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In this paper, some novel analytical and numerical techniques are introduced for solving and analyzing nonlinear second-order
ordinary differential equations (ODEs) that are associated to some strongly nonlinear oscillators such as a quadratically damped
pendulum equation. Two different analytical approximations are obtained: for the first approximation, the ansatz method with the
help of Chebyshev approximate polynomial is employed to derive an approximation in the form of trigonometric functions. For
the second analytical approximation, a novel hybrid homotopy with Krylov–Bogoliubov–Mitropolsky method (HKBMM) is
introduced for the first time for analyzing the evolution equation. For the numerical approximation, both the finite difference
method (FDM) and Galerkin method (GM) are presented for analyzing the strong nonlinear quadratically damped pendulum
equation that arises in real life, such as nonlinear phenomena in plasma physics, engineering, and so on. Several examples are
discussed and compared to the Runge–Kutta (RK) numerical approximation to investigate and examine the accuracy of the
obtained approximations. Moreover, the accuracy of all obtained approximations is checked by estimating the maximum residual
and distance errors.

1. Introduction

Duffing-type equation is one of the most important second-
degree differential equations that is used to describe many
different phenomena [1–6]. &e Duffing equation can be
used for describing a nonlinear oscillator with a cubic
nonlinearity, and the standard form of this equation reads as
€x(t) + f(x) � 0, with f(x) � 

∞
i�1 αix

i being the only odd
polynomial where i � 1, 3, 5, . . .. George Duffing, a German
engineer, is the first person who did arrive at this equation
and used it in the study of many different oscillators [3]. He
also prepared a book in this regard and explained in it many
applications that use this equation in the interpretation of
many natural phenomena. Since then, there has been a

tremendous amount of research works done about this
equation of motion and some related equations, including
(un)damped Duffing oscillator €x(t) + β _x(t) + f(x) � 0,
forced Duffing oscillator €x(t) + f(x) � F(t), forced damped
Duffing oscillator €x(t) + β _x(t) + f(x) � F(t), and many
other oscillators with odd polynomials and complicated
damping term [7–10]. Moreover, there is another type of
oscillator that combines both odd and even polynomials,
which is called the Helmholtz–Duffing (HD) oscillator
€x(t) + f(x) + g(x) � 0 (here, f(x) � 

∞
i�1 αix

i is only odd
polynomial where i � 1, 3, 5, . . . and g(x) � 

∞
i�2 cix

i is only
even polynomial where i � 2, 4, 6, . . .) and some related
oscillators such as (un)damped HD oscillator
€x(t) + β _x(t) + f(x) + g(x) � 0, forced HD oscillator
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€x(t) + f(x) + g(x) � F(t), forced damped HD oscillator
€x(t) + β _x(t) + f(x) + g(x) � F(t) and many other HD
oscillators with complicated damping term and complicated
polynomials [11–15]. All these oscillations have several
applications in various fields of science, e.g., oscillations in
electronic circuits, oscillations in different plasma models,
pendulum oscillator, etc. Due to the importance of these
equations, many studies have been conducted to find some
analytical and numerical solutions to accurately describe the
engineering and physical systems associated with these
oscillations [17–19].

As a contribution to the literature, in this article, we
present some novel analytical and numerical solutions to the
complicated dampedHD-type oscillator for a given arbitrary
initial conditions by means of both elliptic (exact solution)
and trigonometric functions (approximate solution). First,
we follow the work of Sugie [20] where the author obtained
the equation of motion of underwater pendulum and studied
the stability of this oscillator. &is equation is called the
quadratically damped pendulum equation [20]:

θ
..

+ 2ε θ
.

|θ
.

| + ω2
0 sin θ � 0, (1)

where ε represents the coefficient of the damping term and
ω0 indicates restoring coefficient per unit of the moment of
inertia. For small θ, equation (1) can be approximated as
follows:

θ
..

+ 2εθ
.

|θ
.

| + ω2
0θ � 0. (2)

Numerous oscillators with quadrature damping have
been investigated over a wide range of different fields
[21–26]. &ere are many methods for solving nonlinear
differential equations. &ere are many analytical and nu-
merical methods that dealt with solving different differential
equations, and some of these methods can be found in Refs.
[28–34]. In this paper, we will consider four different
methods for solving and analyzing equation (1). First, we will
solve this equation using the effective ansatz method in order
to find some analytical approximations. In the second
method, the hybrid homotopy Kry-
lov–Bogoliubov–Mitropolsky method (HKBMM) will be
employed to find an approximate solution with high ac-
curacy. On the other hand, two highly accurate numerical
schemes which are called the finite difference method
(FDM) and Galerkin Hats method (GHM) will be intro-
duced for analyzing evolution equation (1).

2. Analytical Approximations

In this section, two different approximations will be ob-
tained. For the first approximation, the ansatz method with
the help of Chebyshev approximate polynomial is employed
to obtain an approximation in trigonometric form. For the
second approximation, the new HKBMM is introduced.

2.1. First Approach: Ansatz Method and Trigonometric
Solution. Let us rewrite evolution equation (1) in the form of
the initial value problem (i.v.p.):

θ
..

+ 2ε θ
.

|θ
.

| + ω2
0 sin θ � 0,

θ(0) � θ0 and θ′(0) � θ
.

0.

⎧⎪⎨

⎪⎩
(3)

Based on Chebyshev polynomial approximation, the
value of sin θ can be expanded as

sin θ ≈ θ − λθ3,

θ
.

|θ
.

| ≈ r0θ
.

+ r1θ
. 3

, for|θ
.

|≤M,
(4)

where

r0 �
M

2

������

1 −
1
�
2

√



,

r1 �
1

M

������

2 −
�
2

√

,

λ �
2
13

.

(5)

Other possible choices for (r0, r1, λ) can be considered as

r0 �
5M

16
,

r1 �
3
5
48M,

λ �
1
6
.

(6)

For (ω0, θ
.

0) � (1, 0), the following approximation is
obtained:

M � −0.900775εθ0 + 0.240105ε + 0.905583θ0. (7)

Next, we replace the original i.v.p. (3) by the following
approximate i.v.p.

R ≡ θ
..

+ 2ε r0θ
.

+ r1θ
. 3

  + ω2
0 θ − λθ3  � 0,

θ(0) � θ0θ′(0) � θ
.

0.

⎧⎪⎪⎨

⎪⎪⎩
(8)

Assume that the solutions to the i.v.p. (8) have the
following formulas:

θTrigon � c0 exp(−ρt)cos f(t) + cos− 1 θ0
c0

  ,

θTrigon � c0 exp(−ρt)sin f(t) + sin− 1 θ0
c0

  ,

(9)

with the initial conditions (ICs)

f(0) � 0,

θ(0) � θ0,

θ′(0) � θ
.

0,

(10)

where the number ρ and the function f ≡ f(t) are chosen in
order to get the smallest possible residual error R(t):
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R(t) � θ″ + 2ε θ′ θ′


 + ω2
0 θ − λθ3 . (11)

Now by substituting ansatz (9) into the i.v.p. (8), we get

R � 51 sin(ϕ) + 52 cos(ϕ) + 53 sin(3ϕ)

+ 54 cos(3ϕ),

�������

b
2

− 4ac



,

(12)

with

51 �
1
2
c0e

− 3ερt
−3c

2
0ε f′( 

3
r1 − 3c

2
0ε

3ρ2r1 + 4εr0e
2ερt



−4ερe
2ερt

f′ − 2f″e
2ερt

],

52 �
1
4
c0e

− 3ερt
− 6c

2
0ε

2ρr1 + 4e
2ερt

  f′( 
2

− 3c
2
0λω

2
0 − 6c

2
0ε

4ρ3r1

−8ε2ρr0e
2ερt

+ 4ε2ρ2e2ερt
+ 4ω2

0e
2ερt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

53 � −
1
2
c
3
0εr1e

− 3ερt 3ε2ρ2 − f′( 
2

 f′,

54 � −
1
4
c
3
0e

− 3ερt
−6ε2ρr1 f′( 

2
+ λω2

0 + 2ε4ρ3r1 ,

(13)

where ϕ � f(t) + cos− 1(θ0/c0).
For 52 � 0, we get

f′( 
2

�
4e

2ερt ε2 ρ ρ − 2r0(  + ω2
0  − 3c

2
0 λω2

0 + 2ε4ρ3r1 

6c
2
0ε

2ρr1 + 4e
2ερt

� A +
B

1 + C exp(2ρεt)
,

(14)

with

A � ε2ρ ρ − 2r0(  + ω2
0,

B � −2ε2ρ2 − ω2
0

λ
2ε2ρr1

+ 1  + 2ε2ρr0,

C �
2

3c
2
0ε

2ρr1
.

(15)

Integrating equation (14) leads to

f � F(t) − F(0), (16)

with

F(t) �
1
ερ

��
A

√
tanh− 1

�������������
A + B/Ce

2ερt
+ 1



��
A

√⎛⎝ ⎞⎠⎡⎢⎢⎣

−
�����
A + B

√
tanh− 1

�������������
A + B/Ce

2ερt
+ 1



�����
A + B

√⎛⎝ ⎞⎠⎤⎥⎥⎦.

(17)

Inserting the value of f given in equation (16) into ansatz
(9) and applying the ICs θ′(0) � θ

.

0, the value of c0 can be
determined from the following quartic equation:

4 2ε2ρ2θ20 − 2ε2ρr0θ
2
0 + θ20ω

2
0 + 2ερθ0θ

.

0 + θ
. 2
0 

+ −4ε2ρ2 + 8ε2ρr0 − 4ω2
0 − 3λθ20ω

2
0

+12ε3ρ2r1θ0θ
.

0 + 6ε2ρr1θ
. 2
0c

2
0

+ 3 2ε4ρ3r1 + λω2
0 c

4
0 � 0.

(18)

Solution (9) θTrigon is presented in Figures 1(a) and 1(b)
for θ0 � 0 and θ0 � π/6 at (ε,ω0, θ

.

0) � (0.2, 1, 0.1). More-
over, in the same figure, solution (9) is compared to the RK
numerical approximation and the maximum distance error
according to the following relation is calculated:

Error ≡ L∞ � max0≤t≤T RK − θTrigon


. (19)

&e maximum distance error according to relation (19)
for θ0 � 0 and θ0 � π/6 at (ε,ω0, θ

.

0) � (0.2, 1, 0.1) is, re-
spectively, estimated as

L∞|θ0�0 � 0.00515945,

L∞|
θ0�

π
6

� 0.0511852.
(20)

It is noted that the accuracy of solution (9) becomes good
and acceptable for small θ0, but for large value of θ0, the
accuracy of solution (9) reduces as shown in Figure 1.

Also, the maximum residual error is defined as

ET(θ) � max
0≤t≤T

θ″(t) + 2ε θ′(t) θ′(t)


 + ω2
0 sin(θ(t))


. (21)

&is is another form for the error to check the accuracy
of the obtained approximations.

2.2. Second Approach: HKBMM. Let us consider the i.v.p.

€x + ω2
0x � F(t, x, _x), x(0) � x0 andx′(0) � _x0 for 0≤ t≤T.

(22)

Suppose that the physical problem described by (22)
involves some small parameters ε1, ε2,. . .., εr. Let x ≡ x(t) be
the solution to the i.v.p. (22) and assume that

F(t, x, _x) ≡ 0when ε1 � ε2 � . . . � εr � 0. (23)

&e solution x ≡ x(t) depends not only on t but also on
the parameters ε1, ε2, . . . , εr, so that we can rewrite x ≡ x(t)

as

x � x t; ε1, ε2, . . . , εr( . (24)

Let us multiply each parameter by some other parameter
p and consider the following p−parametric solution:

xp � xp t; pε1, pε2, . . . , pεr( . (25)

Accordingly, the function xp may be written in a power
series as follows:

xp � u0 + pu1 + p
2
u2 + · · · , (26)
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where uk depends on t only, say uk � uk(t).
Based on Krylov–Bogoliubov–Mitropolsky method

(KBMM), the solution of equation (22) is assumed to be

xp � a cos(ψ) + 
N

n�1
p

n
un(a,ψ) + O p

N+1
 , (27)

where each un is a periodic function of ψ and a and ψ are
assumed to vary with time according to

da

dt
≡ _a � 

N

n�1
p

n
An(a) + O p

N+1
 , (28)

dψ
dt
≡ _ψ � ω0 + 

N

n�1
p

nψn(a) + O p
N+1

 , (29)

where a ≡ a(t) and ψ ≡ ψ(t).
Moreover, the hybrid homotopy KBMM (HKBMM) is

suggested to be

H xp, t  � €xp + ω2
0xp − pF t, xp, _xp . (30)

&e next step is to write the residual Hp(x, t) as a power
series in p:

H xp, t  � €xp + ω2
0xp + pΥ1 + p

2Υ2 + p
3Υ3 + · · · . (31)

For the determination of the unknown functions un, ψn,
An, and a, we equate to zero the coefficients Υn in equation
(22) and then we can get a system of ODEs. To avoid the so-
called secularity, we choose only the solutions that do not

contain cos ψ nor sin ψ. For N � 2 (the first approxima-
tion), we may use the following formulas (we neglected all
terms containing pj for j≥ 2):

_x � p ω0u1,ψ − aψ1 sin(ψ) + A1 cos(ψ)  − aω0 sin(ψ),

x � p ω2
0u1,ψ,ψ − 2aψ1ω0 cos(ψ)

−2A1ω0 sin(ψ) − aω2
0 cos(ψ),

x
2

�
1
2
a
2 cos(2ψ) +

a
2

2
+ 2apu1 cos(ψ),

x
3

�
3
4
a
3 cos(ψ) +

1
4
a
3 cos(3ψ) + p

3
2
a
2
u1 cos(2ψ) +

3a
2
u1

2
 ,

x
4

�
1
2
a
4 cos(2ψ) +

1
8
a
4 cos(4ψ) +

3a
4

8

+ p 3a
3
u1 cos(ψ) + a

3
u1 cos(3ψ) ,

x
5

�
5
8
a
5 cos(ψ) +

5
16

a
5 cos(3ψ) +

1
16

a
5 cos(5ψ)

+ p
5
2
a
4
u1 cos(2ψ) +

5
8
a
4
u1 cos(4ψ) +

15a
4
u1

8
 ,

(32)

and

x _x � p

aω0 cos(ψ)u1,ψ + a
2ψ1 sin(ψ)(−cos(ψ))

+
1
2

aA1 cos(2ψ) +
aA1

2
− au1ω0 sin(ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, −a

2ω0 sin(ψ)cos(ψ),

Error = 0.00515945
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Figure 1: Both trigonometric solution (9) and RK numerical approximation are plotted in (θ, t)−plane.
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_x
2

� p
−2aω2

0 sin(ψ)u1,ψ + a
2ψ1ω0

+a
2ψ1ω0(−cos(2ψ)) − aA1ω0 sin(2ψ)

⎛⎝ ⎞⎠ −
1
2
a
2ω2

0 cos(2ψ) +
1
2
a
2ω2

0,

_x
3

� p

3
2
a
2ω3

0u1,ψ −
3
2
a
2ω3

0 cos(2ψ)u1,ψ

−
9
4
a
3ψ1ω

2
0 sin(ψ) +

3
4
a
3ψ1ω

2
0 sin(3ψ)

+
3
4
a
2
A1ω

2
0 cos(ψ) −

3
4
a
2
A1ω

2
0 cos(3ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
3
4
a
3ω3

0 sin(ψ) +
1
4
a
3ω3

0 sin(3ψ),

x
2

_x � p

1
2
a
2ω0u1,ψ +

1
2
a
2ω0 cos(2ψ)u1,ψ −

1
4
a
3ψ1 sin(ψ)

−
1
4
a
3ψ1 sin(3ψ) +

3
4
a
2
A1 cos(ψ)

+
1
4
a
2
A1 cos(3ψ) − a

2
u1ω0 sin(2ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
1
4
a
3ω0 sin(ψ) −

1
4
a
3ω0 sin(3ψ), (33)

with

u1,ψ,ψ � z
2
ψu1,

u1,ψ � zψu1.
(34)

&e approximate analytical solution is obtained by
putting p � 1. However, we may keep the parameter p and
then we may use it as a residual minimization parameter.
&e optimal value to p will be near p � 1.

Now, the proposed method can be applied for investi-
gating the i.v.p. (8):

θ
..

+ ω2
0θ � F(t, θ, θ

.

),

θ(0) � θ0 and θ′(0) � θ
.

0,

⎧⎪⎨

⎪⎩
(35)

where in our case, x � θ and

F(t, θ, θ
.

) � −2ε r0θ
.

+ r1θ
. 3

  + λω2
0θ

3
. (36)

Observe that when ε1 � ε⟶ 0 and ε2 � λ⟶ 0, we get
F � 0.

In equations (27)–(29), for N � 1 and λ � 2/13, we have

xp � a cos(ψ) + pu1(a,ψ),

_a � A1(a),

_ψ � ω0 + ψ1(a).

(37)

&e homotopy to equation (35) is written as

Hp(θ, t) � θ
..

p + ω2
0θp − p −2ε r0θ

.

+ r1θ
. 3

  +
2
13
ω2
0θ

3
 . (38)

&e substitution of equation (37) into equation (38) leads
to

Hp(θ, t) �
1
4

4ω2
0u1,ψ,ψ + 4u1ω

2
0 

+
1
4

−3a
3λω2

0 − 8aψ1ω0 cos(ψ)

+
1
4

−6a
3εr1ω

3
0 − 8aεr0ω0 − 8A1ω0 sin(ψ)

−
1
4
a
3λω2

0 cos(3ψ) +
1
2
a
3εr1ω

3
0 sin(3ψ)p + · · · . (39)

We must have
1
4

4ω2
0u1,ψ,ψ + 4u1ω

2
0 

+
1
4

−3a
3λω2

0 − 8aψ1ω0 cos(ψ)

+
1
4

−6a
3εr1ω

3
0 − 8aεr0ω0 − 8A1ω0 sin(ψ)

−
1
4
a
3λω2

0 cos(3ψ) +
1
2
a
3εr1ω

3
0 sin(3ψ) � 0.

(40)

&e coefficients of cos(ψ) and sin(ψ) must be vanished
to eliminate the secularity. Accordingly, we have

ψ1(a) � −
3
52

a
2ω0,

A1(a) � −
3
4
a
3εr1ω

2
0 − aεr0.

(41)

&us, equation (40) reduces to

1
4

4ω2
0u1,ψ,ψ + 4u1ω

2
0  +

1
4
a
3λω2

0 cos(3ψ)

+
1
2
a
3εr1ω

3
0 sin(3ψ) � 0.

(42)

Solving equation (42), the following particular solution
without any secularity terms is obtained:

u1(a,ψ) � −
1
208

a
3 cos(3ψ) − 13εr1ω0 sin(3ψ)( . (43)

From equations (37) and (41), the functions a ≡ a(t) and
ψ ≡ ψ(t) can be determined:
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_a � −
3
4
εr1ω

2
0a

3
− εr0a,

_ψ � ω0 −
3
52
ω0a

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(44)

By solving system (44), we get

a �
2

�����
r0/3r1



����������������������
1 + 4r0/3A

2
r1ω

2
0 e

2tεr0 − 1


· ω0

, (45)

and

ψ � ω0 +
r0

13ω0r1
 t + B −

1
26εr1ω0

log

e
2ερr0t

+
3A

2
r1ω

2
0

4r0
e
2tεr0t

− 1  .

(46)

We finally get the analytical approximation in its first
approximation (p � 1).

θ � a cos(ψ) −
1
208

a
3 cos(3ψ) − 13εr1ω0 sin(3ψ)( . (47)

We now introduce three optimization parameters by
replacing (ε,ψ) � (ρε, κψ) and then the approximation (47)
can be modified to be

θ(p, ρ, κ) � aρ cos ψρ,κ  −
p

208
aρ

3

cos 3ψρ,κ  − 13εr1ω0 sin 3ψρ,κ  ,

(48)

with

aρ �
2

�����
r0/3r1



�����������������������
1 + 4r0/3A

2
r1ω

2
0 e

2tερr0 − 1


ω0

, (49)

and

ψρ,κ � κ ω0t + B −
log e

2ερr0t
+ 3A

2
r1ω

2
0/4r0 e

2tερr0t
− 1   − 2ερr0t

26ερr1ω0

⎛⎝ ⎞⎠. (50)

&e numbers ρ, κ, and p are free parameters that we
choose in order to minimize the residual error

R(t) � θ″(t) + 2ε θ′(t) θ′(t)


 + ω2
0 sin θ(t). (51)

&e default parameter values are ρ � κ � p � 1. &e
constants A and B are determined from the initial conditions
(ICs) θ(0) � θ0 and θ′(0) � θ0.

Following the same procedure above, we can get some
higher-order approximations. For example, for N � 3, the
following solution is obtained:

θ � a cos(ψ) + S1a
3

+ S2a
5

+ S3a
7
, (52)

where the coefficients S1,2,3 are defined in Appendix. &e
values of (a,ψ) associated to this solution can be determined
from the following equations:

_a � −εr0a −
3
52

ε r0 + 13r1ω
2
0 a

3
−
3ε 5r0 − 16r1ω

2
0 + 429ε2r0r

2
1ω

2
0 

1664
a
5

−
27εr1ω

2
0 21 + 2197ε2r21ω

2
0 

173056
a
7
, (53)

and

_ψ � ω0 −
ε2r20
2ω0

+
3 ε2r20 − 2ω2

0 

104ω0
a
2

+
3ω0 494ε2r0r1 + 507ε2r21ω

2
0 − 5 

10816
a
4

+
3ω0 37687ε2r21ω

2
0 − 41 

2249728
a
6
. (54)

&e approximate solution of the i.v.p. (35) using the
HKBMM is introduced in Figures 2(a) and 2(b) for θ0 � 0
and θ0 � π/6. Also, the maximum distance error L∞ is es-
timated for the two cases as follows:

L∞|θ0�0 � 0.00145602,

L∞|
θ0�

π
6

� 0.0209098.
(55)
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It is observed that approximate solution of the i.v.p. (35)
using the HKBMM is characterized by high accuracy and
more stability for long time and for arbitrary values of θ0.
Also, this approximation is better than the trigonometric
solution (9) θTrigon as shown from Figures 1 and 2 as well as
from the values of the errors.

3. Numerical Solution

In this section, some effective and highly accurate numerical
schemes will be introduced for analyzing evolution equation
(3). Both the finite difference method (FDM) and Galerkin
Hats method (GHM) are presented below.

3.1. Numerical Approximation via FDM. First, let us discuss
and apply the FDM on the general second-order ODE.&us,
the following general second-order is introduced:

€x � F(t, x, _x), x(0) � x0, x′(0) � _x0 and 0≤ t≤T. (56)

Choose some positive integer n≥ 6 and divide the in-
terval [0, T] into n-subintervals by means of the knots
ti � ih, where h � T/n/(i � 0, 1, 2, . . . , n). &en, the first and
second-order derivatives can be approximated as follows:

x′ ti(  ≈
−12xi−5 + 75xi−4 − 200xi−3 + 300xi−2 − 300xi−1 + 137xi

60h
,

x″ ti(  ≈
−10xi−5 + 61xi−4 − 156xi−3 + 214xi−2 − 154xi−1 + 45xi

12h
2 .

(57)

Consequently, the following discrete version to ODE
(56) for i � 5, 6, . . . is obtained:

−10xi−5 + 61xi−4 − 156xi−3 + 214xi−2 − 154xi−1 + 45xi

12h
2

� F ti, xi,
−12xi−5 + 75xi−4 − 200xi−3 + 300xi−2 − 300xi−1 + 137xi

60h
 .

(58)

&e values of x1, x2, x3, and x4 are obtained from some
numerical or approximate analytical solution to the i.v.p.
(56). System (58) may be solved recursively.

&e above algorithm can be applied for analyzing the
i.v.p. (note here θ(t) ≡ x(t) without loss of generality):

θ
..

� F(t, θ, θ
.

),

θ(0) � θ0&θ′(0) � θ
.

0,

⎧⎪⎨

⎪⎩
(59)

with

F(t, θ, θ
.

) � −2ε θ
.

|θ
.

| − ω2
0 sin θ. (60)

&e numerical approximation using FDM is plotted in
Figures 3 and 4 for different values of (n, θ0). In Figures 3(a)
and 3(b), the FDM numerical approximation is plotted
against n � 150 and n � 300, respectively. Moreover, the
effect of θ0 on the numerical approximation is illustrated in
Figures 4(a) and 4(b) for θ0 � 0 and θ0 � π/6, respectively.
Furthermore, the maximum distance error is calculated for
all mentioned cases as follows:

Error = 0.00145602

–0.10

–0.05

0.00

0.05

0.10

θ

10 20 30 40 50 600
t

RK4
HKBMM

(ε, ω0, θ0, θ·0) = (0.2, 1, 0, 0.1)

(a)

Error = 0.0209098

–0.4

–0.2

0.0

0.2

0.4

θ

10 20 30 40 50 600
t

RK4
HKBMM

(ε, ω0, θ0, θ·0) = (0.2, 1, π/6, 0.1)

(b)

Figure 2: &e approximate solutions using both HKBMM and RK numerical method are plotted in (θ, t)− plane.
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L∞ � 0.0279013, for n, θ0(  � (150, 0),

L∞ � 0.00173893, for n, θ0(  � (300, 0),

L∞ � 0.0429752, for n, θ0(  � 150,
π
6

 ,

L∞ � 0.00284604, for n, θ0(  � 300,
π
6

 .

(61)

It is clear that the accuracy of the FDM numerical ap-
proximation increases with increasing n. Also, this ap-
proximation is stable against the long time intervals and

arbitrary angle θ0. Moreover, this approximation is better
than the trigonometric solution (9) θTrigon.

3.2. Numerical Approximation via Galerkin Hats Method.
First, let us consider a polynomial second-order forced
damped i.v.p.

€x + 2ε _x + P(x) � 0, x(0) � 0andx′(0) � _x0, (62)

where x ≡ x(t).
Let us consider the i.v.p.

Error = 0.0279013

10 20 30 40 50 600
t

–0.10

–0.05

0.00

0.05

0.10

θ

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, 0, 0.1)

(a)

Error = 0.00173893

10 20 30 40 50 600
t

–0.10

–0.05

0.00

0.05

0.10

θ

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (300, 0.2, 1, 0, 0.1)

(b)

Figure 3: &e approximate solutions using both FDM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, 0) and
(b) (n, θ0) � (300, 0).

Error = 0.0429752

–0.4

–0.2

0.0

0.2

0.4

θ

10 20 30 40 50 600
t

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, π/6, 0.1)

(a)

Error = 0.00284604

–0.4

–0.2

0.0

0.2

0.4

θ

10 20 30 40 50 600
t

RK4
FDM

(n, ε, ω0, θ0, θ·0) = (300, 0.2, 1, π/6, 0.1)

(b)

Figure 4: &e approximate solutions using both FDM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, π/6) and
(b) (n, θ0) � (300, π/6).
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€y + 2ε _y + P(y) � 0, y(0) � y0 andy′(0) � _y0. (63)

Suppose that x � x(t; c1) is the solution to the i.v.p.

€x + 2ε _x + P(x) � 0, x(0) � 0 andx′(0) � c1. (64)

Define
y(t) � x t + c0; c1( . (65)

&e constants c0 and c1 are determined from the system

x 0 + c0; c1(  � y0 andx′ 0 + c0; c1(  � _y0. (66)

&us, problemproblem (61) reduces to (60) by problem
(63) reduces to (62).

Some particular cases to the i.v.p. (62) are defined as

€x + 2ε _x + n(t) + p(t)x � f(t), €x + 2ε _x + n(t) + p(t)x + q(t)x
2



� f(t), €x + 2ε _x + n(t) + p(t)x + q(t)x
2

+ r(t)x
3

� f(t).

(67)

We will use the same idea for the linear case.
Here, we start to discuss the linear case in system (67):

€x + 2ε _x + p(t)x � 0, x(0) � 0 and x′(0) � _x0. (68)

An approximate solution to the i.v.p. (68) is assumed to
be in the following ansatz form:

x � 
n

k�1
ckφk(t), (69)

where the functions φk(t) are the so-called linear Galerkin
hats.

Let us investigate the present problem in the interval
0≤ t≤T and by choosing some positive integer n≥ 2 and
define the step h � T/n and let ξj � jh � jT/n for
j � 0, 1, 2, · · ·. &e functions φk(t) for k � 1, 2, . . . , n are
defined as

φk(t) �

c
t − ξk−1

h
, if ξk−1 ≤ t≤ ξk,

−
t − ξk+1

h
, if ξk ≤ t≤ ξk+1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(70)

For an illustration, see Figure 1.
Figure 1 Galerkin hats for n � 7 and T � 5.
Some properties of these functions can be illustrated as

follows:

φj(t)φk(t)dt � 0, (71)

for |j − k|≥ 2 and t ∈ [0, T], and


T

0
φp

j (t) �
2T

(p + 1)n
, (72)

for j≥ 1 and p � 1, 2, 3, . . ..
In general, for |j − k| � 1 and r, s � 0, 1, 2, 3, · · ·, we have


T

0
φr

j(t)φs
k(t) �

Tr!s!
n(r + s + 1)!

. (73)

Using the formula


T

0
φj(t)x(t)

N
dt �

h

(N + 1)(N + 2)



N−1

k�0
(k + 1) c

N−k
j−1 + c

N−k
j+1 c

k
j + 2(N + 1)c

N
j

⎛⎝ ⎞⎠,

(74)

for any N≥ 0 and c0 � cn+1 � 0, and assuming that
aj(t) ≡ aj � const, we may evaluate easily the following
integration:


T

0
P(x)φj(t)dt � 

m

N�0
aN 

T

0
φj(t)x(t)

N
dt for any j,


T

0
x″(t)φj(t)dt � − 

T

0
x′(t)φj
′(t)dt

�
cj−1 − 2cj + cj+1

h
for any j,


T

0
x′(t) x′(t)


φj(t)dt �

n

2T

������������

cj− 1 − cj− 2 
2



+

����������

cj − cj− 1 
2



 .

(75)

Now, let us return to the original i.v.p. (3):

θ
..

+ 2εθ
.

|θ
.

| + ω2
0 sin θ � 0,

θ(0) � 0and θ′(0) � θ
.

0.

⎧⎪⎨

⎪⎩
(76)

Using the Chebyshev approximation,

sin θ ≈ θ −
4
0
241θ3 +

θ5

131
for |θ|≤

π
2

. (77)

Another approximation may be obtained by minimizing
the integral



π
2
−π
2

aθ + bθ3 + cθ5 − sin θ 
2
dθ ⟶ min . (78)

&e minimization procedure yields the values

min �
π
2

−
3360 11975040 − 2661120π2 + 171720π4

− 2664π6 + 13π8 

π11
≈ 5.5 × 10− 9

, (79)
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with

a �
105 23760 − 2592π2 + 19π4 

π7 � 0.99977,

b � −
2520 18480 + 17π2 π2

− 120  

π9
� −0.16583,

c �
166320 1008 − 112π2 + π4

 

π11 � 7.5742 × 10− 3
,

sin θ ≈ θ −
1
6
θ3 +

θ5

132
.

(80)

&en, i.v.p. (76) can be reduced to the following ap-
proximate i.v.p.

θ
..

+ 2ε θ
.

|θ
.

| + ω2
0 θ −

4
0
241θ3 +

θ5

131
  � 0,

θ(0) � 0andθ′(0) � θ
.

0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(81)

Assume that the solution to i.v.p. (81) is given by

θ � 
n

k�1
ckφk(t). (82)

&e Galerkin method solves the following algebraic
system of nonlinear equations:

n

T
cj−2 − 2cj−1 + cj  +

n

T

������������

cj− 2 − cj− 1 
2



+

����������

cj − cj− 1 
2



 ε + ω2
0Sj � 0,

(83)

with

Sj �
Tω2

0
5544n

c
5
j +

Tω2
0cj−1

2772n
c
4
j +

Tω2
0 5c

2
j−1 − 77 

9240n
c
3
j

+
Tω2

0cj−1 10c
2
j−1 − 231 

13860n
c
2
j +

Tω2
0 25c

4
j−1 − 693c

2
j−1 + 4620 

27720n
cj

+
Tω2

0
27720n

5c
5
j−2 + 10cj−1c

4
j−2 + 3 5c

2
j−1 − 77 c

3
j−2

+ 20c
3
j−1 − 462cj−1 c

2
j−2 + 25c

4
j−1 − 693c

2
j−1 + 4620 cj−2

+12cj−1 5c
4
j−1 − 154c

2
j−1 + 1540 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(84)

for j � 2, 3, . . ., where c0 � 0 and c1 � T/nθ
.

0. System (83)
can be solved recursively.

For j � 2, the value of c2 can be determined from the
following quintic equation:

2310n
6ε θ

.

0



 − 4620n
6θ

.

0∓2310n
6εθ

.

0 + 1540n
4
T
2ω2

0θ
.

0 − 154n
2
T
4ω2

0θ
. 3
0 + 5T

6ω2
0θ

. 5
0

2310n
6

+
27720n

6 ± 27720n
6ε + 4620n

4
T
2ω2

0 − 693n
2
T
4ω2

0θ
. 2
0 + 25T

6ω2
0θ

. 4
0

27720n
5
T

c2 −
T
2ω2

0θ
.

0 231n
2

− 10T
2θ

. 2
0 

13860n
4 c

2
2

−
Tω2

0 77n
2

− 5T
2θ

. 2
0 

9240n
3 c

3
2 +

T
2ω2

0θ
.

0

2772n
2c

4
2 +

Tω2
0

5544n
c
5
2 � 0.

(85)
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We choose the real root to equation (86) that is closest to
c1. Suppose we already found the values c2, c3,. . ., ck−1 for
some k≥ 2. &en, the value of ck is found by solving the
quintic in equation (82) by letting j � k. However, since����������

(ck − ck− 1)
2



� ±(ck − ck−1), we must solve two quintics in
ck. We choose the real root to the two quintics that is closest
to ck−1. Let us introduce the quintic

λ5c
5
k + λ4c

4
k + λ3c

3
k + λ2c

2
k + λ1ck + λ0 � 0, (86)

Any of the two quintics (82) for j � k. &en, for suffi-
ciently large n, the value of ck may be estimated by means of
the formula

z ≈ z0 −

λ1 + 5λ5z
4
0 + 4λ4z

3
0 + 3λ3z

2
0 + 2λ2z0 

λ0 + λ5z
5
0 + λ4z

4
0 + λ3z

3
0 + λ2z

2
0 + λ1z0 

λ21 − λ0λ2 + 15λ25z
8
0 + 24λ4λ5z

7
0 + 10λ24z

6
0

+17λ3λ5z
6
0 + 15λ3λ4z

5
0 + 9λ2λ5z

5
0 + 6λ23z

4
0

+9λ2λ4z
4
0 + 8λ2λ3z

3
0 + 2λ1λ4z

3
0

−10λ0λ5z
3
0 + 3λ22z

2
0 + 3λ1λ3z

2
0

−6λ0λ4z
2
0 + 3λ1λ2z0 − 3λ0λ3z0

(87)

where z0 � ck−1.
For arbitrary ICs, i.e., for any values to (θ0, θ

.

0), the
following ansatz is assumed:

θ(t) � θ0φ0(t) +
T

n
θ
.

0φ2(t) + 
n

k�2
ckφk(t). (88)

&en, we get


T

0
φj(t)θ″(t)dt �

n cj−2 − 2cj−1 + cj 

T
, (89)

and

2ε
T

0
φj(t)θ′(t) θ′(t)


dt �

εn
T

cj − cj− 1 
2
sgn cj − cj−1 

− cj− 2 − cj− 1 
2
sgn cj−2 − cj−1 .

(90)

Using the approximation

sin θ ≈ θ −
1
6
θ3 +

1
132

θ5, (91)

gives


T

0
φj(t)sin(θ(t))dt ≈

Tω2
0

27720n

5c
5
j−2 − 231c

3
j−2 + 4620cj−2 + 60c

5
j−1 + 5c

5
j − 231c

3
j + 4620cj+

25c
4
j−1 cj−2 + cj  + 4c

3
j−1 5c

2
j−2 + 5c

2
j − 462 +

3c
2
j−1 5c

3
j−2 − 231cj−2 + 5c

3
j − 231cj +

2cj−1 5c
4
j−2 − 231c

2
j−2 + 5c

4
j − 231c

2
j + 9240 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (92)

&e following definitions are used in our analysis:

c0 � θ0,

c1 � θ0 +
T

n
θ
.

0,

cj � 0for j< 0or j> n.

(93)

&e algebraic system to be solved for j � 2, 3, . . . , n reads
as

n cj−2 − 2cj−1 + cj 

T
+
εn
T

cj − cj− 1 
2
sgn cj − cj−1  − cj− 2 − cj− 1 

2
sgn cj−2 − cj−1  

+
Tω2

0
27720n

5c
5
j−2 − 231c

3
j−2 + 4620cj−2 + 60c

5
j−1 + 5c

5
j − 231c

3
j + 4620cj+

25c
4
j−1 cj−2 + cj  + 4c

3
j−1 5c

2
j−2 + 5c

2
j − 462 +

3c
2
j−1 5c

3
j−2 − 231cj−2 + 5c

3
j − 231cj +

2cj−1 5c
4
j−2 − 231c

2
j−2 + 5c

4
j − 231c

2
j + 9240 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(94)
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&e Galerkin numerical approximation to i.v.p. (3) is
introduced in Figures 5 and 6 for different values of
(n, θ0, θ

.

0). Also, themaximum distance error is estimated for
different values of (n, θ0, θ

.

0) as follows:

L∞ � 0.0198616, for n, θ0(  � (150, 0),

L∞ � 0.000434117, for n, θ0(  � (1000, 0),

L∞ � 0.105879, for n, θ0(  � 150,
π
6

 ,

L∞ � 0.0146958, for n, θ0(  � 1000,
π
6

 .

(95)

It is clear that increasing the number of hats n leads to
the increase of approximation accuracy, i.e., the error
shrinks with the enhancement of the number of hats n.
Moreover, it is observed that the Galerkin numerical ap-
proximation is characterized by high accuracy compared to
RK numerical approximation.

4. Conclusion

In this paper, the quadratically damped pendulum equation
with strong nonlinearity has been solved and analyzed using
some novel and effective analytical and numerical tech-
niques. In the beginning, the ansatz method was devoted to

Error = 0.0198616

(n, ε, ω0, θ0, θ·0) = (150, 0.2, 1, 0, 0.1)
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Figure 5: &e approximate solutions using both GM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, 0) and
(b)(n, θ0) � (1000, 0).
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Figure 6: &e approximate solutions using both GM and RK numerical method are plotted in (θ, t)−plane for (a)(n, θ0) � (150, π/6) and
(b)(n, θ0) � (1000, π/6).
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find an analytical approximation to the mentioned equation
in the form of trigonometric functions. Also, in this study,
for the first time, a new hybrid homotopy with Kry-
lov–Bogoliubov–Mitropolsky method (HKBMM) was ap-
plied for analyzing the evolution equation and deriving an
analytical approximation with high accuracy. Moreover,
both the finite difference method (FDM) and Galerkin
method (GM) were employed for analyzing the present
evolution equation as well as some related oscillators. &e
obtained approximations were graphically compared with
each other. Furthermore, the maximum residual error for
each approximation was estimated. In the GM, we derived
the iterative schemes for finding the coefficients that appear
in the linear Galerkin hat combination in the ansatz form
solution for the evolution equation. &ese coefficients may
be found iteratively. It was found that the numerical ap-
proximations are more accurate than analytical ones, but
both give good accuracy. Also, it was observed that the
obtained results become reasonably good for small initial

speed. One of the most important features of Galerkin
method is that it gives more stable approximations for any
values to the physical parameters and for long time. &us,
this method can be devoted for studying and investigating
different pendulum oscillators for any nonlinearity [16, 27].

4.1. Future Work. &ere are many oscillators that may be
solved using the proposed method. Examples include

€x + 2ε _x + αx + βx
2

+ cx
3

� F cos(Ωt),

x + 2ε _x + αx + βx + cx
5

� F cos(Ωt),

x − ε 1 − x
2

  _x + αx + βx
2

+ cx
3

� F cos(Ωt),

x + 2ε _x + α − Q0 cos(ct)( sin(x) � F cos(Ωt).

(96)

Appendix

&e coefficients S1,2,3 of solution (46):

S1 � −
1
208

cos(3ψ) − 13ε sin(3ψ)r1ω0(  +
312εr0
43264ω0

−sin(3ψ) + 13ε cos(3ψ)r1ω0( 

−
97344ε2r20
26996736ω2

0
−cos(3ψ) + 13ε sin(3ψ)r1ω0( ,

S2 �
1

43264

−52ε(6 sin(3ψ) + sin(5ψ))r1ω0

+cos(5ψ) 1 − 507ε2r21ω
2
0 

+3 cos(3ψ) −7 + 1521ε2r21ω
2
0 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

104εr0
26996736ω0

−567 sin(3ψ) + 19 sin(5ψ)

+5616ε cos(3ψ)r1ω0 + 52ε cos(5ψ)r1ω0

+31941ε2 sin(3ψ)r
2
1ω

2
0 + 8619ε2 sin(5ψ)r

2
1ω

2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

S3 �
3

26996736

−cos(7ψ) − 10647ε sin(3ψ)r1ω0 − 195ε sin(5ψ)r1ω0

+130ε sin(7ψ)r1ω0 + 3549ε2 cos(7ψ)r
2
1ω

2
0

+731601ε3 sin(3ψ)r
3
1ω

3
0 + 336141ε3 sin(5ψ)r

3
1ω

3
0

−26364ε3 sin(7ψ)r
3
1ω

3
0 + cos(5ψ) 43 + 3211ε2r21ω

2
0 

+3 cos(3ψ) −139 + 8957ε2r21ω
2
0 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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