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)e aviation industry is one of the most widely used applications in transportation. Due to the limited capacity of aircraft, revenue
management in this industry is of high significance. On the other hand, the hub location problem has been considered to facilitate
the demands assignment to hubs. )is paper presents an integrated p-hub location and revenue management problem under
uncertain demand to maximize net revenue and minimize total cost, including hub establishment and transportation costs. A
fuzzy programmingmodel and a genetic algorithm are developed to solve the proposedmodel with different sizes.)emining and
petroleum industry is used for case studies. Results show that the proposed algorithm can obtain a suitable solution in a reasonable
amount of time.

1. Introduction

Hub location and revenue management are two research
issues in network design that have been considered recently.
)e hub location model designs the transportation network
structure. In contrast, the revenue management model al-
locates network capacity to customers in various classes
based on price sensitivity.

Revenue management determines which products sell to
which customers and at what price [1]. On the other hand, it
has been widely used in the aviation industry due to the
limited number of aircraft seats. Seats are usually offered to
various customer classes at different prices [2]. Airlines
categorize customers and allocate different capacities
according to price to obtain maximum revenue. Capacity
control includes several models, algorithms, and policies
that allocate seats to maximize expected profits [3]. Hub
location problem is related to hub facilities placement and

allocation to demand nodes to determine traffic routes
between origin and destination pairs. Researchers attract this
issue because it significantly reduces the number of network
connections and system costs. In the star p-hub network, p
nodes are selected. Each node is connected to only one hub,
and all hubs are connected to a central hub. A central hub is
predefined, while other hubs are determined by the model
[4]. )ere are four types of hub location problems: median,
center, covering, and fixed cost hub location. In the p-hub
median problem, p nodes are located to minimize the total
cost of flows in the network. A number of the hub is pre-
defined in this problem. A p-hub center problem seeks the
optimal location of p-hubs. It allocates nonhub nodes to hub
nodes where the full path in-network is minimized. )e
number of hubs is not specified in the hub covering problem,
and demands are covered within a certain distance. Mini-
mizing the cost of installing facilities covered by hubs in such
problems. In hub location problem with fixed costs number
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of hubs is not defined at first. Flow and installation hubs
costs are minimized in this problem [5]. )is research is
structured as follows: the literature review is presented in
Section 2. )e credibility-based fuzzy theory is described in
Section 3. Section 4 defines the problem statement along
with model formulation. Section 5 describes the proposed
solution method. In Section 6, computational results are
presented, and finally, in Section 7, conclusions and rec-
ommendations for future research studies are presented.

2. Literature Review

Nowadays, the hub location problem is studied to maximize
profit considering a revenue-cost trade-off. Revenue man-
agement has been considered in several forms in research. It
is derived from the transportation flows [6–9]. In another
category, it is derived from a combination of pricing and hub
location [10]. Finally, integrated revenue management and
hub location are considered another category [11, 12].
Hörhammer [13] studied a dynamic multiperiod hub lo-
cation problem with multiple capacity levels. )ey consid-
ered a nonhub node can be a hub in the next period.
Proposed a method that has four main steps called Distri-
bution-Map-Transfer-Combination (DMTC). A quadratic
mixed-integer programming model based on flow and route
is developed. )e aim is to minimize connection costs be-
tween a nonhub and hub nodes, transportation costs be-
tween a hub and other ones, and installation costs. He et al.
[14] proposed a nonlinear mixed-integer programming
model for hub location problems considering support hub.
Lagrangian relaxation and branch and bound methods were
applied to solve the proposed problem. Ebrahimnejad et al.
[15] developed a particle swarm optimization algorithm for
shortest path problems with mixed fuzzy arc weights. Adibi
and Razmi [16] presented a two-stage stochastic model for
multiple allocations in the hub location problem. It is as-
sumed that demand and transportation costs are probabi-
listic. Damgacioglu et al. [17] developed a GA to solve the
problem considering uncapacitated allocation. Alumur et al.
[18] presented a multiperiod hub location problem for
multiple allocations. Installing a new hub and available hub
capacity expansion is allowed in the study. A MIP model is
developed to minimize shipment, hubs connection, hub
installation, and capacity expansion cost. Azizi et al. [19]
presented a hub location model under hub failure risk. )ey
considered that a support hub could be applied to supply
demand when a hub goes out of order. Grauberger and
Kimms [20] investigated an airline revenue management
problem considering price competition and limited capacity.
He [21] studied the revenue management effect on a hub-to-
hub network.

Tikani et al. [3] studied an integrated hub location and
revenue management considering several customer classes
to maximize profit and minimize costs. To do this end, a
two-stage stochastic model is developed to determine hub
location. Furthermore, an efficient genetic algorithm is
proposed to solve the problem on a large scale. Alumur et al.

[22] investigated capacitated single and multiple hub loca-
tion problems. A direct connection between two nonhubs is
considered in this study. A MIP model is developed to
minimize transportation and hub installation costs. Hou
et al. [12] presented an integrated p-hub location and rev-
enue management problem considering multiple capacities
under disruptions. A two-stage stochastic model is devel-
oped to maximize net profit in which hub installation cost,
shipment cost, and revenue obtained from ticket selling are
considered. A robust integrated optimization and stochastic
programming to maximize weighted total profit is presented
to obtain reasonable solutions. Huo et al. [11] studied an
integrated hub location and revenue management problem
considering average and worst-case analysis. A p-hub is
selected from n nodes while uncertain data and some sce-
narios are considered in the study. )en, a two-stage sto-
chastic programming model is developed to maximize
profit. Ahmadi et al. [23] proposed a unique hybrid strategy
for selecting users with Deep-Q-Reinforcement Learning
with Federated Learning. Korani et al. [24] proposed a re-
liable multimodal hub location problem. )ey developed a
Lagrangian method considering the strategic level that
causes to achieve accurate solutions. Čvokić and
Stanimirović [25] introduced a new uncapacitated single
allocation hub location problem under a deterministic and
robust approach to maximize net profit. A mixed-integer
quadratic model is proposed. Furthermore, a two-phase
meta-heuristic algorithm is developed. Rouzpeykar et al.
[26] developed a robust optimization model for the inte-
grated hub location and revenue management problem
under uncertainty. )ey applied a case study in Iran to
validate the proposed model.

Di Caprio et al. [27] developed an ant colony algorithm
under uncertainty for the shortest path method problem.
)ey assumed that the arc weights were fuzzy. )e proposed
algorithm is compared with GA, PSO, and the artificial bee
colony algorithms. Ebrahimnejad et al. [28] developed an
artificial bee colony algorithm under uncertainty for the
shortest path method problem. )ey considered mixed
interval fuzzy numbers for the arc weights. Sori et al. [29]
studied the constrained shortest path problem in location-
based online services to find a path with the lowest cost with
fuzzy time and cost. )e summary of the last works is
presented in Table 1.

According to Table 1, many studies have addressed the
hub location problem. In contrast, some of them have
considered it with revenue management simultaneously. A
few numbers types of research have examined this issue
under uncertainty. )ose research studies have applied
stochastic or robust approaches to deal with uncertainty. In
this study, a credibility-based fuzzy theory will be used to
model uncertainty in an integrated hub location and revenue
management for the first time. )rough this method,
managers can select different levels of confidence based on
their experiences. A fuzzy mixed-integer programming
model has been developed to deal with the proposed
problem with uncertain parameters.
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3. Credibility-Based Fuzzy Theory

)is study uses a fuzzy approach to consider uncertainty
[30].

􏽥A � x, μ􏽥A
(x)􏼐 􏼑|x ∈ X􏽮 􏽯, (1)

where 􏽥A is a fuzzy set and μ􏽥A
(x) is calculated by the fol-

lowing equation:

μ􏽥A
(x): X⟶ [0, 1]. (2)

Different fuzzy numbers such as triangular fuzzy
numbers or trapezoidal fuzzy numbers can be used in the
fuzzy approach [31]. Due to the nature of the proposed
problem, the trapezoidal fuzzy number has been used in this
study. In a triangular fuzzy number, only one parameter
value gives the maximum amount of confidence. In contrast,
in the trapezoidal fuzzy number, the maximum value of a
parameter is obtained. In this case, the risk-taking of de-
cision-makers is reduced, and they can accept uncertainty in
natural conditions with more confidence [32]. A

membership function of a trapezoidal fuzzy number ξ �

(l, m1, m2, u) is as follows (Figure 1):

μ(x) �

x − l

m1 − l
l≤ x≤m1,

1, m1 ≤x≤m2,

u − x

u − m2
, m2 ≤x≤ u,

0, O.W.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

A fuzzy credibility model is applied for the integrated
proposed model. )e credibility measure is defined as [33]

Cr ξ ≤A{ } �
1
2
Pos ξ ≤A{ } + Nec ξ ≤A{ }{ }, (4)

where ξ and A are fuzzy variables and real numbers, re-
spectively. Possibility (Pos) and necessity (Nec) measures are
defined as (5) and (6), respectively.

pos ξ ≤A{ } � supμx(x)

�

0, x≤ l,

x − l

m1 − l
, l≤ x≤m1,

1, x≥m1,

Nec ξ ≤A{ } � 1 − supμx(x)
ξ ≥A

�

0, x≤m2,

1 −
u − x

u − m2
�

x − m2

u − m2
, m2 ≤x≤ u,

1, x≥ u.

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

)e possibility and necessity measures are also shown in
Figure 2.

)e following equation calculates the credibility measure
shown in Figure 3 [34]:

Table 1: Summary of previous research.

Researcher (year)
Problem Objective Model

Location Revenue management Cost Revenue Deterministic Stochastic Robust Fuzzy
Hörhammer [13] ∗ ∗ ∗

He et al. [14] ∗ ∗ ∗

Adibi and Razmi [16] ∗ ∗ ∗

Alumur et al. [18] ∗ ∗ ∗

Grauberger and Kimms [20] ∗ ∗ ∗

He [21] ∗ ∗ ∗

Tikani et al. [3] ∗ ∗ ∗ ∗ ∗

Alumur et al. [22] ∗ ∗ ∗

Hou et al. [12] ∗ ∗ ∗ ∗ ∗ ∗

Huo et al. [11] ∗ ∗ ∗ ∗ ∗

Čvokić and Stanimirović [25] ∗ ∗ ∗ ∗

Present study ∗ ∗ ∗ ∗ ∗
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Cr ξ ≤A{ } �
1
2

pos ξ ≤A{ } + Nec ξ ≤A{ }􏼈 􏼉

�

0, x≤ l,

x − l

2 m1 − l( 􏼁
, l≤x≤m1,

1
2
, m1 ≤x≤m2,

1
2

1 +
x − m2

u − m2
􏼠 􏼡, m2 ≤x≤ u,

1, x≥ u.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

If ξ is a trapezoidal fuzzy number and α> 0.5, then [35]

Cr ξ ≤x{ }≥ α⟹x≥ (2 − 2α)m2 +(2α − 1)u,

Cr ξ ≥ x{ }≥ α⟹x≤ (2α − 1)l +(2 − 2α)m1.
(7)

4. Problem Statement

In this problem, a central hub is connected to some hub
nodes. )ere are some candidate hub nodes that p of them
should be selected.)en, other nonhub nodes are connected
to hub ones so that total transportation and installation costs
are minimized while the revenue obtained from selling
tickets is maximized. Based on their capacity, aircraft de-
termine their route from a hub node to nonhub ones where
the maximum required demand is satisfied.

4.1. Model Formulation. )e proposed model includes hub
location problems and revenue management in the aircraft
industry under uncertainty to maximize revenue from
network transportation and minimize total cost. It is as-
sumed that all nodes can be selected as a hub and p-hubs
have been selected from a set of n nodes connected to a
central hub. Other assumptions are presented as follows.

4.2. Assumptions

(i) All origin and destination nodes are candidates to
become a hub

(ii) )e number of hubs is predefined
(iii) )e central hub location is given

µ

ξ

1

l m1 m2 u

Figure 1: Trapezoidal fuzzy number.
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Figure 2: Possibility and necessity measures. (a) (Pos) and (b) (Nec).
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Figure 3: Credibility measures.
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(iv) A node is only allocated to one hub
(v) Each two-node is not connected directly while they

connected by a hub
(vi) )ere is not any direct shipment between the two

hubs
(vii) )e number of flights between nodes (between

central and other hubs, as well as between hubs and
nonhubs) is limited

(viii) Aircraft which traverse between hubs and nonhubs
have different capacity

(ix) )e ticket price at each class is predefined
(x) Extra cargo for passengers is allowed
(xi) Goods can be carried

4.3. Notation

4.3.1. Sets and Indices

N: node number
P: hub number
K: flight class number
i, m: node indices i, m � 1, 2, . . . , N

j: hub indices j � 1, 2, . . . , P

k: flight class indices k � 1, 2, . . . , K

4.3.2. Parameters

disj0: distance from the central hub to hub j
disij: distance from hub j to nonhub i
cj0k: unit transfer cost between the central hub and hub
j for class k
cijk: unit transfer cost between hub j and nonhub i for
class k

capj0: available flight number from the central hub to
hub j
capij: available flight number from hub j and nonhub i
pimk: ticket price from node i to node m for class k
phimk: extra cargo price per unit from i to m for class k
pgim: goods carrying price per unit from i to m
dimk: demand between i and m for class k
vhimk: amount of extra cargo from i to m for class k
vgim: amount of goods carrying from i to m
cl1: the capacity of the link between the central hub and
other hubs
cl2: the capacity of the link between hubs and nonhubs
fc0: fixed cost for establishing a central hub
fcj: fixed cost for establishing hub j
A: a huge integer
λim: the confidence level of the decision-maker for the
link between i and m

4.3.3. Decision Variables

ximk: number of tickets sold between nodes i and m for
class k
yimk: protection level between nodes i andm for class k
zij 1: if nonhub i is connected to hub j, and 0 otherwise
zjj 1: if node i is selected as a hub, and 0 otherwise
oim 1: if a flight was done between nodes i andm, and 0
otherwise

4.3.4. Mathematical Model. )e proposed biobjective model
is formulated as follows:

max z1 � 􏽘
N

i�1
􏽘

N

m�1
􏽘

K

k�1
pimk × ximk

+ 􏽘

N

i�1
􏽘

N

m�1
􏽘

K

k�1
phimk × vhimk × oim

+ 􏽘
N

i�1
􏽘

N

m�1
pgim × vgim × oim,

(8)

min z2 � 􏽘
P

j�1
􏽘

K

k�1
cj0k disj0 􏽘

N

i�1
􏽘

N

m�1,m≠i

ximk

cl2
􏼠 􏼡zij 1 − zmj􏼐 􏼑⎛⎝ ⎞⎠ + dis0j 􏽘

N

i�1
􏽘

N

m�1,m≠i

ximk

cl2
􏼠 􏼡zij 1 − zmj􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 􏽘
N

i�1
􏽘

P

j�1
􏽘

K

k�1
cijk disij 􏽘

N

m�1,m≠i

ximk

cl1

⎛⎝ ⎞⎠ + disji 􏽘

N

m�1,m≠i

ximk

cl1

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦zij

+ 􏽘
P

j�1
fcjzjj + fc0,

(9)
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st

􏽘

P

j�1
zij ≤ 1 ∀ i � 1, 2, . . . , N, (10)

􏽘

N

j�1
zjj � P, (11)

zij ≤ zjj ∀ i � 1, 2, . . . , N, ∀ j � 1, 2, . . . , P,

(12)

ximk ≤ 􏽥dimk ∀ i, m � 1, 2, . . . , N, ∀ k � 1, 2, . . . , K, (13)

ximk ≤yimk ∀ i, m � 1, 2, . . . , N, ∀ k � 1, 2, . . . , K, (14)

􏽘

K

k�1
ximk ≥ oim ∀ i, m � 1, 2, . . . , N, (15)

􏽘

K

k�1
ximk ≤A × oim ∀ i, m � 1, 2, . . . , N, (16)

􏽘

N

i�1
􏽘

P

j�1
􏽘

K

k�1
yimk/cl2( 􏼁zij 1 − zmj􏼐 􏼑

+ 􏽘
N

i�1
􏽘

P

j�1
􏽘

K

k�1
ymik/cl2( 􏼁zij 1 − zmj􏼐 􏼑≤ capj0 × zjj

∀ j � 1, 2, . . . , P,

(17)

􏽘

N

m�1
􏽘

K

k�1
yimk/cl1( 􏼁 + 􏽘

N

m�1
􏽘

K

k�1
ymik/cl1( 􏼁≤ 􏽘

P

j�1
capij × zij + A

× zii

∀ i � 1, 2, . . . , N,

(18)

zij, oim ∈ 0, 1{ } ∀ i, m � 1, 2, . . . , N, ∀ j � 1, 2, . . . , P,

(19)

ximk, yimk ≥ 0 ∀ i, m � 1, 2, . . . , N, ∀ k � 1, 2, . . . , K.

(20)

Equation (8) shows the revenue obtained from selling
tickets in various classes and carrying extra cargo and goods.
Equation (9) calculates the total cost of the network, in-
cluding the total transportation cost between nodes and the
total installation cost of hubs. Total network profit is ob-
tained from the difference between the two objective
functions (z1 − z2). Equation (10) ensures that each nonhub
node should be allocated to only one hub. Equation (11)
states that there are precisely p-hubs in the network.
Equation (12) enforces that a nonhub node has been allo-
cated to a hub node if this node had been selected as a hub.
Equations (13) and (14) show that the maximum number of
sold tickets equals demand and the protection level, re-
spectively. Equations (15) and (16) indicate that a flight

between nodes i and m if tickets had sold for that route.
Equation (17) states that the protection level should not
exceed the physical capacity between the central hub and
other hubs. Equation (18) indicates that the protection level
should not exceed the physical capacity between hob and
nonhub nodes. Finally, variables of the model are introduced
in equations (19) and (20).

4.3.5. Credibility-Based Fuzzy Approach. Generally, the
credibility-based chance-constrained programming [31, 36]
is a computationally efficient fuzzy mathematical pro-
gramming approach that relies on solid mathematical
concepts and can support different kinds of fuzzy numbers
such as triangular and trapezoidal forms as well as enabling
the decision-maker to satisfy some chance constraints in at
least some given confidence levels. According to equation
(18), a trapezoidal fuzzy number is considered for demand
between nodes. Based on the credibility approach, equation
(13) is reformulated in equation (21), which is equivalent to
equation (24).

Cr ximk ≤ 􏽥dimk􏽮 􏽯≥ λim ∀ i, m � 1, 2, . . . , N, ∀ k � 1, 2, . . . , K,

(21)

ximk ≤ 2λim − 1( 􏼁􏽥dimk(1)

+ 2 − 2λim( 􏼁􏽥dimk(2)

∀ i, m � 1, 2, . . . , N, ∀ k � 1, 2, . . . , K.

(22)

5. Solution Methodology

)e proposed model is NP-hard, and its complexity in-
creases by increasing the number of hubs [3]. )us hub
selection and its assignment to other nonhub nodes would
be more complex.)erefore, large-sized problems cannot be
solved by the exact method in a reasonable time. To deal with
this problem, a genetic algorithm, a population-based meta-
heuristic, is employed in this paper.

5.1. Genetic Algorithm. Few works applied metaheuristic
algorithms to integrate revenue management and hub
location problem. However, the genetic algorithm is used
for this type of problem. )e main reason to apply this
approach is that it is easier to design the problem by GA.
)e pseudocode of the proposed genetic algorithm is
depicted in Figure 4, where algorithm parameters are
firstly set by the Taguchi parameter setting method. )en,
initial solutions are created where infeasible solutions are
revised until a feasible one is generated. If the feasible
solution is not achieved, we use the death penalty as the
infeasible solution. After that fitness function of each
solution is calculated. After creating initial solutions, a
repetitive process involving crossover and mutation op-
erators to generate offsprings and mutated solutions and
calculation of fitness functions of solutions and selection
of the best solution is made until a predetermined stop
condition is satisfied.
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5.1.1. Solution Representation. )e solution representation
of this algorithm is illustrated in Figure 5 and described as
follows: consider a central hub, two hubs, and three nonhubs
nodes. Firstly, a randommatrix is created equal to the node’s
number (5 in this example). )en, the maximum values in
the diagonal are selected as a hub while exactly p-hubs are
obtained. )en, the highest number in each row related to
nonhubs nodes at the intersection of columns assigned as
hubs determines its allocation.

As shown in Figure 5, nodes 1 and 4 are selected as a hub.
In the next step, the maximum value at the intersection of
columns selected as a hub in each nonhub row is allocated.
According to the allocation structure, the network design is
depicted in Figure 6.

5.1.2. Crossover Operator. )is study applies a one-cut point
crossover to create offspring chromosomes from two ran-
domly selected parents. Two new offspring are obtained
using the following equation:

p1 � b pfn +(1 − b)psn,

p2 � (1 − b)pfn + b psn.
(23)

Here, b is a matrix with parents size, and pfn and psn are
n dimension matrices of the first and the second parent,
respectively.

5.1.3. Mutation Operator. In this operator, a hub node
exchanges with a nonhub node. One of the genes repre-
senting a hub node is selected randomly. )en, it is changed
to a nonhub node so that the nonhub node with a higher
random value is selected as a hub based on Figure 5. )e
following equation is used to mutate each gene of a solution:

gennewj � 1 − genoldj . (24)

Figure 7 shows the mechanism of the mutation.

6. Computational Results

)e proposed model validity is assessed using two problem
instances based on Tikani et al. [3]. In the following, sample
problems are designed, and the algorithm parameters are
tuned.

6.1. Data Generation. Sample problems are presented in
various scales, as shown in Table 2. It should be noted that
input parameters for medium and large instances are ran-
domly generated using uniform distributions. Also, Table 3
states the problem dimension.

6.2. Parameters Tuning. Taguchi experimental design in
MINITAB software is applied to tune the parameters of the
proposed GA, including population size, number of itera-
tion, mutation, and crossover rates. )eir values are assessed
at three levels shown in Table 4.

RPD (relative percentage deviation) shown in the fol-
lowing equation is used as a GAP criterion to analyze the
performance of the proposed GA:

GAP �
algsol − bestsol

bestsol
􏼠 􏼡 × 100, (25)

where algsol and bestsol are the objective function value and
the best value of them obtained by the algorithm execution,
respectively. An instance (No. 1) is randomly selected to
execute for each of the combinations listed in Table 5 and
then the GAP measure is calculated and plotted as shown in
Figure 5.

Figure 8 indicates the Taguchi method analysis to tune
the proposed genetic algorithm parameters. As can be seen,
the best values for population size, number of iteration,
mutation, and crossover rate are 200, 300, 0.01, and 0.85,
respectively.

6.3. Solution Results. As mentioned above, a fuzzy MIP
model is proposed for the integrated hub location and
revenue management problem under fuzzy demand. A
genetic algorithm is developed to solve large-sized problems.
To validate the proposed genetic algorithm, small-sized
problems are solved by both the GAMS optimization
package and the proposed GA. )en, large-sized problems
are solved, and the results of the two methods are compared
in Table 6.

)e comparative results obtained from the two methods
revealed that the proposed GA could achieve the same
solution as the exact method of GAMS [37]. )is indicates
the validity of the proposed genetic algorithm.Moreover, the
proposed GA can solve the proposed problem on a large
scale. )e computational time of solving sample problems
demonstrates that the problem has high complexity. )e
average time is increased by increasing the size of the
problems, as shown in Figure 9.

1- Parameter Setting

2- Create initial solutions

3- Calculate fitness function

4- Select the best solution

5- Create offspring using:

6- Crossover

7- Mutation

8- Calculate fitness function

9- Select the best solution

10- Check stop condition

11- If it is true, go to the next step while going to
step 5
12- End

Figure 4: Pseudocode.
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1 0.43 0.26 0.07 0.56

0.19 0 0.75 0.05 0.12

0.25 0.26 0 0.53 0.01

0.62 0.54 0.61 1 0.37

0.52 0.87 0.38 0.64 0

0.83 0.43 0.26 0.07 0.56

0.19 0.35 0.75 0.05 0.12

0.25 0.26 0.75 0.53 0.01

0.62 0.54 0.61 0.87 0.37

0.52 0.87 0.38 0.64 0.36

Figure 5: Solution representation.

1
Hub

3

5

2

Central
hub 

4
Hub

Figure 6: Network design [26].

1-0.83=0.17

0.83 0.43 0.26 0.07 0.56

0.19 0.35 0.75 0.05 0.12

0.25 0.26 0.75 0.53 0.01

0.62 0.54 0.61 0.87 0.37

0.52 0.87 0.38 0.64 0.36

0 0.43 0.26 0.07 0.56

0.19 0 0.75 0.05 0.12

0.25 0.26 1 0.53 0.01

0.62 0.54 0.61 1 0.37

0.52 0.87 0.38 0.64 0

Figure 7: Mutation operator.

Table 2: Sample problems parameters value.

Parameter Value Value
disj0 Uniform (3500, 50000) disij Uniform (1000, 3500)
cj0k Uniform (200, 500) cijk Uniform (100, 200)
capj0 Uniform (10, 20) capij Uniform (15, 30)
fc0 Uniform (100000, 200000) fcj Uniform (50000, 80000)
cl1 Uniform (5000, 10000) cl2 Uniform (10000, 15000)
pimk Uniform (500, 1500) dimk Uniform (400, 800)
phimk Uniform (20, 100) pgim Uniform (50, 150)
vhimk Uniform (50, 500) vgim Uniform (1000, 2000)
A 1000000 λim Uniform (0.5, 0.8)
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6.4. Sensitivity Analysis. In this section, the effectiveness of
essential parameters is analyzed. Firstly, the impact of de-
mand on objective functions is investigated. As shown in
Figure 10, objective function values increased by increasing
the amount of demand. Network revenue and total costs
increase when the number of passengers increases.

Furthermore, link capacity’s effect on objective function
is assessed. To this end, we change this capacity from −10%

to +10%, as shown in Figure 11. As expected, the capacity
link is only affected by the total cost.

Finally, the impact of confidence level (fuzzy member-
ship) on revenue and cost is analyzed. )is parameter shows
the confidence level of decision-makers for demand. )us,
λim it is changed from 0.5 to 1 and depicted in Figure 12. It
indicates that the higher the confidence level decision-
makers adopt, the total cost fluctuation will decrease based.

Table 5: Genetic algorithm orthogonal.

State no. Population size Crossover rate Mutation rate No. of iterations Value GAP
1 70 0.75 0.006 150 0.5032
2 70 0.85 0.009 300 0.1259
3 70 0.95 0.01 500 0.7419
4 150 0.75 0.009 500 0.6635
5 150 0.85 0.01 150 0.4917
6 150 0.95 0.006 300 0.0045
7 200 0.75 0.01 300 0.7124
8 200 0.85 0.006 500 0.7280
9 200 0.95 0.009 300 0.2942

321

0.90
0.75
0.60
0.45
0.30

321

population size crossover rate

0.90
0.75
0.60
0.45
0.30

321 321

mutation rate algorithm iterateration number

Main Effects Plot for Means
Data Means

M
ea

n 
of

 m
ea

ns

Figure 8: )e mean effect of GA.

Table 3: Sample problems dimension.

Size Prob. no. Nodes no. Hubs no. Classes no.

Small 1 5 1 3
2 6 1 3

Medium 3 10 2 4
4 12 2 4

Large 5 18 4 5
6 20 4 5

Table 4: GA parameters value.

Population size Crossover rate Mutation rate No. of iterations
70 0.75 0.006 150
150 0.85 0.009 300
200 0.95 0.01 500

Complexity 9



7. Conclusions and Future Directions

)is paper has developed a fuzzy MIP model for the inte-
grated revenue management and p-hub location problem.
)e objectives are maximizing network revenue as well as
minimizing total costs. A credibility-based fuzzy theory has
been used to deal with uncertainty in an integrated problem.
In order to evaluate the proposed mathematical model, some
problem instances have been used and solved using the
CPLEX solver of GAMS software. Furthermore, a genetic
algorithm has been developed for large-sized problems.
)en, a sensitivity analysis has been performed on crucial
inputs of the problem, including demand, link capacity, and
confidence level.)e revenue will be increased by decreasing
the number of hub nodes. )us, the number of hubs has an
essential effect on revenue earned from the network.
)erefore, managers should make connections among
nonhub nodes so that the minimum number of hub nodes is
opened and all nonhub nodes are allocated to the hub ones.

As mentioned above, only the demand for flight is
considered uncertain in this study. However, there are
different parameters, such as parameters related to cost, that
can be considered uncertain, too. A fuzzy approach is ap-
plied in this study. At the same time, other methods such as
robust optimization and stochastic programming could be
used in future works. Moreover, a credibility-based fuzzy
approach is applied in this study; however, there are other
approaches such as equivalent auxiliary crisp and α-cut level
concept. Moreover, artificial intelligence-based algorithms
can solve large-sized problems in reasonable run times
[38, 39].

Table 6: Solution results of sample problems.

Size Prob. no.
GAMS GA

Z1 Z2 CPU time (s) Z1 Z2 CPU time (s)

Small 1 640.000 425.000 74.6 640.000 425.000 43.6
2 673.500 447.000 91.4 673.500 447.000 76.4

Medium 3 1.098.000 921.500 753.6 1.095.500 923.000 136.1
4 — — >1000 1.154.000 963.500 160.8

Large 5 — — >1000 2.041.500 1.714.500 273.7
6 — — >1000 2.327.000 1.908.000 301.2

43.6
76.4

136.1
160.8

273.7
301.2

1 2 3 4 5 6
Problem No.

0

50

100

150

200

250

300

350

Ti
m

e (
s)

Figure 9: Computational time comparison.
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Figure 10: Effect of demand on the objective functions.
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Figure 11: Effect link capacity on the total cost.
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Figure 12: Confidence level effect on total cost.
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