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Based on the Lotka–Volterra system, a pest-natural enemy model with nonlinear feedback control as well as nonlinear action
threshold is introduced. +e model characterizes the implementation of comprehensive prevention and control measures when
the pest density reaches the nonlinear action threshold level depending on the pest density and its change rate. +e mortality rate
of the pest is a saturation function that strictly depends on their density while the release of natural enemies is also a nonlinear
pulse term depending on the density of real-time natural enemies.+e exact impulsive and phase sets are given.+e definition and
properties of the Poincaré map corresponding to the pulse points on the phase set are provided. We investigate the existence and
stability of boundary and interior order-1 periodic solution. +e theoretical analysis developed in the present paper combined
with nonlinear controlling measures as well as nonlinear action threshold methods and techniques laid the foundation for the
establishment and analysis of other state-dependent feedback control models.

1. Introduction

Pest control [1–6] is not only an ancient problem but also a
new challenge faced by the modern world. Various scientific
and effective methods [7–13] are needed to comprehensively
prevent and control pest outbreaks and reinfestation. +e
most common early method was chemical control [14, 15],
that is, the method of controlling pest by spraying pesticides
during pest outbreaks. +e main advantages of chemical
control are quick effect and convenient use. It can eradicate
or maintain the number of pests at a lower level within a
short period of time. +erefore, chemical control is still one

of the important means to control pest population. Bio-
logical control [16–18] is another important control method,
which has the advantages of strong effect and long duration,
and is also an environmental friendly control method. Maiti
et al. [19] used a valuable technique known as sterile insect
release method (SIRM) to manage the pest population. +e
authors discussed the effect of uncertain ecological varia-
tions on sterile and fertile insects. Other main methods are
physical control and agricultural control. For example, the
agricultural control method is a method to reduce or control
pests throughmeasures such as crop rotation, intercropping,
and reasonable adjustment of cultivation procedures.
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Each pest control method has its advantages and dis-
advantages. Due to long-term and high-dose use, pests can
easily develop resistance to specific pesticides, resulting in
pest control failure and pest reemergance. However, other
control strategies cannot effectively reduce the number of
pests in a short time because of their slow effectiveness.
+erefore, how to effectively and reasonably use multiple
methods is the best choice for pest control. Based on this, the
Food and Agriculture Organization of the United Nations
(FAO) proposed the concept of integrated pest management
(IPM) [1, 20, 21] and defined it as follows: “IPM is a pest
control system that comprehensively considers the pop-
ulation dynamics of the pest and its related environment and
uses all appropriate control techniques and methods that
work as closely as possible to maintain levels at which pest
populations do not cause economic harm.” Both experi-
mentally [22, 23] and theoretically [24, 25], it has been
proved that IPM is more practical than the classic approach.
+is is one of the most useful methods which minimizes
damage to individuals and the environment in addressing
pest control.

In this perspective, researchers have studied the math-
ematical problems based on impulsive differential equations
in order investigate the dynamics of IPM and compass biped
robotic systems. In numerous realistic problems, impulses
often occur at state-dependent. +erefore, it is more feasible
to apply the procedure of state-dependent feedback control
to model real-world issues. Znegui et al. [26] used an im-
pulsive hybrid nonlinear system to construct a passive biped
robot model that demonstrates complicated behaviors. In
[27], the authors constructed a Poincaré map which was
further utilized to examine the existence and stability of
order-1 periodic type solution of the problem under con-
sideration. Many new systems on the design of specific
analytical expression of the hybrid state-dependent Poincaré
were studied in [28, 29].+e authors in [26–29] portrayed an
expression of the controlled Poincaré map to discuss the
stabilization of passive dynamic walking of the compass-gait
biped robot. +e compass-gait biped robot is a two-DoF
legged mechanical system which is identified by its passive
dynamic walking. +e one-DoF mechanical systems are also
of great importance. Some articles related to one-DoF state-
feedback control with respect to different perspectives can be
found in [30, 31].

+e impulsive differential equations are also used pro-
ficiently in epidemic dynamics [32] and population dy-
namics [33–35]. A basic assumption of the above series of
studies is that regardless of how huge the number of pests or
the growth rate is, as long as the number of pest populations
touches economic threshold (ET) [33–35], the IPM strategy
can be implemented. However, there are two basic situations
of actual pest growth that require high attention: first, the
number of pests is comparatively large, and the rate of
change is small; second, the population is small, but the rate
of change is high. A fundamental problem illustrated by

these two situations is that when the pest population is large
(such as exceeding ET), the growth rate is small or even
negative at this time. In this case, even if the IPM strategy is
not implemented, the number of pests may not exceed
economic injury level (EIL) [36]. Another situation is that
the number of pests is not large, and the rate at which the
pest population is growing is very large. In this case, if the
control strategy is not implemented in time, it may lead to a
large outbreak of pests. Next, in order to establish appro-
priate and effective integrated controlling strategies, the IPM
process needs precise inspection of the pest quantity. +e
mortality rate should be fluctuated according to the satu-
rating function which relies upon the density of pest, and the
releasing quantity of natural enemies should be a function of
their density. +erefore, keeping in mind the above factors, a
feasible new state-feedback control pest-natural enemy
ecosystem with nonlinear controlling measures as well as
nonlinear action threshold system is proposed. +e corre-
sponding analytical techniques and numerical methods are
developed to examine the dynamical aspects of the system
under consideration.

+e main research contents are reflected in the fol-
lowing aspects. We construct a Lotka–Volterra prey-
predator model involving both nonlinear feedback and
action threshold depending on the density of pest and its
change rate. In the model, we use the action threshold
instead of the economic threshold to characterize the
implementation of control measures, that is, when the
number of pests reaches the action threshold depending
on the density of pest and its change rate, a comprehensive
pest control tactic is applied so that the number of pests
does not exceed the nonlinear ratio-dependent AT. On the
other hand, the use of nonlinear controlling factors in the
feedback control makes the model closer to reality.
Properties of the nonlinear ratio-dependent AT are given.
+en, the classification is performed according to the
positional relationship between the action threshold level
and the stable equilibrium point of the corresponding
ordinary differential system. By using the definition and
properties of Lambert W function, the analytical ex-
pression of the Poincaré map is given. Furthermore, by
using the analytical properties of Poincaré map, the ex-
istence, uniqueness, and stability of the pest-free and
interior-order one periodic solution of the pest-natural
enemy system are given, and corresponding sufficient
conditions are obtained. +e main results are confirmed
by numerical simulations.

2. Model Construction and Main Properties of
Action Threshold

2.1. Construction of Model. In view of the above objective
factors, we propose the following nonlinear state-dependent
feedback control model combined with nonlinear ratio-
dependent AT:
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dx(t)
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(1)

It can be seen that without pulse control measures,
the model is simply based on the classical Lotka–Volterra
type problem which is extensively used to describe the
relation between the populations of pest and natural
enemy shown by x(t) and y(t), respectively. Weighted
parameters θ1, θ2, and AT are positive constants, which
satisfy θ1 + θ2 � 1. +e discontinuous mapping shown in
the third and fourth equations in system (1) represents
that the implementation of comprehensive control
measures depends on the action level, that is, once the
pest density reaches action threshold, the densities of
pests as well as the natural enemies are immediately
updated to (1 − δx(t)/x(t) + α)x(t) and y(t) + υ/1+ βy(t),
respectively. α> 0 represents the semisaturation con-
stant, δ > 0 is defined as the maximum instantaneous
killing rate after the use of pesticides, and υ> 0 is the
maximum natural enemy when executing the control
strategy. +e amount β> 0 is the natural enemy density
adjustment parameter. +e nonlinear term υ/1 + βy(t)

shows a function of y(t) which decreases monotonically,
and the maximum amount of natural enemy release does
not exceed. +e symbols x(0+) with y(0+), respectively,
represent the initial populations of pests and natural
enemies and satisfy x(0+) + y(0+)<AT. In model (1),
there always exist a stable centre E0 � (d/c, a/b) and a
saddle point (0, 0) which is unstable.

+e special cases of the above model for different pa-
rameters were considered in [37–39]. +e biological sig-
nificance and main properties of the corresponding ODE
model can be seen in [37]. In [38], Tian et al. extended the
classic pest-natural enemy model with linear state-depen-
dent control measures to a model with nonlinear state-
dependent impulsive control tactics. In [39], the authors for
the first time introduced and provided the concept of action
threshold depending on the density of pest and its rate of
change. +ey used the definition and properties of the
LambertW function to construct the analytical expression of
the Poincaré map. Furthermore, by using the analytical
properties of Poincaré map, the existence, uniqueness, and
stability of the natural enemy free periodic solution and
internal periodic solution were discussed in detail. +e re-
sults explain the significance of nonlinear ratio-dependent
AT in integrated pest control and the important guiding role
in IPM strategy.

2.2. Properties of Action8reshold. +e quantities θ1 and θ2
are dependent weighted parameters. If θ2 � 0, then the ratio-
dependent AT converts into ET. +erefore, we can say that
ET is a special case of ratio-dependent AT for θ2 � 0.
Combining the first equation of ODE model (1) with ratio-
dependent AT, we get

lim
x⟶+∞

θ1 + aθ2( x − AT
bθ2x

�
θ1 + aθ2

bθ2
. (2)

If we put θ1 � 0, then the ratio-dependent AT converts
into y � ax − AT/bx. In this case, if x⟶ +∞, then y is
bounded and reaches its highest value a/b. Further, with the
utilization of the control actions on y � (θ1 + aθ2)x−

AT/bθ2x, we get another curve y+ � (θ1 + aθ2)x+−

AT(1 − δx(t)/x(t) + α)/bθ2x+ + υ/1 + βy. For θ2 � 0, the
curve changes into x+ � (1 − δx/x + α)AT showing a ver-
tical straight line. Let PAT � δx/x + α; then, for convenience,
we denote the two curves y � (θ1 + aθ2)x − AT/bθ2x and
y+ � (θ1 + aθ2)x+ − AT(1 − PAT)/bθ2x+ + υ/1 + βy by ΓIS
and ΓPS, respectively, as shown in Figure 1.

3. Impulsive and Phase Sets

+is section is devoted to present the dynamical aspects of
the system (1), and we can use the Poincaré map on the
sequence of pulse points which will be formulated later. Let
AT/θ1 be the abscissa of the curves ΓIS at y � a/b.

+en, we take the following cases based on the equi-
librium E0 and curve ΓIS.

(A)
AT
θ1
≤

d

c
; (B)

d

c
<
AT
θ1

. (3)

+e necessary and primary component is to examine the
section that is not used during the pulse effect process, which
means that the trajectory initiating from ΓPS cannot touch
the curve ΓIS in the case of maximum impulsive set. In the
following part of the paper, we address the definition of
impulsive sets.

3.1. Impulsive Set. In Case (A), the solution Γ1 is tangent to
the curve ΓPS at point T � (xT, yT). If we denote the im-
pulsive set by M1, then it can be written as
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M1 � (x, y) ∈ R2
+


AT

θ1 + aθ2
≤x≤ xG2

, 0≤y≤yG2
 . (4)

Now based on the corresponding horizontal coordinate,
we search the exact value of yG2

in the following lemma. +e
point yG2

is actually the maximum value of the impulsive set
M1 for Case (A).

Lemma 1. For Case (A), the maximum impulsive set is
defined as M1 with

yG2
� −

a

b
W −

b

a
yTe

− b/ayT+AG2/a provided thatA
1
G2
≤ 0. (5)

Proof. Let Γ1 be a trajectory tangent at T � (xT, yT), and it
touches the curve ΓIS at point G2 � (xG2

, yG2
). +en, T and

G2 must satisfy the following equation:

a lnyG2
− byG2

+ d lnxG2
− cxG2

� a lnyT − byT + d lnxT − cxT.

(6)

Solving this equation for yG2
, we get

−
b

a
yG2

 e
− b/ayG2 � −

b

a
yTe

− b/ayT+AG2/a, (7)

where AG2
� d(lnxT − lnxQ2

) + c(xG2
− xT). +e above

equation obviously gives two solutions when we solve it by
using Lambert W function. +e minimum solution can be
written as follows:

yG2
� −

a

b
W −

b

a
yTe

− b/ayT+AG2/a , (8)

which is well defined because AG2
≤ 0.

For Case (B), it is clear from Figure 1(b) that at point
S � (xS, yS), Γ2 is tangent to the curve ΓIS where yS ≤ a/b.
+en, taking into account the locations of equilibrium E0
and the curve ΓIS, we can write the maximum impulsive set
for Case (B) as

M2 � (x, y) ∈ R2


AT
θ1 + aθ2

≤x≤ xS, 0≤y≤yS . (9)

+e above information shows that for this case, the
tangent point with ΓIS varies due to small changes in θ1 and
θ2.

If the weighted parameter θ2 decreases, then the quantity
yS approaches its maximum value a/b. □

3.2. Phase Set. To determine the exact phase set of system (1)
under different conditions, we need to know whether the
solution from initial point (x+

0 , y+
0 ) reaches the corre-

sponding impulsive set and whether the pulse action occurs
or not. To provide the exact domain of phase sets, we first
discuss the interval which is free of impulsive effect.

Lemma 2. For Case (B), any solution starting from the phase
set with initial point (x+

0 , y+
0 ) (where y+

0 ∈ (yK2
, yK1

)) will not
reach the impulsive set M2, where
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Figure 1: Detailed diagrams describing the impulsive along with phase sets where (a) AT/θ1 ≤ d/c and AT/θ1 >d/c. In sub-plot (a), Γ1 shows
the tangent trajectory to the curve ΓPS and touches the curve ΓIS at (xG2

, yG2
). In sub-plot (b), Γ2 touches the curve ΓPS at two points

(xK1
, yK1

) and (xK2
, yK2

), and tangent to the curve ΓIS at point (xS, yS).
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yK1
� −

a

b
W − 1, −

b

a
ySe

− b/ayS− AK1/a andyK2
� −

a

b
W −

b

a
ySe

− b/ayS − AK2/a , (10)

provided that AK1
, AK2
≥ 0.

Proof. Assume that the closed trajectory Γ1 starts from K1 �

(xK1
, yK1

) and touches the curve ΓIS at point S � (xS, yS).
+en, K1 and S must satisfy the following relationship:

a lnyK1
− byK1

+ d lnxK1
− cxK1

� a lnyS − byS

+ d lnxS − cxS.
(11)

Rearranging this equation for yK1
, we get

−
b

a
yK1

 e
− b/ayK1 � −

b

a
ySe

− b/ayS− AK1/a, (12)

where AK1
� d(lnxK1

− lnxS) + c(xS − xK1
). +e above

equation can be easily solved utilizing the Lambert W
function approach which clearly will result in two solutions
of the problem. +e maximum solution can be written as

yK1
� −

a

b
W − 1, −

b

a
ySe

− b/ayS− AK1/a . (13)

+e value of yK2
can be found in the similar way as above,

i.e.,

yK2
� −

a

b
W −

b

a
ySe

− b/ayS− AK2/a , (14)

with AK2
� d(lnxK2

− lnxS) + c(xS − xK2
).

As a result, any solution curve initiating from (x+
0 , y+

0 )

with y+
0 ∈ (yK2

, yK1
) will be free from the effect of impulsive

set.
For the case when θ2 � 0, the trajectory shown by Γ2

becomes tangent at y � a/b. So, yK2
and yK1

become

yK2
� −

a

b
W − 1, − e

− 1− AK1/a , andyK1
� −

a

b
W − e

− 1− AK2/a .

(15)

+e impulsive function described by y(t+) �

y(t) + υ/1 + βy(t) satisfies some properties which are very
important.

To do this, we indicate

F(u) � u +
υ

1 + βu
, u ∈ 0,

a

b
 , (16)

and then we get F
�

(u) � 1 − υβ/(1 + βu)2 and F
�

(u) � 0 at
u �

��
υβ


− 1/β.

(A)AT/θ1 ≤d/c. From Lemma 1, we can describe the
impulsive set M1 as M1 � (x, y) ∈ R2

+|AT/θ1 + aθ2 ≤

x≤ xG2
, 0≤y≤yG2

}. Further, we can take three subclasses as
follows.

(i)
��
υβ


− 1/β≤ 0.

For this subcase, F
�

(u)≥ 0 for all u ∈ [0, yG2
], which

shows that υ≤F(u)≤yG2
+ υ/1 + βyG2

. +en, the
corresponding phase set to M1 can be expressed as

N11 � x
+
, y

+
(  ∈ R2

+|x
+ ∈ X

1
1, y

+ ∈ Y
1
1 , (17)

with

X
1
1 �

AT 1 − PAT( 

θ1 + aθ2
, 1 − PAT( xG2

 ,

Y
1
1 � υ, yG2

+
υ

1 + βyG2

 .

(18)

(ii)
��
υβ


− 1/β≥yG2

.
For this subcase, F

�

(u)≤ 0 for u ∈ [0, yG2
], which

denotes that yG2
+ υ/1 + βyG2

≤F(u)≤ υ. +en, the
corresponding phase set to M1 is expressed as
follows:

N12 � x
+
, y

+
(  ∈ R+ × R+|x

+ ∈ X
1
2, y

+ ∈ Y
1
2 , (19)

with

X
1
2 � 1 − PAT( xG2

,
AT 1 − PAT( 

θ1 + aθ2
 ,

Y
1
2 � yG2

+
υ

1 + βyG2

, υ .

(20)

(iii) 0<
��
υβ


− 1/β<yG2

.

For the present subcase, the impulsive set M1 becomes
M1 � M11 ∪M12, where

M11 � (x, y) ∈ R2
+|x ∈ X

1
3, y ∈ Y

1
3 , (21)

with

X
1
3 �

AT
θ1 + aθ2

,
ATβ

θ1 + aθ2( β − (
��
υβ


− 1)bθ2

 ,

Y
1
3 � 0,

��
υβ


− 1

β
 ,

(22)

M12 � (x, y) ∈ R2
+|< x ∈ X

1
4, y ∈ Y

1
4 , (23)

with

X
1
4 �

ATβ
θ1 + aθ2( β − (

��
υβ


− 1)bθ2

, xG2
 ,

Y
1
4 �

��
υβ


− 1

β
, yG2

 .

(24)

Hence, the corresponding phase set to the impulsive set
M1 � M11 ∪M12 is N13 ∪N14, where

N13 � x
+
, y

+
(  ∈ R2

+|x
+ ∈ X

1
5, y

+ ∈ Y
1
5 , (25)
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with

X
1
5 �

AT 1 − PAT( β
θ1 + aθ2( β − (

��
υβ


− 1)bθ2

,
AT 1 − PAT( 

θ1 + aθ2
 ,

Y
1
5 �

2
��
υβ


− 1

β
, υ ,

(26)

N14 � x
+
, y

+
(  ∈ R2

+|x
+ ∈ X

1
6, y

+ ∈ Y
1
6 , (27)

with

X
1
6 �

AT 1 − PAT( β
θ1 + aθ2( β − (

��
υβ


− 1)bθ2

, 1 − PAT( xG2
 ,

Y
1
6 �

2
��
υβ


− 1

β
, yG2

+
υ

1 + βyG2

 .

(28)

(B) d/c<AT/θ1. For this case, we express the impulsive
set as follows.

M2 � (x, y) ∈ R+ × R+|AT/θ1 + aθ2 ≤x

≤ xS, 0≤y≤yS}. In order to give the exact domain of phase
sets for Case (B), based on Lemma 2, we describe the fol-
lowing sets:

X
l
D �

AT 1 − PAT( 

θ1 + aθ2 + υbθ2( 
, xK2

 ∪ xK1
,∞ ,

Y
l
D � 0, yK2

 ∪ yK1
,
θ1 + aθ2( 

bθ2
+

bθ2υ
bθ2 + β θ1 + aθ2( 

 .

(29)

+e following three subcases can be taken based on the
definition of the phase set.

(i)
��
υβ


− 1/θ≤ 0.

For this subcase, F
�

(u)≥ 0 for all values of u belongs
to [0, yS]. +is shows that υ≤F(u)≤yS + υ/1 + βyS.
+e corresponding phase set toM2 can be expressed
as

N21 � x
+
, y

+
(  ∈ R+ × R+|x

+ ∈ X
2
1, y

+ ∈ Y
2
1 , (30)

with

X
0
21 �

AT 1 − PAT( 

θ1 + aθ2
, 1 − PAT( xS ,

X
2
1 � X

l
D ∩X

0
21,

(31)

Y
0
21 � υ, yS +

υ
1 + βyS

 ,

Y
2
1 � Y

l
D ∩Y

0
21.

(32)

(ii)
��
υβ


− 1/β≥yS.

For this subcase, F
�

(u)≤ 0 for u ∈ [0, yS], which
denotes that yS + υ/1 + βyS ≤F(u)≤ υ. Hence, the
phase set corresponding to M2 is given as

N22 � x
+
, y

+
(  ∈ R+ × R+|x

+ ∈ X
2
2, y

+ ∈ Y
2
2 , (33)

with

X
0
22 � 1 − PAT( xS,

AT 1 − PAT( 

θ1 + aθ2
 ,

X
2
2 � X

l
D ∩X

0
22,

(34)

Y
0
22 � yS +

υ
1 + βyS

, υ ,

Y
2
2 � Y

l
D ∩Y

0
22.

(35)

(iii) 0<
��
υβ


− 1/β<yS.

If 0≤ u≤
��
υβ


− 1/β, then F

�

(u)≤ 0 and
2

��
υβ


− 1/β≤F(u)≤ υ. If

��
υθ

√
− 1/β< u≤yS, then F

�

(u)> 0
and 2

��
υβ


− 1/β<F(u)≤yS + υ/1 + βyS.

+e impulsive set M2 is now can be explained in the
form M2 � M21 ∪M22, where

M21 � (x, y) ∈ R2
+|x ∈ X

2
3, y ∈ Y

2
3 , (36)

with

X
2
3 �

AT
θ1 + aθ2

,
ATβ

θ1 + aθ2( β − (
��
υβ


− 1)bθ2

 ,

Y
2
3 � 0,

��
υβ


− 1

β
 ,

(37)

and

M22 � (x, y) ∈ R2
+|x ∈ X

2
4, y ∈ Y

2
4 , (38)

with

X
2
4 �

ATβ
θ1 + aθ2( β − (

��
υβ


− 1)bθ2

, xS ,

Y
2
4 �

��
υβ


− 1

β
, yS .

(39)

Hence, the phase set corresponding to the impulsive set
M2 � M21 ∪M22 can be expressed as N23 ∪N24, where

N23 � x
+
, y

+
(  ∈ R2

+|x
+ ∈ X

2
5, y

+ ∈ Y
2
5 , (40)

with
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X
0
23 �

AT 1 − PAT( β
θ1 + aθ2( β − (

��
υβ


− 1)bθ2

,
AT 1 − PAT( 

θ1 + aθ2
 , X

2
5 � X

l
D ∩X

0
23,

Y
0
23 �

2
��
υβ


− 1

β
, υ , Y

2
5 � Y

l
D ∩Y

0
23,

(41)

N24 � x
+
, y

+
(  ∈ R2

+|x
+ ∈ X

2
6, y

+ ∈ Y
2
6 , (42)

with

X
0
24 �

AT 1 − PAT( β
θ1 + aθ2( β − (

��
υβ


− 1)bθ2

, 1 − PAT( xS ,

X
2
6 � X

l
D ∩X

0
24,

(43)

Y
0
24 �

2
��
υβ


− 1

β
, yS +

υ
1 + βyS

 ,

Y
2
6 � Y

l
D ∩Y

0
24.

(44)

For Case (A), if AT/θ1 ≤ d/c, then the solution from the
phase set does not reach the interval (yG2

, a/b]. It is also
important to note that if yT � a/b and AG2

� 0, then
yG2

� a/b. For Case (B), it can be seen from the vector field
of system (1) that if the closed orbit is tangent or does not
touch the curve ΓPS, then there must be a trajectory that is
tangent to the curve ΓPS at a point (xT, yT), and the tra-
jectory intersects the curve ΓIS at lower point G2. +is proves
that the impulsive set in this case is defined byM1, as shown
in Figure 1(b).

If the closed trajectory is tangent to ΓIS at point S �

(xS, yS) and intersects the curve ΓPS at two points, then it can
be seen that for any solution from the phase set, it is im-
possible to reach the interval (yS, a/b]. +e above theory
shows that nonlinear terms of the controlling measure
combined with nonlinear action threshold make impulse
system (1) quite complicated, and it is very difficult to an-
alyze each situation in detail. □

4. Poincaré Map

Poincaré map [40–42] plays a very helpful role in examining
the qualitative behavior of a dynamical system, most

prominently the asymptotic stability of periodic or almost
periodic orbits. Based on the impulse and phase sets dis-
cussed above, the following related theorem for Poincaré
map can be obtained.

Theorem 1. For the impulsive points of model (1), the
Poincaré map for Cases (A)and(B) has the following form.

(A) AT/θ1 ≤ d/c:

y
+
i+1 �

ψ y
+
i( , y

+
i ∈ Y

1
1, if

��
υβ


− 1

β
≤ 0,

ψ y
+
i( , y

+
i ∈ Y

1
2, if

��
υβ


− 1

β
≥yG2

,

ψ y
+
i( , y

+
i ∈ Y

1
5 ∪Y

1
6, if 0<

��
υβ


− 1

β
<yG2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

(B) d/c<AT/θ1:

y
+
i+1 �

ψ y
+
i( , y

+
i ∈ Y

2
1, if

��
υβ


− 1

β
≤ 0,

ψ y
+
i( , y

+
i ∈ Y

2
2, if

��
υβ


− 1

β
≥yS,

ψ y
+
i( , y

+
i ∈ Y

2
5 ∪Y

2
6, if 0<

��
υβ


− 1

β
<yS,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where

ψ y
+
i(  � −

a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
   +

υ
1 − βa/bW − b/ay

+
i exp − b/ay

+
i + Al/a(  

. (47)

Proof. Suppose that a trajectory initiating from (x+
0 , y+

0 )

repeats k (finite or infinite) times pulse action. Let the points
of the impulse set be represented by pi � (xi, yi), and after
the pulse action, the corresponding points of phase set are

represented by p+
i � (x+

i , y+
i ). If p+

0 � (x+
i , y+

i ) ∈ ΓPS and
p1 � (xi+1, yi+1) ∈ ΓIS are on the same trajectory above, then
the coordinates of the two points satisfy the following tra-
jectory equation:

Complexity 7



d lnx
+
i − d lnxi+1 + cxi+1 − cx+

i � a ln
yi+1

y
+
i

− b yi+1 − y
+
i( .

(48)

Solving the above equation for yi+1, we get

yi+1 � −
a

b
 W −

b

a
y

+
i exp −

b

a
y

+
i +

A1

a
  , (49)

where

Al � d lnx
+
i − d lnxi+1 + cxi+1 − cx+

i , (50)

and therefore

ψ y
+
i(  � −

a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

A1

a
   + υ/1 −

βa

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
   � y

+
i+1. (51)

From above equation, we can see that the Poincaré map
given in (47) depends on both the Lambert W function and
the sign of Al.

Case. (A). If Al ≤ 0, then for y+
i ≥ 0, the above expressions

defined in (9) and (10) are well defined. Further, if we define
g(y) � − b/ay exp(− b/ay), then it is easy to prove that g(y)

achieved its minimum value − e− 1 at y � a/b. +erefore,
− b/ay exp(− b/ay)exp(Al/a) ∈ [− e− 1, 0) for all Al ≤ 0 and
y> 0. +is denotes that the Poincaré map defined relative to
Case (A) is (7).

For Case (B), if Al > 0, then − b/ay exp(− b/ay)

exp(Al/a)≥ − exp(− 1). From this, we obtain the following:

b

a
 y exp − y

b

a
 ≤ exp − 1 +

Al

a
  . (52)

+is solution further simplifies as y ∈ (0, yK2
]∪

[yK1
, (θ1+ aθ2)/bθ2+ bθ2υ/bθ2 + β(θ1 + aθ2)), and from

Lemma 2 we know that

yK2
� −

a

b
W −

b

a
ySe

− b/ayS− AK2/a  andyK1
� −

a

b
W − 1, −

b

a
ySe

− b/ayS− AK1/a . (53)

Hence, in the same way, the Poincaré map domain for all
remaining cases provided in Section 3 and Table 1 can be
found. +is finalized the proof. □

5. Characteristics of Poincaré Map

To discuss the existence as well as the stability for the order-1
periodic solution of problem (1), we first analyze the dif-
ferent characteristics of Poincaré map for the above existing
cases. For this, we define an important point G � (xG, yG) �

(ATβ/(θ1 + aθ2)β − (
��
υβ


− 1)bθ2,

��
υβ


− 1/β) which will

be used in the following discussion. If G ∈ ΓIS, then after one
time pulse, the corresponding impulse point can be pre-
sented as G+: (xG+ , yG+ ) � (AT(1 − PAT) β/(θ1 + aθ2)β−

(
��
υβ


− 1)bθ2, 2

��
υβ


− 1/β).

Theorem 2. 8e Poincaré map ψ(y+
i ) for Cases (A) and (B)

provided in Table 2 satisfies different properties as follows:

(A) AT/θ1 ≤d/c and Al ≤ 0.

(i) It shows increasing behavior on [0, yT] and
decreasing behavior on [yT, θ1 + aθ2/bθ2+
bθ2υ/bθ2 + β(θ1 + aθ2)) for

��
υβ


− 1/β≤ 0.

(ii) It is increasing on [yT, θ1 + aθ2/bθ2+ bθ2υ/bθ2 +

β(θ1 + aθ2)) and decreasing on [0, yT] for��
υβ


− 1/β≥yG2

.
(iii) It is decreasing on [0, yn2

] and [yT, yn1
] and

increasing on [yn2
, yT] and [yn1

, θ1 + aθ2/bθ2 +

bθ2υ/bθ2 + β(θ1 + aθ2)) for 0<
��
υβ


− 1/β<yG2

,
where yn2

� min y+: ψ(y+) � yG+ }, yn1
� max

y+: ψ(y+) � yG+ .

(B) d/c<AT/θ1 and Al > 0 .

(i) It shows increasing behavior over the closed
interval [0, yK2

] and decreasing behavior on
[yK1

, θ1 + aθ2/bθ + bθ2υ/bθ2 + β(θ1 + aθ2) for��
υβ


− 1/β≤ 0.

(ii) It is increasing on [yK1
, θ1 + aθ2/bθ2 + bθ2υ/

bθ2 + β(θ1 + aθ2)) and decreasing on [0, yK2
] for��

υβ


− 1/β≥yS.

Table 1: +e exact impulsive and phase sets for system (1) under
Cases (A) and (B).

Cases Condition Impulsive set Phase set

(A)

(i) AT
θ1
≤ d

c

M1

N11
(ii) N12
(iii) N13 ∪N14

(B)

(i) AT
θ1
≤ d

c

M2

N21
(ii) N22
(iii) N23 ∪N24

8 Complexity



(iii) It is decreasing on [0, yN2
] and [yK1

, yN1
] and

increasing on [yN2
, yK2

] and [yN1
, θ1+

aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)) for 0<��
υβ


− 1/β<yS, where yN2

� min y+: ψ(y+) �

yG+ }, yN1
� max y+: ψ(y+) � yG+ .

Proof. Assuming that q+
i � (x+

i , y+
i ) ∈ ΓPS, the solution

initiating from q+
i intersects the curve ΓIS at

qi+1 � (xi+1, yi+1). If q+
i and qi+1 lie in one trajectory, then

yi+1 is established by y+
i and can be expressed as

yi+1 � F(y+
i ). +e corresponding vector field relative of the

system given in (1) confirms that the domain of consider-
ation of Poincaré map ψ(y+

i ) for Case (A)(i) is defined by
[0, yT]∪ [yT, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). Fur-
thermore, for this case, the corresponding impulsive func-
tion F has increasing behavior over the closed interval
[0, yT]. +erefore, based on the definition of ψ(y+

i ), it is
increasing on [0, yT] and decreasing on
[yT, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). +e function F

is decreasing upon [0, yT] in Case (A)(ii), which shows that
ψ(y+

i ) is decreasing over the interval [0, yT] and increasing
over the closed interval [yT, θ1 + aθ2/bθ2 + bθ2υ/
bθ2 + β(θ1 + aθ2)). For Case (A)(iii), F is decreasing over
[0, yG] and increasing upon [yG, yT]. +erefore, ψ(y+

i ) is
decreasing on [0, yN2

] and [yK1
, yN1

] and increasing on
[yN2

, yK2
] and [yN1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
By using the same methods as above, we can prove that

the monotonicities of the Poincaré map for Cases
(B)(i), (ii), (iii) in +eorem 2 are true. □

Lemma 3. If Al > 0 and υ> 0, then the inequality

ψ y
+
i( >y

+
i , for ally+

i ∈ 0, yK2
 , (54)

is fulfilled for the corresponding Poincaré map shown by
ψ(y+

i ).

Proof. Let a solution originate from p+
0 � (x+

i , y+
i ), and it

touches the curve ΓIS at point p1 � (xi+1, yi+1). We assume
that y+

i , yi+1 < a/b; then,

a lnyi+1 − byi+1 + d lnxi+1 − cxi+1 � a lny
+
i − by+

i

+ d lnx
+
i − cx+

i .
(55)

From (55), we get

−
b

a
yi+1e

− b/ayi+1( ) � −
b

a
y

+
i e

− b/ay+
i
+Al/a( ). (56)

If Al > 0, then we get the inequality

−
b

a
yi+1e

− b/ayi+1( ) < −
b

a
y

+
i e

− b/ay+
i( ). (57)

Let f(y) � − y exp(− y); then, f′(y)> 0 if y> 1 and
f′(y)< 0 if y ∈ (0, 1). +e inequality yi+1 >y+

i is satisfied for
all b/ay+

i , b/ayi+1 ∈ (0, 1). We also know that y+
i+1 � yi+1 + υ

and ψ(y+
i ) � y+

i+1. Hence, we deduce that ψ(y+
i )>y+

i for all
y+

i ∈ (0, yK2
).

In light of the above explained properties of Poincaré
map, the existence of the fixed point of Poincaré map ψ(y+

i )

for υ> 0 is discussed in following section. □

6. Characteristics of Boundary
Periodic Solution

In Section 4, the formula for Poincaré map ψ(y+
i ) has been

attained. We will use this formula to study the existence of
fixed point, where the fixed point is indicated as y∗, satis-
fying ψ(y∗) � y∗, such as

y
∗

� −
a

b
W × −

b

a
 y

∗ exp −
b

a
y
∗

+
Al

a
   +

υ
1 − βa/bW − b/ay

∗ exp − b/ay
∗

+ Al/a(  
. (58)

For υ � 0, we get the following equation from above:

y
∗

� −
a

b
 W −

b

a
y
∗ exp −

b

a
y
∗

+
Al

a
  . (59)

If Al � 0, the fixed point shown by y∗ of the respective
Poincaré map ψ(y+

i ) becomes

y
∗

� −
a

b
 W −

b

a
y
∗ exp −

b

a
y
∗

  . (60)

+is shows that if υ � 0, Al � 0, then every point is the
fixed point of ψ(y+

i ). If υ � 0, Al ≠ 0, then y∗ (a fix point) of
the ψ(y+

i ) fulfils

y
∗

� −
a

b
 W −

b

a
y
∗ exp −

b

a
y
∗

+
Al

a
  . (61)

In this case, ψ(y∗) � y∗ holds ⇔y∗ � 0. +us, we de-
duced that y∗ � 0 is a unique fixed point for system (1).

Table 2: +e domain of the Poincaré map for Cases (A) and (B).

Cases Condition Al ψ(y+
i )

(A)

(i)

AT/θ1 ≤d/c Al ≤ 0
y+

i ∈ Y1
1

(ii) y+
i ∈ Y1

2
(iii) y+

i ∈ Y1
5 ∪Y1

6

(B)

(i)

AT/θ1 ≤d/c Al > 0
y+

i ∈ Y2
1

(ii) y+
i ∈ Y2

2
(iii) y+

i ∈ Y2
5 ∪Y2

6
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In the following result, we present the conditions of
global stability for boundary order-1 periodic solution. To
demonstrate it, we first discuss an important lemma [43, 44].

Lemma 4. 8e T-periodic solution (x, y) � (ζ(t), ξ(t)) of
system

dx

dt
� C(x, y),

dy

dt
� D(x, y), if θ(x, y)≠ 0,

x
+

� x + ε(x, y), y
+

� y + ε(x, y), if θ(x, y) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

is orbitally asymptotically stable if the Floquet multiplier μ2
satisfies |μ2|< 1, where

μ2 � 
k

j�1
Δj exp 

T

0

zC

zx
(ζ(t), ξ(t)) +

zD

zy
(ζ(t), ξ(t)) dt ,

(63)

with

Δj �
C+(zε/zyzθ/zx − zε/zxzθ/zy + zθ/zx) + D+(zϵ/zxzθ/zy − zϵ/zyzθ/zx + zθ/zy)

Czθ/zx + Bzθ/zy
, (64)

and θ is continuously differentiable corresponding to both
x, y. C, D, zϵ/zx, zϵ/zy, zε/zx, zε/zy, zθ/zx and zθ/zy are
evaluated at (ζ(tj), ξ(tj)), C+ � C(ζ(t+

j ), ξ(t+
j )) and

D+ � D(ζ(t+
j ), ξ(t+

j )), and tj (j, k ∈ N, N is the set of non-
negative integers) is the time of the j-th jump.

Theorem 3. If Al � 0 and υ � 0, then the fixed point y∗ of
Poincaré map ψ(y+

i ) is stable in the phase set. If Al < 0 and
υ � 0, then (xT(t), 0) is globally asymptotically stable. If
Al > 0 and υ � 0, then it is unstable.

Proof. If υ � 0, Al � 0, then y∗ in the phase set is a fixed
point of the Poincaré map ψ(y+

i ). +is case confirms the
stable solution of the problem but is not asymptotically
stable. We first show that when y(t) � 0 if and only if υ � 0,
and then boundary order-1 periodic solution exists for
system (1). For y(t) � 0, system (1) is converted into the
subsystem given below:

dx(t)

dt
� a × x(t), x(t)<

AT
θ1 + aθ2

,

x t
+

(  � x(t) 1 −
δx(t)

x(t) + α
 , x(t) �

AT
θ1 + aθ2

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(65)

+e first equation of the subsystem (14), combining with
the respective initial condition shown as x(0+) � (1−

PAT)AT/θ1 + aθ2, where PAT � δx(t)/x(t) + α, gives us the
solution

x(t) � 1 − PAT( 
AT

θ1 + aθ2
exp(at). (66)

Taking the equation AT/θ1 + aθ2 � (1 − PAT)AT/ θ1 +

aθ2 exp(aT) and evaluating it for T, we get

T � − 1/aln(1 − PAT). +is shows that T-periodic boundary
order-1 solution exists for system (1) as

x
T
(t), 0  � 1 − PAT( 

AT
θ2 + aθ2

exp(at), 0 . (67)

Next, we show that (xT(t), 0) is asymptotically stable.
For this, we apply Lemma 4 and present the following.

Metho d 1.

C(x, y) � (a − by)x, D(x, y) � y(cx − d),

ε(x, y) � − PATx, ε(x, y) �
υ

1 + βy
, θ(x, y) � θ1 + aθ2( x − bθ2xy − AT,

x
T
(T), y

T
(T)  �

AT
θ1 + aθ2

, 0 , x
T

T
+

( , y
T

T
+

(   � 1 − PAT( 
AT

θ1 + aθ2
, 0 .

(68)
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From the above, we get

zC

zx
� a − by,

zD

zy
� cx − d,

zε
zx

�
− δx

2
+ 2δαx

(x + α)
2 ,

zε
zx

�
υβ

(1 + βy)
2,

zθ
zx

� θ1 + aθ2 − bθ2y,
zθ
zy

� − bθ2x,
zε
zy

�
zε
zy

� 0,

(69)

Δ1 �
C+(zε/zyzθ/zx − zε/zxzθ/zy + zθ/zx) + D+(zε/zxzθ/zy − zε/zyzθ/zx + zθ/zy)

Czθ/zx + Dzθ/zy

�
C

+
x

T
T

+
( , y

T
T

+
(   θ1 + aθ2 − bθ2y(  + D

+
x

T
T

+
( , y

T
T

+
(   PATbθ2x − bθ2x( 

C x
T
(T), y

T
(T)  θ1 + aθ2 − bθ2y(  − D x

T
(T), y

T
(T)  bθ2x( 

� 1 − PAT( .

(70)

Based on the above information, the Floquet multiplier
denoted by μ2 is defined as

μ2 � Δ1 exp 
T

0

zC

zx
x

T
(t), y

T
(t)  +

zD

zy
x

T
(t), y

T
(t)  dt 

� 1 − PAT( exp ln
1

1 − PAT
+

Al

a
 

� exp
Al

a
 .

(71)

If Al < 0 and υ � 0, then we get |μ2|< 1. +is indicates
that for the problem described in (1), the boundary order-1
periodic solution (xT(t), 0) is orbitally stable asymptotically.
If Al > 0, the sequence y+

k of pulse points is increasing strictly
and additionally will be free from more pulse action only
after limited time pulse effects.

Metho d 2. +e asymptotic stability of boundary order-1
periodic solution can also be discussed directly from
Poincaré map portrayed in (47). Let υ � 0; then,

ψ y
+
i(  � −

a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
   . (72)

Taking the derivative of (72), we get

dψ y
+
i( 

dy
+
i

y
+
i � y
∗

�
d

dy+
i




y+

i
�y∗

−
a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
    

�
− a/bW − b/ay

∗ exp − b/ay
∗

+ Al/a( (  

1 + W − b/ay
∗ exp − b/ay

∗
+ Al/a( (  

1/y∗ − b/a(  � h y
∗

( .

(73)

+e boundary order-1 periodic solution is stable
⇔|h(y∗)|< 1. By utilizing the limit of h(y∗), we get

lim
y∗⟶0

h y
∗

(  � e
Al/a. (74)
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+is denotes that if y∗ ⟶ 0, then |h(y∗)|< 1 for Al < 0,
and hence (xT(t), 0) is asymptotically stable.

In the following, we show the global attractivity of the
boundary order-1 periodic solution (xT(t), 0). Let
p+
0 � (AT(1 − PAT)/θ1 + aθ2, y+

1 ) ∈ L3 and p1 � (AT/θ1 +

aθ2, y2) ∈ L2 be the points of the same trajectory; then,

Al � d ln 1 − PAT(  + c
AT

θ1 + aθ2
PAT � a ln

y2

y
+
1

− b y2 − y
+
1( .

(75)

Let Al ≠ 0; then, from (75), it is clear that y2 ≠y+
1 . If

f(y) � a lny − by, then f
�

(y) � a/y − b. +is indicates that
if y< a/b, then f(y) is monotonically increasing.

If Al < 0, then a lny2/y+
1 − b(y2 − y+

1 )< 0. Since υ � 0,
the inequality becomes a lny2/y1 − b(y2 − y1)< 0. +is
shows that y2 <y1. +erefore, if Al ≤ 0, then the impulsive
sequence y+

k 
∞
k�0 is monotonically decreasing and

lim
k⟶∞

y+
k � y∗. +ese kinds of information affirm that the

boundary order-1 periodic solution is globally attractive. In
the same way as above, we can prove that if Al > 0, then
y2 >y1. +erefore, the sequence y+

k will be free from im-
pulsive effect after finite time pulse actions, as shown in
Figure 2(b). Hence, from all the above outcomes, it can be
concluded that if Al < 0, then the boundary order-1 periodic
solution, i.e., (xT(t), 0), is globally asymptotically stable.

+e numerical calculation in Figure 2(a) shows that if
Al < 0, then the boundary order-1 periodic solution is stable
while Figure 2(b) confirms that if Al ≥ 0, then it is
unstable. □

7. Existence of Order-1 Periodic Solution

In this section, we will discuss and analyze the order-1
periodic solution for system (1) when υ> 0.

Theorem 4. For Case (A)(i)(or(ii)), the fixed point of
Poincaré map ψ(y+

i ) exists, and therefore an order-1 periodic
solution exists for system (1).

Proof. For Case (A)(i), the trajectory Γ1 is tangent to the
curve ΓPS at point (xT, yT) and intersects the curve ΓIS at
lower point G2. If ψ(yT) � yG+

2
� yT, then the curve TG2

forms an order-1 periodic solution for system (1).
For Case (A)(i), if yG+

2
>yT or yG+

2
<yT, then the so-

lution originating from the point G+
2 touches the curve ΓPS at

a point G3 � (xG3
, yG3

) with yG3
<yG2

. +e pulse action is
applied and the point G3 maps to a point G+

3 � (xG+
3
, yG+

3
),

and yG+
3

� F(yG3
). For Case (A)(i), F is increasing on

[0, yG2
]. +erefore, yG+

3
� ψ(yG+

2
) satisfies the inequality

ψ yG+
2

 <yG+
2
. (76)

+e point ψυ(AT(1 − PAT)/θ1 + aθ2, υ) being the lowest
impulsive point satisfies

ψ(υ)> υ. (77)

Inequalities (17) and (18) confirm that a fixed point of the
Poincaré map exists, and therefore an order-1 periodic
solution exists for system (1).

For Case (A)(ii), F is decreasing on [0, yG2
]. If yG+

2
>yT

or yG+
2
<yT, we get

ψ yG+
2

 >yG+
2
. (78)

Moreover, the highest impulsive point is
ψυ(AT(1 − PAT)/θ1 + aθ2, υ), and we get

ψ(υ)< υ. (79)

Inequalities (19) and (20) confirm that there exists a fixed
point for the Poincaré map, and therefore an order-1 pe-
riodic solution exists for system (1). +is completes the
proof. □

Theorem 5. For Case (A)(iii), the fixed point of Poincaré
map ψ(y+

i ) exists, and therefore an order-1 periodic solution
exists for system (1).

Proof. If yG+
2

� yT, then the curve TG2 forms an order-1
periodic solution for the problem given in system (1). If
yG+

2
≠yT, then the following two cases are taken into

consideration.

(1) yG+
2
≥ υ, (2) yG+

2
< υ. (80)

For Case (1), if yG+
2
>yT, then we can write

ψ yT( >yT. (81)

As G+
2 is the lowest impulsive point, it satisfies

ψ yG+
2

 <yG+
2
. (82)

+us, inequalities (21) and (22) confirm that we can find
a fixed point of Poincaré map ψ(y+

i ).
If yG+

2
<yT, then we can write

ψ yT( <yT. (83)

Moreover, if G+ is the least impulsive point, then it leads
to the following:

ψ yG+( ≥yG+. (84)

+us, the above two inequalities (83) and (84) confirm
that there exists a fixed point of Poincare map ψ(y+

i ).
For Case (2), if yG+

2
>yT, then ψ(yT)>yT. On the other

hand, if the highest impulsive point is ψυ(AT(1 − PAT)/θ1+
aθ2, υ), then ψ(υ)< υ. +e above two inequalities affirm that
there exists a fixed point of the Poincaré map ψ(y+

i ).
If yG+

2
<yT, then ψ(yT)<yT. Moreover, as G+ is the least

impulsive point, we get ψ(yG+ )≥yG+ . It confirms that there
exists a fixed point for the map shown by ψ(y+

i ), and hence
an order-1 periodic solution exists for system (1). □
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Theorem 6. For Case (B)(i)(or(ii)), if yS+ >yK1
, then the

fixed point of Poincaré map ψ(y+
i ) exists, and therefore an

order-1 periodic solution exists for system (1).

Proof. For Case (B)(i), we know that there exists a curve Γ2,
which is tangent to ΓIS at point S � (xS, yS) and intersects
the curve ΓPS at two points K1 and K2. If yS+ � yK1

, then the
curve K1S forms an order-1 periodic solution for the
problem stated in (1).

Further, for Case (B)(i), if yS+ >yK1
, then the point

demoted by S+ lies above the point K1, and we get

ψ yK1
 >yK1

. (85)

In addition, the solution initiating from the point S+

meets the curve ΓIS at a point S1 which lies below the point S,
i.e., yS1

<yS. As F is increasing on [0, yS], we have
F(yS1

)<F(yS), i.e., y+
S1
<y+

S . All the above results affirm that
the Poincaré map for Case (B)(i) satisfies

ψ yS+( <yS+. (86)

Inequalities (25) and (26) confirm that a fixed point in
(yK1

, yT+ ) will exist. Hence, an order-1 periodic solution
exists for problem (1).

If yS+ <yK1
, then after a one time impulsive effect, the

solution will directly map to the interval [υ, yS+ ]. +us, if
yK2
≥ υ, then according to inequality (1), any trajectory

originating from y+ with υ≤y+ ≤yK2
will intersect the curve

ΓIS and experience a limited time of pulse actions and at last
enter into Int Γ2 and will be free from more pulse action. If
yK2
< υ<yS+ , then each solution curve of problem (1) will

map to the Int Γ2 after a one time impulsive effect. Hence, if
yS+ <yK1

, then a fixed point does not exist.
For Case (B)(ii), if yS+ >yK1

, then ψ(yK1
)>yK1

. We also
know that the function F is decreasing on [0, yS]. So, the

solution y+ initiating from [0, yK2
]∪ [yK1

, θ1 + aθ2/bθ2+
bθ2υ/bθ2 + β(θ1 + aθ2)) will map to the interval [yS+ , υ] after
a one time impulsive effect. +erefore, the trajectory orig-
inating from the point ψυ(AT(1 − PAT)/θ1 + aθ2, υ) will
satisfy ψ(υ)< υ. From the above inequalities, it follows that
the fixed point exists in the interval (yK1

, υ). □

Theorem 7. For Case (B)(iii), if yS+ >yK1
, then the fixed

point of Poincaré map ψ(y+
i ) exists, and therefore an order-1

periodic solution exists for system (1).

Proof. If yS+ � yK1
, then for system (1), the curve K1S forms

an order-1 periodic solution. If yS+ ≠yK1
, then we consider

the following two cases.

(1) yS+ ≥ υ, (2) yS+ < υ. (87)

For Case (1), if yT+ >yK1
, then ψ(yK1

)>yK1
. Moreover,

according to the exact domain of the Poincaré map ψ(y+
i ),

the impulsive point S+
1 of S+ lies below the point S+, i.e.,

S+
1 < S+ for yS+ ≥ υ. +erefore, inequality ψ(yS+ )<yS+ is true,
which shows that the fixed point exists in the interval
[yK1

, yS+ ].
If yS+ <yK1

, then applying the same techniques as those
given in+eorem 6, it can easily be shown there must exist a
finite number of pulse effects for any solution of system (1).
Furthermore, the solution enters into Int Γ2 and becomes
free from more pulse actions.

For Case (2), if yS+ >yK1
, then ψ(yK1

)>yK1
holds true.

We also know that the highest impulsive point is ψυ(AT(1 −

PAT)/θ1 + aθ2, υ) because yS+ < υ. +erefore, we get ψ(υ)< υ,
and hence the theorem is true.

If yS+ <yK1
, then any trajectory of system (1) tends into

Int Γ2 only after finite pulse effects. +is completes the
proof. □
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Figure 2: (a) +e stable boundary order-1 periodic solution where L2 � 1.4 and Al � − 0.050, c � 0.50, d � 1.20. (b) +e unstable boundary
order-1 periodic solution with L2 � 1.20 and Al � 0.0030, d � 0.20, c � 0.20. +e rest of the parameter values are fixed with
a � 1, δ � 0.3, b � 0.1, α � 4, β � 1, υ � 0.
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8. Stability of Order-1 Periodic Solution

+e monotonicities of Poincaré map ψ(y+
i ) and existence of

its fixed point were discussed in previous sections. Now,
based on these, we will discuss the stability of fixed point of
Poincaré map ψ(y+

i ) for system (1).

Theorem 8. For Case (A)(i), if the fixed point of Poincaré
map ψ(y+

i ) is unique and one of the following two conditions
is satisfied, then the corresponding fixed point denoted by y∗ is
stable globally.

(a) If ψ(yT)<yT.
(b) If ψ(yT)>yT and ψ2(y+

i )>y+
i for y+

i ∈ [yT, y∗).

Proof. From +eorem 4, we know that for Case (A)(i), the
fixed point of Poincaré map ψ(y+

i ) exists. Let the fixed point
y∗ be unique; then, the global stability can be discussed as
follows:

(a) If ψ(yT)<yT, then y+
i <ψ(y+

i )<y∗ for all
y+

i ∈ [0, y∗). +is means that as j increases, ψj(y+
i )

increases monotonically and satisfies limj⟶+∞
ψj(y+

i ) � y∗. If y+
i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2+

β(θ1 + aθ2)], then we take two cases. (1) If
y+

i ∈ (y∗, yT], then according to the relation
y∗ <ψ(y+

i )<y+
i , ψ(y+

i ) decreases monotonically,
i.e., y∗ <ψj(y+

i )<ψj− 1 (y+
i ) for all j≥ 1 and we get

limj⟶+∞ψj(y+
i ) � y∗. (2) If y+

i ∈ (yT,

θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)), then
ψ(y+

i ) ∈ (0, yT) and limj⟶+∞ψ1+j(y+
i ) � y∗.

+erefore, the conclusion in (a) is true.
(b) If ψ(yT)>yT, then we take three intervals: (1)

y+
i ∈ [yT, y∗); (2) y+

i ∈ [0, yT); (3) y+
i ∈ (y∗, θ1+

aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). For interval (1),
since yT ≤y+

i <y∗ and Poincaré map ψ(y+
i ) is

monotonically decreasing in this interval, it is easy to
get (yT)≥ψ(y+

i )>y∗. At the same time, by using the
second condition ψ2(y+

i )>y+
i , we get

y+
i <ψ2(y+

i )<y∗. +is means that for all j≥ 1,
ψ2(j− 1)(y+

i )<ψ2j(y+
i )<y∗. +is shows that ψ2j(y+

i )

increases monotonically, and limj⟶+∞ψ2j

(y+
i ) � y∗.

For intervals (2) and (3), using the same method as those
in (1), we can prove that there must exist n≥ 1 such that
ψn(y+

i ) ∈ [yT, y∗], and hence the fixed point of Poincaré
map ψ(y+

i ) is globally stable under conditions (2) and (3).
+is completes the proof. □

Theorem 9. For Case (A)(ii), if the fixed point y∗ of
Poincaré map ψ(y+

i ) is unique and one of the following two
conditions is true, then y∗ is globally stable.

(a) If ψ(yT)>yT.
(b) If ψ(yT)<yT and ψ2(y+

i )<y+
i for y+

i ∈ (y∗, yT].

Proof. +eorem 4 shows that for Case (A)(ii), there exists a
fixed point of the map ψ(y+

i ). Assuming that the fixed point

is unique, we have the following conclusions regarding its
stability:

(a) From +eorem 2, it is clear that the Poincaré map is
monotonically increasing in the interval [yT, θ1 +

aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)) and monotoni-
cally decreasing in the interval [0, yT]. If ψ(yT)>yT,
then the fixed point satisfies y∗ >yT for any
y+

i ∈ [yT, y∗) and ψj1(y+
i ) increases with the in-

creasing value of j1 such that limj⟶+∞ ψj1(y+
i ) � y∗

for all y+
i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β

(θ1 + aθ2)). ψj2(y+
i ) decreases as j2 increases, and

limj⟶+∞ψj2(y+
i ) � y∗.

For all y+
i ∈ (0, yT), there is ψ(y+

i ) ∈ (yT, θ1 + aθ2/
bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)); therefore, limj⟶+∞
ψ1+j1(y+

i ) � y∗ or limj⟶+∞ψ1+j2(y+
i ) � y∗. In

summary, the only fixed point y∗ is globally stable.
(b) +e Poincaré map ψ(y+

i ) is monotonically de-
creasing in the interval [0, yT], and for
y+

i ∈ (y∗, yT], the condition ψ2(y+
i )<y+

i is satisfied.
So, it is easy to get y∗ <ψ4(y+

i )<ψ2(y+
i ). By in-

duction, there is a relation
y∗ <ψ2j(y+

i )<ψ2(j− 1)(y+
i ) for all j≥ 1. +is shows

that ψ2j(y+
i ) monotonically decreases with in-

creasing value of j, and limj⟶+∞ψ2j(y+
i ) � y∗. In

addition, for all y+
i ∈ (0, y∗)∪ (yT, θ1 + aθ2

/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)), there must exist l≥ 1
such that ψl(y+

i ) ∈ (y∗, yT], and hence
limj⟶+∞ ψl+2j(y+

i ) � y∗. □

Theorem 10. For Case (A)(iii), if the fixed point y∗ is
unique and one of the following conditions is true, then it is
globally stable.

(a) If ψ(yni
)>yni

i � 1, 2.
(b) If ψ(yni

)<yni
i � 1, 2, and ψ2(y+

i )<y+
i for all

y+
i ∈ (y∗, yn2

].
(c) If ψ(yT)>yT, ψ(yn2

)>yn2
, and ψ(yn1

)<yn1
, for

y+
i ∈ (y∗, yn1

] when y∗ <ψ2(y+
i )<y+

i .
(d) If ψ(yT)<yT, ψ(yn2

)>yn2
, and ψ(yn1

)<yn1
.

Proof. +eorem 5 shows that there exists a fixed point of
Poincaré map ψ(y+

i ) for Case (A)(iii). Moreover, if y∗ is
unique, then its global stability can be described as follows:

(a) If ψ(yni
)>yni

for i � 1, 2, then we take three inter-
vals: (1) [yn1

, y∗); (2) (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2+
β(θ1 + aθ2)); (3) (0, yn1

). For all y+
i ∈ [yn1

, y∗), we
get y+

i <ψ(y+
i )<y∗. +e Poincaré map ψ(y+

i ) is
monotonically increasing in the interval
[yn1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)), and
ψ(y+

i )<ψ2(y+
i )<y∗. By induction, we get

ψj− 1(y+
i )<ψj(y+

i )<y∗ for all j≥ 1, which means
that ψj(y+

i ) monotonically increases as j increases,
and limj⟶+∞ψj(y+

i ) � y∗, y+
i ∈ [yn1

, y∗).
For all y+

i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1
+aθ2)), we get y∗ <ψ(y+

i )<y+
i . From the
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monotonicity of ψ(y+
i ), we have

y∗ <ψ2(y+
i )<ψ(y+

i ), which means that ψj(y+
i ) de-

creases with increasing value of j and
limj⟶+∞ψj(y+

i ) � y∗ for all
y+

i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
For all y+

i ∈ (0, yn1
), it is easy to get

ψ(y+
i ) ∈ (yn1

, θ1 + aθ2/bθ2 + bθ2
υ/bθ2 + β(θ1 + aθ2)), and according to the previous
conclusion, we get limj⟶+∞ψ1+j(y+

i ) � y∗. +ere-
fore, the result in Case (a) is true.

(b) If ψ(yni
))<yni

for i � 1, 2, then we take two cases: (1)
y+

i ∈ (y∗, yn2
]; (2) y+

i ∈ (0, y∗)∪ (yn2
, θ1 + aθ2/b

θ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). For all y+
i ∈ (y∗, yn2

]

and according to the monotonicity of the Poincaré
map, ψ(y+

i ) satisfies ψ2(y+
i )<y+

i . From this, it is easy
to get y∗ <ψ4(y+

i )<ψ2(y+
i ). By induction, the in-

equality y∗ <ψ2j(y+
i )<ψ2(j− 1)(y+

i ) for all j≥ 1
holds, which means that as j increases, the mapping
ψ2j(y+

i ) monotonically decreases, and
limj⟶+∞ψ2j(y+

i ) � y∗ for all y+
i ∈ (y∗, yn2

]. For all
y+

i ∈ (0, y∗)∪ (yn2
, +∞), there exists k≥ 1, such that

ψk(y+
i ) ∈ [y∗, yn2

). From this, we get
limj⟶+∞ψk+2j(y+

i ) � y∗ for all y+
i ∈ (0, y∗)∪ (yn2

,

θ1 + aθ2/b θ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). All the
above conclusions indicate that Case (b) is true.

(c) We again take two conditions: (1) y+
i ∈ (y∗, yn1

]; (2)
y+

i ∈ (0, y∗)∪ (yn1
, θ1 + aθ2/bθ2+ bθ2υ/bθ2 + β(θ1+

aθ2)). For all y+
i ∈ (y∗, yn1

], the Poincaré map ψ(y+
i )

is monotonically decreasing, and the inequality
y∗ <ψ2(y+

i )<y+
i is satisfied. We can easily get the

relationship y∗ <ψ4(y+
i )<ψ2(y+

i ), and by induc-
tion, y∗ <ψ2j(y+

i )<ψ2(j− 1)(y+
i ) for all j≥ 1. +is

means that as j increases, the mapping ψ2j(y+
i )

monotonically decreases, and limj⟶+∞ψ2j

(y+
i ) � y∗. For all y+

i ∈ (0, y∗)∪ (yn1
, +∞), there

must exist l≥ 1, such that ψl(y+
i ) ∈ [y∗, yn1

].
+erefore, we get limj⟶+∞ψl+2j(y+

i ) � y∗ for all
y+

i ∈ (0, y∗)∪ (yn1
, θ1 + aθ2/bθ2+ bθ2υ/bθ2+

β(θ1 + aθ2)), which means that Case (c) is true.
(d) If the conditions given in statement are satisfied, we

consider two intervals: (1) y+
i ∈ [yn2

, yT]; (2)
y+

i ∈ (0, yn2
)∪ (yT, θ1 + a θ2/bθ2 + bθ2υ/bθ2 + β

(θ1+ aθ2)). If y+
i ∈ [yn2

, yT], then according to the
monotonicity of the Poincaré map ψ(y+

i ), ψj1(y+
i )

monotonically increases as j1 increases, and
limj⟶+∞ ψj1(y+

i ) � y∗. If y+
i ∈ (y∗, yT], then

ψj2(y+
i ) monotonically decreases as j2 increases, and

limj⟶+∞ψj2(y+
i ) � y∗. For all y+

i ∈ (0, yn2
)∪ (yT,

θ1 + aθ2/ bθ2 + bθ2υ/ bθ2 + β(θ1 + aθ2)), it is easy to
know that there must exist a positive integer k, such
that ψk(y+

i ) ∈ [yn2
, yT], and at the same time,

limj⟶+∞ψk+j1(y+
i ) � y∗ or limj⟶+∞ψk+j2

(y+
i ) � y∗. Hence, the Case (d) is true. □

Theorem 11. For Case (B)(i), if ψ(yK1
)>yK1

, then the fixed
point y∗ of Poincaré map ψ(y+

i ) is globally asymptotically
stable provided that ψ2(y+

i )>y+
i for all y+

i ∈ [yK1
, y∗).

Proof. From +eorem 6, we know that for Case (B)(i), a
fixed point of Poincaré map ψ(y+

i ) exists.
According to the inequality given in Lemma 3,

ψ(y+
i )>y+

i for all y+
i ∈ (0, yK2

). At the same time, the in-
equality ψ(0) � υ> 0 is satisfied. So, the fixed point y∗ does
not lie in the interval [0, yK2

]. +is shows that the unique
fixed point belongs to the interval
[yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
If yK1
≤y+

i <y∗, then from the monotonicity of the
mapping ψ(y+

i ), we get ψ(yK1
)≥ψ(y+

i )>y∗. By applying
the inequality ψ2(y+

i )>y+
i for all y+

i ∈ [yK1
, y∗), we get

y+
i <ψ2(y+

i )<y∗. By induction, there exists a relationship
ψ2(j− 1)(y+

i )<ψ2j(y+
i )<y∗ for all j≥ 1. +is means that as j

increases, ψ2j(y+
i ) increases monotonically, and hence

limj⟶+∞ψ2j(y+
i ) � y∗. □

Theorem 12. For Case (B)(ii), if ψ(yK1
)>yK1

, then the
fixed point of Poincaré map ψ(y+

i ) is globally stable.

Proof. From +eorem 6, there exists a fixed point of
Poincaré map ψ(y+

i ) for Case (B)(ii). Using the same
method as in +eorem 11, there is no fixed point on the
interval [0, yK2

], and y∗ is located in the interval
(yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). Moreover,
under the uniqueness of y∗, the global stability can be
described as follows.

For Case (B)(ii), the Poincaré map ψ(y+
i ) is mono-

tonically decreasing in the interval [0, yK2
] and monoton-

ically increasing in the interval [yK1
, θ1 + aθ2/bθ2+

bθ2υ/bθ2 + β(θ1 + aθ2)). If y+
i ∈ [yK1

, y∗), then according to
the relationship y+

i <ψ(y+
i )<y∗, it is obvious that ψj(y+)

increases monotonically towards y∗ as j increases, i.e.,
limj⟶+∞ψj(y+

i ) � y∗. For all y+
i ∈ (y∗, θ1 + aθ2/bθ2+

bθ2υ/bθ2 + β(θ1 + aθ2)), according to the relationship
y∗ <ψ(y+

i )<y+
i and properties of Poincaré map ψ(y+

i ), we
know that ψj(y+

i ) monotonically decreases with the in-
creasing value of j, and limj⟶+∞ψj(y+

i ) � y∗.
If y+

i ∈ [0, yK2
], then there must exist some l≥ 1 such

that ψ(y+
i ) ∈ [yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)),
and therefore limj⟶+∞ψ1+j(y+

i ) � y∗. Hence, the result in
+eorem 12 is correct. □

Theorem 13. For Case (B)(iii), if ψ(yK1
)>yK1

, then the
unique fixed point y∗ of Poincaré map ψ(y+

i ) exists. If one of
the conditions (a) and (b) given below is true, then y∗ is
globally stable.

(a) If ψ(yNi
)>yNi

i � 1, 2.
(b) If yK1

≤ψ(yN2
) � ψ(yN1

)≤yN1
, and ψ2(y+

i )>y+
i for

all y+
i ∈ [yK1

, y∗).

Proof. For Case (B)(iii), if ψ(yK1
)>yK1

, then from Lemma
3 and+eorem 7, we know that Poincaré mapping ψ(y+

i ) has
at least one fixed point y∗ belonging to the interval
[yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). Under the
uniqueness of y∗, the global stability can be demonstrated as
follows:
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(a) If ψ(yNi
)>yNi

i � 1, 2, then only y∗ exists in the
interval [yN1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1+ aθ2)).
From +eorem 2, we can see that Poincaré map
ψ(y+

i ) is monotonically increasing in the interval
[yN1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). For
any y+

i ∈ [yN1
, y∗), we get y+

i <ψ(y+
i )<y∗, which

shows that ψj(y+
i ) for j≥ 1 increases monotonically,

and limj⟶+∞ψj(y+
i ) � y∗. For any y+

i ∈ (y∗, θ1+
aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)], we get the rela-
tion y∗ <ψ(y+

i )<y+
i . +erefore, from the monoto-

nicity of ψ(y+
i ), ψj(y+

i ) monotonically decreases
with increasing value of j, and we get
limj⟶+∞ψj(y+

i ) � y∗. For all y+
i ∈ [0, yK2

]∪ [yK1
,

yN1
), it is obvious that there exists an integer l≥ 0,

such that ψl(y+
i ) ∈ [yN1

, θ1 + aθ2/ bθ2 + bθ2υ/bθ2+
β(θ1 + aθ2)). Hence, for all y+

i ∈ [0, yK2
]∪

[yK1
, yN1

), we get limj⟶+∞ψl+j(y+
i ) � y∗.

All these results show that if ψ(yNi
)>yNi

i � 1, 2,
then the unique fixed point y∗ of the mapping ψ(y+

i )

is globally stable.
(b) If yK1

≤ψ(yN2
) � ψ(yN1

)≤yN1
, then combined with

the inequality ψ(yK1
)>yK1

given in the statement, it
is clear that there exists only one y∗ in the interval
(yK1

, yN1
]. +e mapping ψ(y+

i ) monotonically de-
creases in the interval [yK1

, y∗), i.e., for all
y+

i ∈ [yK1
, y∗), we have ψ(yK1

)≥ψ(y+
i )>y∗. In

addition, by applying the condition ψ2(y+
i )>y+

i , we
get y+

i <ψ2(y+
i )<y∗. Hence, we get ψ2(j− 1)(y+

i )<
ψ2j(y+

i )<y∗ for j≥ 1. +is shows that ψ2j(y+
i )

monotonically increases with the increasing value of
j and limj⟶+∞ ψ2j(y+

i ) � y∗ for all y+
i ∈ [yK1

, y∗).

If y+
i ∈ (0, yK2

)∪ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 +

aθ2)) and yK1
≤ψ(yN2

) � ψ(yN1
)≤yN1

, then there must
exist l≥ 1 such that ψl(y+

i ) ∈ [yK1
, y∗]. By using the same

way as above, we get limj⟶+∞ ψl+2j(y+
i ) � y∗ for all

y+
i ∈ [0, yK2

]∪ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
+erefore, if yK1

≤ψ(yN2
) � ψ(yN1

)≤yN1
and

ψ2(y+
i )>y+

i for all y+
i ∈ [yK1

, y∗), then the fixed point y∗ is
globally stable. □

9. Conclusions

+e IPM strategy is a dynamic management system. From a
mathematical perspective, this is actually an optimal control
problem under multiple objectives. +e IPM approach’s
purpose is to monitor the number of pest populations in real
time and decide whether to implement a control strategy
based on the size of the population. +e state-dependent
impulsive differential equation [20, 45–47] is needed to truly
characterize the IPM strategy and the dynamic evolution of
pest-natural system. Moreover, in recent years, researchers
have proposed a variety of state-dependent pest-natural
enemy feedback control systems.

+e change rate of pest population plays an important
role in state-dependent prey-predator ecological system.
+ere are two fundamental circumstances in the previous
studies which require high attention. First, the pest pop-
ulation is comparatively high and the change rate is little;

second, the population of pest is small, but the change rate is
high. A crucial issue illustrated by these two situations is that
when the pest population is large, the growth rate is small or
even negative at this time. In this case, even if the IPM
strategy is not implemented, the number of pests may not
exceed EIL. Another situation is that although the number of
pests is not large, the growth rate of the pest population is
very large. If the control strategy is not implemented in time,
it may lead to a large outbreak of pests. Next, the IPM
process needs precise checking of the pest populations, and
consequently suitable integrated control strategies can be
prepared. +e pest killing rate should be a function of their
density, whereas the releasing quantity of natural enemies
should be a function of their density. Based on this, a feasible
new nonlinear state-feedback system with nonlinear ratio-
dependent AT is proposed.

+e use of nonlinear pulse as state-dependent feedback
control with nonlinear ratio-dependent AT is more reasonable
and closer to reality in a biological sense, but the impulsive
model becomes very difficult because of the existence of two
population quantities in the control actions. By including the
densities of pest and its natural enemy in controlling measures,
we can develop the pest control model based on the practical
importance according to the growth direction of agriculture
and forestry. Corresponding analytical techniques and nu-
merical methods were developed, the dynamic behavior of the
system was examined, and the important role of the main
conclusions in integrated pest control was given.

To avoid the complexity, in this paper, we proposed the
simple Lotka–Volterra impulsive mathematical model. Our
aim is to reveal how nonlinear pulse control with nonlinear
ratio-dependent AT affects the whole dynamics and con-
centrate on the biological implications. +e definition and
properties of Poincaré map for phase-concentrated pulse
points in various cases are discussed and studied. +e ex-
istence, uniqueness, and global stability of boundary and
interior periodic solutions of order 1 for model (1) are
analyzed by using the definition of Poincaré map. In the
present paper, some basic techniques were used for the
qualitative analysis of nonlinear pulsed model with non-
linear ratio-depended AT, which can be widely used in the
study of feedback control systems with critical conditions,
such as the blood glucose-insulin regulation system.
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