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Probability distributions play an essential role inmodeling and predicting biomedical datasets. To have the best description and accurate
prediction of the biomedical datasets, numerous probability distributions have been introduced and implemented. We investigate a
novel family of lifetime probability distributions to represent biological datasets in this paper.)e proposed family is called a new flexible
logarithmic-X (NFLog-X) family. )e suggested NFLog-X family is obtained by applying the T-X method together with the ex-
ponential model having the PDF m(t) � e− t. Based on the NFLog-X approach, a three parameters probability distribution, namely, a
newflexible logarithmic-Weibull (NFLog-Wei) distribution is introduced.)emethod ofmaximum likelihood estimation is adopted for
estimating the parameters of the NFLog-X family. In the end, we examine three different biological datasets in order to give a thorough
numerical research that illustrates the NFLog-Wei distribution. Comparisons aremade between the analytical goodness-of-fit metrics of
the suggested distribution.Wemade comparisonwith the (i) alpha power transformedWeibull, (ii) exponentiatedWeibull, (iii)Weibull,
(iv) flexible reduced logarithmic-Weibull, and (v) Marshall–OlkinWeibull distributions. After performing the analyses, we observe that
the proposed method outclassed other competitive distributions.

1. Introduction

Probability distributions are frequently used to model the
lifetime phenomena in applied sectors [1]. In the literature of
distributions theory, the most frequently used distributions to
model the lifetime phenomena are the exponential (Exp),
Rayleigh (Ray), and Weibull (Wei) distributions. However,
when the lifetime phenomena are complex, then these

probability distributions are not suitable to model and predict
the data accurately (Ahmad et al. [2] and Liao et al. [3]). For
example, the Exp distribution is concernedwith describing data
that have a constant HF (hazard function). On the other hand,
the Ray distribution is used to model data with an increasing
HF. Similarly, the Wei distribution having the Exp and Ray as
the special models is one of the popular probability distribu-
tions (Sarhan and Zaindin [4] and Huo et al. [5]). )eWeibull
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model offers/provides the features of both the Exp and Ray
probability distributions and has widely been used in modeling
lifetime phenomena with monotone failure rates. However,
when the lifetime phenomena have a monotone (increasing,
decreasing, and constant) HF, then, the Weibull distribution is
the best choice to use (Almalki and Yuan [6] and Liu et al. [7]).

In the field of biomedical sciences, authors have shown
greater interest and published numerous papers to propose
new distributions. In the past decade, researchers’ efforts have
been devoted to deriving new families of probability distri-
butions. )e new probability distributions have been con-
structed by adding one or more new additional parameters to
the baseline models (El-Morshedy et al. [8]; Guerra et al. [9];
Reyad et al. [10]; Bantan et al. [11]; Eghwerido et al. [12];
Eghwerido and Agu [13]; Alzaatreh et al. [14]; Lahcene [15];
ElSherpieny and Almetwally [16]; Roozegar et al. [17]; Kla-
kattawi et al. [18]; Hussein et al. [19]; and Kilai et al. [20]).

Recently, Ahmad et al. [21] studied a Z-family by adding a
new parameter. We can write the distribution function (DF)
F(x; β, λ) of the Z-family through the following equation:

F(x; β, λ) � 1 −
1 − K(x; λ)

βK(x;λ)
, x ∈ R, (1)

such that β> 0 can be considered as an extra parameter.
Wang et al. [22] developed another method called, a NG-

X (new generalized-X) family by the following DF:

F(x; θ, λ) � 1 −
[1 − K(x; λ)]

θ

e
K(x;λ)

, x ∈ R, (2)

where θ> 0.
Mohammed et al. [23] proposed another new approach

to develop new probability distribution for modeling life-
time events. )ey named their proposed method, a NLT-X
(new lifetime-X) distributions. )e DF F(x; η, λ) of the
NLT-X distributions is given by the following equation:

F(x; η, λ) � 1 −
1 − K(x; λ)

eK(x;λ)
 

η

, x ∈ R, (3)

with an additional parameter η> 0.
We additionally propose a new class of probability

distribution in this paper by implementing the T-X method.
)e new class is called a NFLog-X family of distributions.
Using the proposed NFLog-X approach, we can formulate
an upgraded version of the Wei distribution whicnh can be
presented and dubbed as NFLog-Wei distribution. )e
proposed NFLog-Wei distribution offers a close fit to the
healthcare datasets.

2. The Proposed Method

Here, we propose a new method to introduce new updated
and modified versions of the lifetime distributions. By in-
corporating the exponential model, having the PDF m(t) �

e− t with the T-X method (Alzaatreh et al. [24]), the sug-
gested approach is presented.

Let us assume that we have a RV (random variable),
represented by T, considered as a baseline RV with PDF
m(t), where T ∈ [π1, π2] for − ∞< π1 < π2 <∞. Let X be
another RV with DF K(x; λ). Let suppose G[K(x; λ)]

considered as a function in the DF, meeting each of the three
requirements outlined below:

(i) G[K(x; λ)] ∈ [π1, π2].
(ii) G[K(x; λ)] is a differentiable and IF (increasing

function).
(iii) G[K(x; λ)]⟶ π1 as x⟶ − ∞ and

G[K(x; λ)]⟶ π2 as x⟶∞.

According to Alzaatreh et al. [24], the DF F(x) of the
T-X family is as follows:

F(x) � 
G[K(x;λ)]

π1
m(t)dt, (4)

with PDF given by

f(x) � m(G[K(x; λ)])
d

dx
G[K(x; λ)]. (5)

Now, setting G[K(x; λ)] � − log(1 − (δ2K(x; λ)/
[δ − log(K(x; λ))]2)s) and usingm(t) � e− t, exists in (1), we
can obtain easilythe DF F(x; δ, λ) of the NFLog-X distri-
butions, represented as below

F(x; δ, λ) �
δ2K(x; λ)

[δ − log(K(x; λ))]
2, x ∈ R, (6)

with

f(x; δ, λ) �
δ2k(x; λ)

[δ − log(K(x; λ))]
3 [2 + δ − log(K(x; λ))], (7)

where (d/dx)K(x; λ) � k(x; λ).
Related to equations (2) and (3), the SF (survival

function) S(x; λ) � 1 − K(x; λ), HF (hazard function)
h(x; λ) � (k(x; λ)/S(x; λ)), and cumulative HF K(x; λ) �

− log[1 − K(x; λ)] are represented by the equations in the
preceding:

S(x; δ, λ) � 1 −
δ2K(x; λ)

[δ − log(K(x; λ))]
2,

h(x; δ, λ) �
δ2k(x; λ)[2 + δ − log(K(x; λ))]

[δ − log(K(x; λ))]
2

− δ2K(x; λ)[δ − log(K(x; λ))]
,

(8)

and

H(x; δ, λ) � − log 1 −
δ2K(x; λ)

[δ − log(K(x; λ))]
2 , (9)

on the same order.
In this article, we implement the NFLog-X distributions

approach and introduce the NFLog-Wei distribution. Sec-
tion 4 offers the expression of the DF, PDF, SF, HF, and CHF
of the NFLog-Wei distribution.
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3. The Identifiability Property

)e identifiability property is a very useful statistical
property that ensures precise inferences. Here, we derive the
identifiability property of the NFLog-X distributions. Let δ1
and δ2 be the two parameters having DFs F(x; δ1, λ) and
F(x; δ2, λ), respectively. )e parameter δ is identifiable, if
δ1 � δ2. Mathematically, we have

F x; δ1, λ(  � F x; δ2, λ( . (10)

Incorporating equation (2) in equation (4), we get

δ21K(x; λ)

δ1 − log(K(x; λ)) 
2 �

δ22K(x; λ)

δ2 − log(K(x; λ)) 
2. (11)

Taking square root of equation (5), we get

δ1
�������
K(x; λ)



δ1 − log(K(x; λ)) 
�

δ2
�������
K(x; λ)



δ2 − log(K(x; λ)) 
,

δ1
�������
K(x; λ)


δ2 − log(K(x; λ))  � δ2

�������
K(x; λ)


δ1 − log(K(x; λ)) ,

δ1δ2
�������
K(x; λ)


− δ1

�������
K(x; λ)


log(K(x; λ)) � δ1δ2

�������
K(x; λ)


− δ2

�������
K(x; λ)


log(K(x; λ)),

− δ1
�������
K(x; λ)


log(K(x; λ)) � − δ2

�������
K(x; λ)


log(K(x; λ)),

δ1
�������
K(x; λ)


log(K(x; λ)) � δ2

�������
K(x; λ)


log(K(x; λ)),

δ1 � δ2.

(12)

From equation (6), we can see that δ1 � δ2. )erefore,
the parameter δ is identifiable.

4. The NFLog-Wei Distribution

Consider the DF K(x; λ) and PDF k(x; λ) of the two pa-
rameters (α> 0, β> 0) traditional Wei model are given,
respectively, by

K(x; λ) � 1 − e
− βxα

, (13)

and

k(x; λ) � αβx
α− 1

e
− βxα

, (14)

where λ � (α, β).
Using equation (8) in equation (2), we get the DF

F(x; δ, λ) of the NFLog-Wei distribution given by

F(x; δ, λ) �
δ2 1 − e

− βxα
 

δ − log 1 − e
− βxα

  
2, (15)

with SF S(x; δ, λ)

S(x; δ, λ) � 1 −
δ2 1 − e

− βxα
 

δ − log 1 − e
− βxα

  
2. (16)

Some plots of F(x; δ, λ) and S(x; δ, λ) of the NFLog-Wei
model are provided in Figure 1. )e plots of F(x; δ, λ) and
S(x; δ, λ) are obtained for (i) δ � 2.8, β � 1.0, α � 1.2 (red
curve), (ii) δ � 1.2, β � 1.0, α � 1.8 (green curve), and (iii)
δ � 0.8, β � 0.5, α � 2.5 (blue curve).

Corresponding to F(x; δ, λ) in equation (9), the PDF
f(x; δ, λ) is as follows:

f(x; δ, λ) �
δ2αβx

α− 1
e

− βxα

δ − log 1 − e
− βxα

  
3 2 + δ − log 1 − e

− βxα
  , x> 0. (17)

Different plots for the PDF f(x; δ, λ) of the NFLog-Wei
model are shown in Figure 2. )e plots of f(x; δ, λ) are
obtained for (i) δ � 1.4, β � 1.0, α � 0.4 (red curve), (ii) δ �

7.3, β � 1.2, α � 2.6 (green curve), (iii) δ � 0.1, β � 0.3, α �

3.2 (black curve), and (iv) δ � 0.4, β � 0.8, α � 2.4 (blue
curve).

From Figure 2, we can see that the PDF f(x; δ, λ) of the
NFLog-Wei model has four different patterns, including (i)
decreasing or reverse in the form of J-shaped but reversed
shown in (red curve), (ii) left-skewed (green curve), (iii)
right-skewed (black curve), and (iv) symmetrical (blue
curve).

Furthermore, the HF h(x; δ, λ) and CHF H(x; δ, λ) of
the NFLog-Wei distribution are given by the following
equations:

h(x; δ, λ) �
δ2αβx

α− 1
e

− βxα
2 + δ − log 1 − e

− βxα
  

δ − log 1 − e
− βxα

  
2

− δ2 1 − e
− βxα

   δ − log 1 − e
− βxα

  

, x> 0, (18)
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and

H(x; δ, λ) � − log 1 −
δ2 1 − e

− βxα
 

δ − log 1 − e
− βxα

  
2

⎛⎜⎝ ⎞⎟⎠, x> 0, (19)

respectively.
Different plots for the HF h(x; δ, λ) of the NFLog-Wei

distribution are provided in Figure 3. )e plots of h(x; δ, λ)

are obtained for (i) δ � 1.3, β � 1.4, α � 1.1 (red curve), (ii)
δ � 0.1, β � 4.7, α � 0.4 (green curve), and (iii) δ � 4.1, β �

0.9, α � 0.5 (black curve).
From Figure 3, we can see that the HF h(x; δ, λ) of the

NFLog-Wei distribution has three different patterns, in-
cluding (i) increasing (red curve), (ii) unimodal (green
curve), and (iii) reverse J-shaped (black curve).

Despite the prominent advantages of the NFLog-Wei
distribution over the other distributions, the NFLog-Wei
model has also disadvantages, for example

(i) )e NFLog-Wei distribution is a continuous dis-
tribution used to evaluate continuous datasets.
Consequently, the suggested NFLog-Wei distri-
bution cannot be utilized to assess discrete data
sets.

(ii) Because of the NFLog-Weidistribution PDF's
complicated structure, the expressions of its esti-
mators cannot be reduced to a simple, closed form
easily represented. )erefore, the numerical esti-
mates of the estimators can be obtained with the
help of computer software.

(iii) Due to the complexity of the PDF of the NFLog-Wei
distribution, additional computing work is neces-
sary to determine its mathematical features.

5. Estimation and Simulation

Here, we obtain the MLEs (δMLE, λMLE) of the NFLog-X
distributions. In addition, we do provide a comprehensive
Monte–Carlo simulation study (MCSS) for assessing the
performances of δMLE and λMLE.

5.1. Estimation. In the research that has been conducted
on the topic, a number of different strategies and pro-
cedures for estimating the parameters of probability
models have been proposed and put into practice. Among
them, the MLE is one of the most usually adopted
methods. Here, we implement this method to obtain the
δMLE and λMLE.
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Let x1, x2, . . . , xn be a set of observed values of size n

taken from the PDF f(x; δ, λ). )en, the corresponding
likelihood function (LF) φ(x; δ, λ) is obtained as follows:

φ(x; δ, λ) � 
n

i�1

δ2k xi; λ( 

δ − log K xi; λ( (  
3 2 + δ − log K xi; λ( (  . (20)

Corresponding to φ(x; δ, λ), the log LF ℓ(Φ) is obtained
as follows:

ℓ(Φ) � 2n log δ + 
n

i�1
logk xi; λ( 

+ 
n

i�1
log 2 + δ − log K xi; λ( (  

− 3
n

i�1
log δ − log K xi; λ( (  .

(21)

Using ℓ(Φ), the following equation will provide the
partial derivatives:

z

zδ
ℓ(Φ) �

2n

δ
+ 

n

i�1

1
2 + δ − log K xi; λ( (  

− 3
n

i�1

1
δ − log K xi; λ( (  

,

(22)

and

z

zλ
ℓ(Φ) � 

n

i�1

z/zλk xi; λ( 

k xi; λ( 
− 

n

i�1

K xi; λ(  
− 1

z/zλK xi; λ( 

2 + δ − log K xi; λ( (  

+ 3
n

i�1

K xi; λ(  
− 1

z/zλK xi; λ( 

δ − log K xi; λ( (  
,

(23)

respectively, where Φ � (δ, λ).
On solving (z/zz)ℓ(Φ) � 0 and z/zλℓ(Φ) � 0, we obtain

δMLE and λMLE, respectively.

5.2. Simulation. In this second subsection, a comprehensive
MCSS is conducted to assess the behaviors of δMLE and λMLE

of the NFLog-Wei distribution. )e RNs (random numbers)
are successfully generated from the PDF f(x; δ, λ) via the
inverse DF method. )e outcome of the simulation are
acquired for a total of four groups and sets (Set I, Set II, Set
III, and Set IV) of parameters values, given by Set I: α � 0.6,
β � 2.3, and δ � 3.5, Set II: α � 1.3, β � 3.8, and δ � 4.6, Set
III: α � 3.0, β � 4.0, and δ � 4.5, and Set IV: α � 3.4, β � 2.5,
and δ � 3.5.

To check performances of δMLE and λMLE, two statistical
measures are considered. )ese measures include the (i)
mean square error (MSE) and (ii) bias. )e numerical values
of the MSE and bias are, respectively, computed as follows:

1
n



n

i�1
(δ − δ)

2
, (24)

and

1
n



n

i�1
(δ − δ). (25)

)e values of the MSE and bias are also computed for λ.
Corresponding to Set I: α � 0.6, β � 2.3, and δ � 3.5 and

Set II: α � 1.3, β � 3.8, and δ � 4.6, we can easily see the
outcomes resulted from doing the simulation in Table 1.
Whereas, in link to Set III: α � 3.0, β � 4.0, δ � 4.5 and Set
IV: α � 3.4, β � 2.5, δ � 3.5, the outcomes of the simulation
are shown in Table 2.

Based on the findings of the simulation, which are shown
in Tables 1 and 2, we can see that as the size of n increases.

(i) )e estimated values of λMLE and δMLE tend to be
stable.

(ii) )e MSEs of λMLE and δMLE decrease.
(iii) )e biases of λMLE and δMLE decay to zero.

6. Applications

By doing an analysis on three different biomedical datasets,
the purpose of this article is to demonstrate the utility of the
NFLog-Wei distribution (Table 3).

We compare the NFLog-Wei distribution with the Wei
model and three other traditional and new probability
distributions, as an example of these distributions, the
Marshall–OlkinWeibull (MO-Wei) studied byMarshall and
Olkin [25], APT-Wei (alpha power transformed Weibull)
proposed by Dey et al. [26], and a flexible reduced loga-
rithmic-Weibull (FRLog-Wei) distribution, introduced by
Liu et al. [7]. )e DFs of the competitive probability dis-
tributions are outlined below:

(i) )e APT-Wei distribution is obtained by the fol-
lowing equation:

K x; α1, λ(  �
α 1− e− βxα( )
1 − 1
α1 − 1

, (26)

where α1 ≠ 1, α1 > 0.
(ii) )e MO-Wei distribution is represented by the

equation that is as follows:

K(x; c, λ) �
1 − e

− βxα
 

c + (1 − c) 1 − e
− βxα

 
, (27)

where c> 0.
(iii) )e FRLog-Wei distribution is represented by the

equation that is as follows:

K(x; σ, λ) � 1 −
log 1 + σ − σ 1 − e

− βxα
  

log(1 + σ)
, (28)

where σ > 0.

To determine the optimum model among the fitted
distributions, we consider different goodness-of-fit
measures (analytical measures). It is generally agreed that
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the best competing model is the probability model that
achieves the lowest values of these analytical metrics. )e
numerical values of the analytical measure are computed
as follows:

(i) )e CM test statistic is computed as follows:


n

i�1

2i − 1
2n

− K xi; λ(  
2

+
1
12n

. (29)

(ii) )e AD test statistic is calculated as follows:

− n −
1
n



n

i�1
(2i − 1) log K xi; λ(  + log 1 − K xi; λ( (  . (30)

(iii) )e KS test statistic is derived as follows:

supx Kn(x; λ) − K(x; λ) . (31)

(iv) )e AIC is obtained as follows:

2m − 2ℓ(Φ). (32)

(v) )e BIC is calculated as follows:

m log(n) − 2ℓ(Φ). (33)

(vi) )e HQIC is obtained as follows:

Table 1: )e results of conducting a simulation using the NFLog-Wei distribution utilizing sets I and II.

n Est.
Set I: α � 0.6, β � 2.3, and δ � 3.5 Set II:α � 1.3, β � 3.8, and δ � 4.6

MLE MSE Bias MLE MSE Bias

25
α 1.359714 3.352142 0.959714 1.470587 1.916907 0.070586
β 2.558740 2.272587 0.258740 4.107370 1.019913 0.507369
δ 3.932950 1.830509 0.432950 4.536813 0.659791 − 0.263187

50
α 1.261625 2.610044 0.861625 1.324459 1.355837 − 0.075540
β 2.527184 2.103823 0.227184 4.074657 0.827990 0.474657
δ 3.854091 1.742594 0.354091 4.428739 0.809154 − 0.371261

75
α 1.249921 2.380179 0.849921 1.304567 1.105549 − 0.095432
β 2.373155 1.660890 0.073155 4.027904 0.720244 0.427903
δ 3.903062 1.633956 0.403062 4.434167 0.722466 − 0.365833

100
α 1.121601 1.880341 0.721601 1.311440 1.055909 − 0.088560
β 2.409936 1.568806 0.109935 3.990797 0.645796 0.390796
δ 3.827443 1.488893 0.327443 4.464805 0.678206 − 0.335194

200
α 0.937715 1.208062 0.537715 1.268340 0.643048 − 0.131660
β 2.367964 1.106299 0.067963 3.910828 0.469170 0.310828
δ 3.755479 1.181334 0.255478 4.493781 0.563858 − 0.306218

300
α 0.846743 0.925916 0.446743 1.229159 0.517821 − 0.170841
β 2.330760 0.853094 0.030759 3.896567 0.414911 0.296567
δ 3.718240 0.963105 0.218240 4.481787 0.556714 − 0.318213

400
α 0.820652 0.786768 0.420652 1.249808 0.489246 − 0.150192
β 2.268908 0.698790 − 0.031091 3.869472 0.370287 0.269471
δ 3.744079 0.849120 0.244079 4.507406 0.504602 − 0.292593

500
α 0.726767 0.635959 0.326767 1.240931 0.413434 − 0.159069
β 2.321649 0.575961 0.021649 3.834327 0.293431 0.234327
δ 3.652565 0.701084 0.152564 4.531517 0.424718 − 0.268482

600
α 0.666051 0.491945 0.266051 1.280216 0.402240 − 0.119784
β 2.309838 0.453986 0.009838 3.803557 0.258676 0.203557
δ 3.629989 0.587730 0.129989 4.559654 0.384078 − 0.240346

700
α 0.701362 0.504666 0.301362 1.299725 0.378063 − 0.100275
β 2.256093 0.430943 − 0.043907 3.790054 0.250775 0.190053
δ 3.694393 0.588829 0.194392 4.590190 0.345656 − 0.209809

800
α 0.642816 0.378790 0.242816 1.270926 0.336466 − 0.129073
β 2.255541 0.350091 − 0.044459 3.789066 0.208206 0.189066
δ 3.658857 0.464875 0.158856 4.586876 0.324176 − 0.213124

900
α 0.652121 0.396530 0.252121 1.307186 0.327404 − 0.092814
β 2.257956 0.353270 − 0.042043 3.755260 0.186083 0.155260
δ 3.668265 0.508969 0.168265 4.618437 0.274431 − 0.181562

1000
α 0.597530 0.304498 0.197530 1.296956 0.316957 − 0.123043
β 2.292465 0.316204 − 0.017534 3.791939 0.188118 0.171938
δ 3.518328 0.415432 0.118328 4.600692 0.302786 − 0.199307
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Table 2: )e results of conducting a simulation using the NFLog-Wei distribution with sets III and IV.

n Est.
Set III: α � 3.0, β � 4.0, and δ � 4.5 Set IV: α � 3.4, β � 2.5, and δ � 3.5

MLE MSE Bias MLE MSE Bias

25
α 2.381875 2.794807 − 0.118124 3.410283 4.557224 − 0.489717
β 4.296184 0.720145 0.396183 3.035897 1.458385 0.6358970
δ 4.518220 0.628748 − 0.281780 3.427576 0.913335 − 0.172423

50
α 2.319224 2.574264 − 0.180776 3.413811 4.507704 − 0.486189
β 4.275190 0.585435 0.375189 2.935012 1.212232 0.535011
δ 4.516319 0.584158 − 0.283680 3.348358 0.754218 − 0.251642

75
α 2.343670 2.636672 − 0.156330 3.337658 4.571121 − 0.562342
β 4.249329 0.527632 0.3493285 2.898243 1.057149 0.498242
δ 4.486865 0.607032 − 0.313134 3.294626 0.669432 − 0.305374

100
α 2.337194 2.565672 − 0.162806 3.206369 4.830113 − 0.693630
β 4.208815 0.470883 0.308815 2.913587 1.014642 0.513587
δ 4.486939 0.573087 − 0.313060 3.261691 0.674156 − 0.338309

200
α 2.345233 2.217673 − 0.154767 3.317303 4.219805 − 0.582696
β 4.155143 0.343410 0.255143 2.768109 0.635353 0.368108
δ 4.498184 0.533703 − 0.301816 3.319766 0.477188 − 0.280234

300
α 2.256714 2.014241 − 0.243285 3.294189 3.997942 − 0.605811
β 4.173869 0.327524 0.273868 2.718230 0.445176 0.318229
δ 4.490608 0.520666 − 0.309391 3.331029 0.382241 − 0.268971

400
α 2.296481 1.781173 − 0.203519 3.377208 3.613586 − 0.522792
β 4.124638 0.263154 0.224638 2.656047 0.327071 0.256046
δ 4.531144 0.433862 − 0.268856 3.369713 0.300703 − 0.230287

500
α 2.279038 1.641563 − 0.220962 3.427285 3.272158 − 0.472715
β 4.109448 0.235986 0.209448 2.610146 0.231249 0.210146
δ 4.541954 0.404543 − 0.258045 3.406040 0.236117 − 0.193959

600
α 2.290175 1.499904 − 0.209825 3.427226 3.213429 − 0.472773
β 4.081241 0.204391 0.181240 2.600575 0.209351 0.200574
δ 4.554415 0.362888 − 0.245585 3.412186 0.215645 − 0.187813

700
α 2.326864 1.380761 − 0.173135 3.430730 3.088489 − 0.469269
β 4.066115 0.175150 0.166115 2.584588 0.177430 0.184588
δ 4.590552 0.327957 − 0.209447 3.421499 0.197229 − 0.178501

800
α 2.323243 1.338615 − 0.176757 3.447615 3.004778 − 0.452385
β 4.058958 0.160689 0.158958 2.578249 0.163990 0.178248
δ 4.593206 0.306266 − 0.206794 3.427515 0.180315 − 0.172485

900
α 2.332042 1.424302 − 0.167957 3.597858 2.660379 − 0.302141
β 4.059840 0.169700 0.159839 2.541229 0.131273 0.141229
δ 4.583009 0.321603 − 0.216991 3.462147 0.151573 − 0.137853

1000
α 2.296988 0.802130 − 0.203012 3.415560 1.019690 − 0.444440
β 4.054148 0.095211 0.154147 2.512916 0.084999 0.092915
δ 4.519912 0.088924 − 0.210088 3.490555 0.089363 − 0.159445

Table 3: )e medical datasets.

No. Observations of the datasets References

Data 1 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112,
119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776 Ceren et al. [29]

Data 2
10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 120, 121,
122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 213,

215, 216, 222, 230, 231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555
Bjerkedal [28]

Data 3

0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400, 1.460, 1.760, 2.020, 2.020, 2.070,
2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750, 2.830, 2.870, 3.020, 3.250, 3.310, 3.360, 3.360,
3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880, 4.180, 4.230, 4.260, 4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980,
5.060, 5.090, 5.170, 5.320, 5.320, 5.340, 5.410, 5.410, 5.490, 5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940,
6.970, 7.090, 7.260, 7.280, 7.320, 7.390, 7.590, 7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650, 8.660,
9.020, 9.220, 9.470, 9.740, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11,
13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63,

25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05

Aldeni et al.
[27]
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Figure 4: Basic plots of Data 1.
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Figure 5: )e profiles of the log LF of the NFLog-Wei distribution using Data 1.

Table 4: )e values of αMLE, βMLE, δMLE, α1MLE, cMLE, and σMLE of the fitted models using Data 1.

Models αMLE
βMLE

δMLE α1MLE cMLE σMLE

NFLog-Wei 1.83498 0.23706 0.00735 — — —
APT-Wei 0.99270 0.00326 — 0.24503 — —
FRLog-Wei 0.76184 0.02859 — — — 5.72175
Weibull 0.93131 0.00677 — — — —
MO-Wei 2.41759 0.00303 — — 0.50752 —
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Table 5: )e values of CM, AD, KS, and P value of the fitted models for Data 1.

Models CM AD KS P value
NFLog-Wei 0.02815 0.18922 0.06204 0.9919
APT-Wei 0.09338 0.55387 0.10551 0.6723
FRLog-Wei 0.19103 1.09553 0.13355 0.3789
Weibull 0.13983 0.81427 0.12612 0.4494
MO-Wei 0.09492 0.56181 0.11255 0.5933

Table 6: )e values of AIC, BIC, CAIC, and HQIC of the fitted models for Data 1.

Models AIC BIC CAIC HQIC
NFLog-Wei 562.1700 567.5226 562.7700 564.1550
APT-Wei 567.7712 573.1238 568.3712 569.7562
FRLog-Wei 572.8833 578.2359 573.4833 574.8683
Weibull 567.6941 571.2625 567.9868 569.0175
MO-Wei 568.2084 573.5610 568.8084 570.1934
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Figure 6: Visual illustration of the NFLog-Wei model using Data 1.
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Figure 8: )e profiles of the log LF of the NFLog-Wei distribution using Data 2.

Table 7: )e values of αMLE, βMLE, δMLE, α1MLE, cMLE, and σMLE of the fitted models using Data 2.

Models αMLE
βMLE

δMLE α1MLE cMLE σMLE

NFLog-Wei 0.01537 0.40959 0.49880 — — —
APT-Wei 1.19003 0.00325 — 6.81765 — —
FRLog-Wei 1.20746 0.00354 — — — 11.84593
Weibull 1.19177 0.00208 — — — —
MO-Wei 1.24252 0.00240 — — 2.37148 —

10 Complexity



Table 9: )e values of AIC, BIC, CAIC, and HQIC of the fitted probability models for Data 2.

Models AIC BIC CAIC HQIC
NFLog-Wei 854.9775 861.8075 855.3304 857.6965
APT-Wei 864.1267 870.9567 864.4797 866.8458
FRLog-Wei 868.2720 875.1020 868.6249 870.9910
Weibull 877.7535 882.3068 877.9274 879.5662
MO-Wei 865.7111 872.5411 866.0641 868.4302
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Figure 9: Visual illustration of the NFLog-Wei distribution using Data 2.

Table 8: )e values of CM, AD, KS, and P value of the fitted models for Data 2.

Models CM AD KS P value
NFLog-Wei 0.06315 0.37584 0.07504 0.81220
APT-Wei 0.13802 0.80373 0.17147 0.20986
FRLog-Wei 0.20630 1.20443 0.17744 0.19768
Weibull 0.10908 0.65947 0.25498 0.17134
MO-Wei 0.16136 0.94136 0.17256 0.20469

Complexity 11



Histogram

data

Fr
eq

ue
nc

y

0

20

40

60

80

0 20 40 60 80
N = 128 Bandwidth = 2.161

0 20 40 0.0 0.4 0.860 80

Kernel density TTT Plot

i (n)

0

20

40

60

80

0 20 40 60 80

Violin Plot Box Plot

0.04

0.06

0.08

0.02

0.00

D
en

sit
y

T 
(i/

n)

0.0

0.2

0.4

0.6

0.8

1.0

Mean point
Distribution of the data

Figure 10: Basic plots of Data 3.
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Figure 11: )e profiles of the log LF of the NFLog-Wei distribution using Data 3.

Table 10: )e values of αMLE, βMLE, δMLE, α1MLE, cMLE, and σMLE of the fitted models using Data 3.

Models αMLE
βMLE

δMLE α1MLE cMLE σMLE

NFLog-Wei 0.03770 2.23388 0.34211 — — —
APT-Wei 1.26652 0.01661 — 0.01490 — —
FRLog-Wei 1.27348 0.03210 — — — 0.81243
Weibull 1.04777 0.09390 — — — —
MO-Wei 1.50855 0.00673 — — 0.11186 —
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Table 12: )e values of AIC, BIC, CAIC, and HQIC of the fitted models for Data 3.

Models AIC BIC CAIC HQIC
NFLog-Wei 824.9405 833.4966 825.1340 828.4169
APT-Wei 826.3801 834.9362 826.5737 829.8565
FRLog-Wei 832.5411 841.0972 832.7346 836.0175
Weibull 832.1738 837.8778 832.2698 834.4913
MO-Wei 826.5740 835.1301 826.7675 830.0504
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Figure 12: Visual illustration of the NFLog-Wei distribution using Data 3.

Table 11: )e values of CM, AD, KS, and P value of the fitted models for Data 3.

Models CM AD KS P value
NFLog-Wei 0.01562 0.10017 0.03054 0.9998
APT-Wei 0.04227 0.25411 0.04660 0.9437
FRLog-Wei 0.09868 0.61203 0.06859 0.5836
Weibull 0.13135 0.78639 0.06999 0.5573
MO-Wei 0.03150 0.22134 0.04008 0.9863
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2m log[log(n)] − 2ℓ(Φ). (34)

(vii) )e CAIC is derived as follows:
2mn

n − m − 1
− 2ℓ(Φ). (35)

6.1. Data 1. )e first dataset (Data 1) consists of forty-four
observations. )e lengths of time that patients managed to
stay alive may be seen here in this dataset.)e key measures
(summary measures) of Data 1 are as follows:
skewness = 3.38382, minimum= 12.20, 1st quartile = 67.21,
median = 128.50, mean = 223.48, 3rd quartile = 219.00,
maximum= 1776.00, kurtosis = 16.5596, var-
iance = 93286.41, and range = 1763.8. Corresponding to
Data 1, some basic plots and the profiles of the MLEs of the
NFLog-Wei distribution are presented in Figures 4 and 5,
respectively.

Furthermore, for Data 1, the numerical values of
the NFLog-Wei distribution and other competing
models are presented in Table 4. )e numerical values of the
analytical measures of the competing probability models are
provided in Tables 5 and 6. In justification of the numerical
depiction that may be seen in Tables 5 and 6, confirm the
best fitting of the NFLog-Wei model to Data 1. Figure 6
presents a graphic representationof the NFLog-Wei model.
We can see that the plots shown in Figure 6 also confirm the
close-fitting (best fitting) of the NFLog-Wei model to Data 1.

6.2. Data 2. )e second dataset (Data 2) consists of seventy-
two observations.)e following are the important indicators
of Data 2: minimum=10.0, 1st quartile = 108.0, median =
149.5, mean = 176.8, 3rd quartile = 224.0, maximum=555.0,
skewness = 1.341284, kurtosis = 4.988524, variance =
10705.1, and range = 545. As in Figure 7, we can provide
some summary graphs in relation to Data 2. Using Data 2,
the profiles of the MLEs of the NFLog-Wei distribution are
shown in Figure 8.

We also applied the NFLog-Wei distribution and other
competing probability models to Data 2. Corresponding to
this dataset, the numerical values of the competing proba-
bility distributions can be easily shown in Table 7. Also, the
metrics of the analysis measures of the distributions that
were “fitted” are already provided in Tables 8 and 9. )e
numerical results, in Tables 8 and 9, demonstrate that the
NFLog-Wei distribution has the least results of the analytical
metrics. )is fact supports the best fitting power of the
NFLog-Wei distribution to the guinea pigs infected dataset.
In addition, Figure 9 illustrates the NFLog-Wei distribution
graphically. )e plots in Figure 9 support the close fit (best
fit) of the NFLog-Wei distribution to the guinea pig-infected
dataset.

6.3. Data 3. )e third dataset (Data 3) consists of one
hundred and twenty-eight observations.)e keymeasures of
Data 3 are as follows: skewness = 0.634064, median = 5.320,

minimum=0.080, 1st quartile = 2.830, mean = 6.017, 3rd
quartile = 8.370, maximum=15.960, kurtosis = 2.5349, var-
iance = 15.66289, and range = 15.88. Figure 10 depicts many
major charts that correspond to Data 3. In link to this
dataset, the profiles of the MLEs of the NFLog-Wei distri-
bution are displayed in Figure 11.

Again, we applied the NFLog-Wei distribution and the
competing distributions to Data 3. Corresponding to Data 3,
the numerical results of the fitted probability models can be
found in Table 10.)e numerical values of the statistical tests
of the competing probability models are given in Tables 11
and 12. In light of the numerical findings presented in the
Tables 11 and 12, we can observe that the NFLog-Wei is the
best competing probability model for Data 3. To support the
best fitting power of the NFLog-Wei distribution to Data 3, a
graphical illustration is also presented in Figure 12. )e
visual illustration provided in Figure 12 supports the best fit
capability of the NFLog-Wei distribution to Data 3.

7. Conclusion

In this study, a novel family of probability models was
presented. )e proposed family was named a new flexible
logarithmic-X family. A subcase of the NFLog-X family
was studied in detail. )e unknown parameters of the
NFLog-X family of distributions were computed using the
maximum likelihood method. Furthermore, a MCSS was
carried out to assess the performances of δMLE and λMLE of
the NFLog-X family. Finally, three applications (real-life
datasets) to the biomedical datasets were presented to il-
lustrate the potentiality and flexibility of the NFLog-X
method. )e comparison of the NFLog-X method was
made with the Wei distribution and its three other well-
known distributions including the APT-Wei, FRLog-Wei,
and MO-Wei distributions. On the basis of eight analytic
metrics, it is demonstrated that the NFLog-Wei distribu-
tion is the optimal probability distribution for modeling the
medical datasets.

In the future, we are motivated to introduce further
flexible forms of the NFLog-X distributions for data
modeling in various sectors. We are also motivated to study
the bivariate and multivariate extensions of the NFLog-X
distributions [27–29] and also in the upcoming stage of this
research, we will use the newly invented family of distri-
butions in addition to the suggested distribution to analyse
the censored sample technique. In order to create rando-
mised censored samples based on the new distribution, we
will carry out research on a variety of censoring techniques,
including the type-I and type-II censored sample. )e scope
of our analysis might be increased to encompass the
implementation of the suggested model to various
accelerated life testing scenarios, such as constant and
partially constant tests, and perhaps even outcomes of
progressive load accelerated life tests.
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