saved as .pth file.

3.3. Evaluation Index. In the experiment, four evaluation
indexes, namely pixel accuracy (PA), mean pixel accuracy
(MPA), mean intersection over union (MIoU), and fre-
quency weight intersection over union (FMIoU), are used as
the reference basis to evaluate the river segmentation effect.
-e calculation formula is as follows:
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(12)

Among the formulas, k + 1 represents the number of
categories (k target classes and 1 background class) and pij

indicates the number of pixels with correct classification;
that is, the real number pij indicates the number of pixels of
category misjudged as category j, while pji is on the contrary
as pij and pij indicate false positive and false negative,
respectively.

3.4. Experiment on Weight of Loss Function. To limit the
value of μ and λ to a certain range, the limiting condition is
added that the sum of μ and λ is 2, as shown in formula (11).
By studying the gradient of DICE and BCE, it is found that
the loss of DICE is greater than that of BCE.-us, μ> λ is set
as the previous condition, and the best weight value can be
obtained through experiments. -e weights of DICE and
BCE in formula (8) are set according to five prior values of
(1.0, 1.0), (1.2, 0.8), (1.4, 0.6), (1.6, 0.4), and (1.8, 0.2), and the
performance of network river segmentation under different
weights is evaluated by various evaluation indexes. As shown
in Table 3, when the values of μ and λ are 1.6 and 0.4, re-
spectively, the evaluation indexes are higher than other
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values, and the best performance for network prediction is
obtained.

3.5. Training Process of CoANet Network. Figures 10(a) and
10(b), respectively, show the line graphs of the various
evaluation indexes of CoANet and D-LinkNet proposed in
this study with the iterative number after 150 epochs.

It can be seen from the figure that as the network it-
eration becomes stable, the indicators of CoANet are higher
than those of D-LinkNet. PA changes from 0.9691 to 0.9743,
MPA from 0.9467 to 0.9556, and MIoU from 0.9407 to
0.9502, while FMIoU from 0.9641 to 0.9728, and the four
indicators are all improved in varying degrees. It is not
difficult to see that the river segmentation ability of CoANet
is better than that of D-LinkNet, and the prediction effect is
also enhanced.

3.6. Comparative Analysis of Different Networks. To verify
the accuracy and effectiveness of CoANet proposed in this
study, five kinds of network, FCN-8s, U-Net, SegNet,
BiSeNet, and D-LinkNet, are selected and compared with the

network proposed in this study. As can be seen from Fig-
ure 11 and Table 4, CoANet has certain advantages com-
pared with other image semantic segmentation networks as
the training process can converge quickly and all indexes are
superior.

For details such as river boundaries, small buildings
along the bank, and bridges, it is still unable to predict
correctly. In all the four images, there are discontinuous
small tributaries, unsegmented bridges, and rough riverbank
edges.-e segmentation effect of BiSeNet is similar to that of
SegNet, and the segmentation accuracy and main river
channel segmentation are slightly improved, but there are
still defects in the processing of details such as small
tributaries and bridges. BiSeNet can obtain a relatively
complete prediction effect of river edge, which is the same as
SegNet. -ere are still defects in detail prediction, and the
segmentation effect obtained by River 2 and River 3 is the
most obvious. As a classic segmentation network, U-Net also
shows its advantages when dealing with river segmentation,
as shown in Figure 12(d), which can separate the river from
the background well. In addition, the performance of riv-
erbank segmentation is better than the above three networks.
For some details, such as the “L”-shaped building on the
riverbank in River 3, the segmentation effect is fairly good,
but it does not show enough accuracy in the bridge seg-
mentation. D-LinkNet has a good overall segmentation
effect due to the addition of dilated convolution layer in the
central region. For the details of bridges and tributaries, the
segmentation is relatively complete, but at the edge of riv-
erbank, there are detail segmentation errors, such as the
missegmentation of riverbank edge in River 2 and the
discontinuous segmentation of the “L”-shaped building on

Figure 8: Diversified data set.

Table 1: Parameters of different data augmentation methods.

Augmentation method Parameter
Translation ±15%
Random rotation ±15°
Random horizontal flip 50%
Random vertical flip 50%
HSV saturation ±50%
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the riverbank in River 3. CoANet is a modification of the
backbone network based on D-LinkNet. -e attention
mechanism and the dilated convolution layer constitute the
central region, which further enhances the sensitivity of the
network for detail processing. As shown in Figure 12(g), not
only the integrity of river segmentation but also the “L”-
shaped buildings along the riverbank similar to River 3, the
intersection area of River 4 double tributaries (including
details of multiple bridges at the same time), and the bridges
in each image all show satisfactory prediction effects.
CoANet’s performance in river segmentation is better than
that of other comparison networks, showing its ability to
deal with details.

To further verify the prediction ability of different
models in river target details, local clipping is performed in
Figure 12 to visually display the segmentation effect of
details. As shown in Figure 13, the clipping order is the same
as that shown in Figure 12: River 1, River 2, River 3, and
River 4. Square frames are used to mark the location of
segmentation details, and different colors are adopted to
distinguish segmentation effects (yellow square frame rep-
resents better segmentation, green square frame represents
poor segmentation, and blue square frame represents noise)
to display the overall performance of various segmentation
networks more systematically. After comparison, it is not
difficult to find that the CoANet proposed in this study has
the best generalization performance and shows a good
processing ability for the details in each figure as other
contrast segmentation networks have different degrees of
error segmentation in the prediction results. Both
D-LinkNet and U-Net mistakenly classify similar river areas
in River 2 as rivers (green square frame), while SegNet and
BiSeNet also show incoherent main river channels (green
square frame). FCN has the worst segmentation effect. In
addition to the above problems, noise even appears in the
segmentation results of river 2 and river 3 (blue square

(a) (b)

(c) (d)

(e) (f )

Figure 9: Diagrams of different data augmentation methods. (a) Original image. (b) Translation. (c) Random rotation. (d) Horizontal flip.
(e) Vertical flip. (f ) HSV saturation.

Table 2: Configuration of experiment.

Configuration version
Operating system 64 Bit Windows 10
Processor Intel(R) Core(™) i7-10700 CPU @ 2.90GHz
GPU NVIDIA GeForce RTX 3070（8G）
CUDA CUDA 11.0
Python Python 3.8.5
Depth framework PyTorch 1.8.1
Development tool PyCharm 2020.3
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Table 3: -e net performance comparison of different parameter weights.

(μ, λ) PA MPA MIoU FMIoU
(1.0, 1.0) 0.9703 0.9498 0.9432 0.9653
(1.2, 0.8) 0.9724 0.9537 0.9471 0.9682
(1.4, 0.6) 0.9735 0.9549 0.9489 0.9709
(1.6, 0.4) 0.9743 0.9556 0.9502 0.9728
(1.8, 0.2) 0.9728 0.9542 0.9476 0.9687
Bold indicates the maximum value of each evaluation index.
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Figure 10: Each evaluation index iteration line diagram. (a) Each evaluation index iteration line diagram of CoANet. (b) Each evaluation
index iteration line diagram of D-LinkNet.
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Figure 11: Variation curves of evaluation index for different networks. (a) MPA variation curves of different models. (b) MIoU variation
curves of different models.

Table 4: Comparison of evaluation indexes of different river segmentation networks.

Network PA MPA MIoU FMIoU
FCN-8s 0.9524 0.9236 0.9086 0.9462
SegNet 0.9602 0.9311 0.9172 0.9548
BiSeNet 0.9617 0.9335 0.9234 0.9603
U-Net 0.9682 0.9472 0.9418 0.9674
D-LinkNet 0.9691 0.9467 0.9407 0.9641
CoANet 0.9743 0.9556 0.9502 0.9728
Bold indicates the maximum value of each evaluation index.
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(a) (b) (c) (d) (e) (f) (g)

Figure 12: Comparison of effects of different networks. (a) Real image. (b) FCN-8s. (c) SegNet. (d) BiSeNet. (e) U-Net. (f ) D-LinkNet. (g)
CoANet.

(a) (b) (c) (d) (e) (f) (g)

Figure 13: Partial diagrams of different segmentation networks. (a) Real image. (b) FCN-8s. (c) SegNet. (d) BiSeNet. (e) U-Net. (f ) D-
LinkNet. (g) CoANet.
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frame). CoANet adopts the composite attention mechanism
to extract the texture and location information of the river
target more pertinently through the two branches of channel
and space, so that the network has the ability to resist in-
terference in the complicated background and further im-
proves the accuracy of processing details.

4. Conclusion

Aiming at the problems of river segmentation, this study
proposes an efficient extraction method based on composite
attention mechanism. Based on the D-LinkNet segmenta-
tion network and aiming at the phenomena of “fake de-
tection,” “missing detection,” and “false detection,” which
are easy to appear in the process of segmentation, a central
area combining the attention mechanism and the dilated
convolution layer is formed to effectively improve the ac-
curacy of river extraction. In the training process, the
original loss function is improved, a weight parameter loss is
constructed, and a priori weight parameter value is preset to
obtain the best effect through experiments. -e experiments
show that compared with the mainstream image semantic
segmentation network, the proposed CoANet module has
better performance in river segmentation. -e future work
will focus on the algorithm of the model to further optimize
the segmentation performance of the network model. In
addition, a lightweight backbone network also has a very
important application value for the study of river
segmentation.
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