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&e Wiener index (WI) is one of the connectivity parameters used to know the biochemical and physicochemical properties of
compounds depending upon their molecular structures. Intuitionistic fuzzy graphs (IFGs) are a convenient tool to represent the
objects and relations between them with two types of information using truth membership degree and falsity membership degree.
&is research work presents the concept of WI under the structure IFGs, IF trees, and IF cycles. Some bounds on WI are
investigated. &e relationship betweenWI and connectivity index (CI) is also studied. In the end of this study, an application
of the WI in transport network flow is proposed.

1. Introduction

Zadeh [1] was the first person who presented his first pub-
lication on fuzzy sets (FSs) in 1965. He generalized crisp set by
giving membership grades to every object of the set in the
interval [0, 1]. Various concepts of ordinary sets were
established for FSs. Further explorations in the work of Zadeh
were made by Goguen [2] in 1967. Zadeh [3] discussed
models including constraints and goals for the betterment and
development of different sections of a country’s society in
1970. Interval-valued FSs were presented bySambuc [4] in
1975 under the name of H-fuzzy set, which is proposed by
Zadeh [5] taken as a special case of type 2 FSs. In 1999, the
authors in [6] studied a method for the calculation of cor-
relation coefficient under fuzzy data. &e value obtained by
this formula provides the strength of correlation between
the sets and positivity or negativity of this correlation. Ashraf
et al. introduced spherical FSs and proposed their applications
[7]. Mahmood et al. [8] introduced spherical and T-spherical
FSs along with some operations on them. &ey discussed
some problems using these sets. &ere have been a lot of

publications on FSs andmore to come.&ere are various areas
in which FSs are applied, for example, pattern recognition [9],
psychology [10], and decision-making [11].

&e graph is a convenient source by which objects and
their relationships are presented by vertices and edges.
When these objects and relationships contain vague infor-
mation, it is necessary to present them by a FG.&e first step
in the field of FGs was taken by Rosenfeld [12] in 1975. In
1994, J.N. Mordeson [13] defined some operations on FGs.
Bhattacharya [14] showed an association between FG and
fuzzy group in 1987.&e researchers completed a lot of work
on FGs in the duration of 1981 to 1990. After that, the
concept of domination in the environment of FGs was in-
troduced by Somasundaram [15] in 1998. Akram [16] de-
veloped the concept of bipolar FGs in 2011, discussed
different ways of their construction, and investigated some
properties on them. By the same author [17], irregular bi-
polar FGs of different types were introduced in 2013. &ey
also developed the concept of regular bipolar FGs [18]. FGs
have applications in various fields such as controversial
problems, decision-making, and social networks [19–21].
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FSs contain only membership information. Atanassov
[22] was the first one who made the generalization of FSs by
considering nonmembership information and invented a
new set called intuitionistic fuzzy set (IFS). After this
consideration, researchers started to generalize various
concepts of FSs into the frame of IFSs. In 1991, Gerstenkorn
and Manko [23] defined a function to measure the corre-
lation of IFSs and introduced a coefficient of this correlation
to analyze some of its properties. Angelov [24] extended the
concept of fuzzy optimization and introduced IF optimi-
zation in 1997. &e authors in [25] proposed the concept of
distance between IFSs in 2000. Atanassov [26] introduced
interval-valued IFs and discussed their properties. Li [27]
investigated multiattribute decision-making under IFSs.
From application point of view, IFSs have application in
medicine [28], pattern classification [29], decision-making
[30], etc.

IF relations and IFGs are the foundations of Atanassov
[31]. Akram et al. defined IFGs in a precise way and pre-
sented various concepts such as strong IFGs, balanced IFGs,
IF hypergraphs, IF trees, and IF cycles [32–35]. Kar-
unambigai et al. [36] introduced arcs in IFGs and classified
them. &e idea of nth type of IFGs was proposed by the
authors in [37]. &e concept of domination was developed
by Parvathi [38]. Akram [39] introduced double domination
for IFGs. Sun et al. [40] proposed the framework to increase
the degree of consensus in the group of decision-making.
&e authors also made an analysis, and a numerical example
is given to illustrate this work. Xing et al. [41] studied the
concept of a new Choquet integral for the purpose to obtain
the matrix of consensus of all individual experts.&e authors
also presented an illustration to show the effectiveness of the
proposed work. IFGs have a variety of applications, for
instance, decision support system, communication net-
works, and water supplier system [42–44].

Mathematical chemistry deals with molecular structure
in terms of mathematical techniques. In mathematical
chemistry, molecular descriptors play a vital role. Chemical
graph theory as a subject develops a connection among
chemistry, graph theory, and mathematics. A graph repre-
senting atoms and bonds of a compound by vertices and
edges is known as a molecular graph. Topological indices
(TIs) are scalars connected with a molecular graph used to
know the correlation of a chemical structure with many
physical properties, biological activity, and chemical reac-
tivity. WI [45] is the first TI proposed by Wiener in 1947.
&is TI is distance-based. &ere are many degree-based TIs
discovered to know various properties of drugs and com-
pounds, and some of them are Randic index, harmonic
index, Zagreb indices, atomic bond connectivity index,
geometric arithmetic index, and augmented Zagreb index.
Binu et al. introduced CIs and WI for FGs with appli-
cations [46, 47]. &e TIs based on vertex degrees such as
Zagreb indices, Randic index, and harmonic index are de-
fined in [48] for FGs with the discussion on two applications.
Naeem et al. [49] proposed the concept of CIs under IFGs

environment with applications in two types of networks. TIs
are widely used in chemistry, mathematics, and pharmacy
engineering [50–52]. Besides, TIs also have applications in

human trafficking, Internet routing, and transport network
flow [46–49].

&e setting of our research article is given as follows.
Preliminary requirements are arranged in Section 2.
&roughout Section 3, the concept ofWI with illustrations
and some bounds for it is proved. &e relationship between
the WI and CI including supporting examples is pre-
sented in Section 4. An application of WI for IFGs is
proposed in Section 5. In the last two sections, the con-
clusion and advantages of our proposed work are given.

2. Preliminaries

To understand this research paper in a better way, we give
some definitions along with some results throughout the
preliminary section.

Definition 1. (see [32]). A pair χ � (N, M) under V and E

known as the sets of vertices and edges is an IFG satisfying
the following:

(1) TN, FN: V⟶ [0, 1] are functions that stand for the
truth membership degree, and FN(wi) indicates the
falsity membership degree of every wi ∈ V under the
condition that TN(wi) + FN(wi) ∈ [0, 1].

(2) TM, FM: E⟶ [0, 1] are functions, TM(wi, wj)

represents the truth membership degree, and
FM(wi, wj) denotes falsity membership degree of
(wi, wj) ∈ E with the following:

TM wi, wj􏼐 􏼑≤min TN wi( 􏼁, TN wj􏼐 􏼑􏽮 􏽯,

FM wi, wj􏼐 􏼑≥max FN wi( 􏼁, FN wj􏼐 􏼑􏽮 􏽯,
(1)

such that TM(wi, wj) + FM(wi, wj) ∈ [0, 1].

Definition 2. (see [53]). A partial subgraph of an IFG is also
an IFGH � (N′, M′) such that

(1) TN′(wi)≤TN(wi) and FN′(wi)≥FN(wi)

(2) TM′(wi, wj)≤TM(wi, wj) and FM′(wi, wj)≥
FM(wi, wj)

Definition 3. (see [36]). An IFG is known as complete if
TM(wi, wj) � ∧ TN(wi), TN(wj)􏽮 􏽯 and FM(wi, wj) �

∨ FN(wi), FN(wj)􏽮 􏽯.

Definition 4. (see [36]). A vertex sequence v1, v2, v3, . . . , vn

with vi ≠ vj for all i≠ j is known as an IF path if one of the
following holds for at least one i and j.

(1) TM(wi, wj)> 0 and FM(wi, wj) � 0
(2) TM(wi, wj) � 0 and FM(wi, wj)> 0
(3) TM(wi, wj)> 0 and FM(wi, wj)> 0

Definition 5. (see [36]). &e T strength and F strength of a
path P � v1v2v3 . . . vn are defined by ST � min TM(vi, vj)􏽮 􏽯

and SF � max FM(vi, vj)􏽮 􏽯 for every i and j. &e pair
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containing both the strengths is known as the strength of P
provided both of them lie on the common arc.

De�nition 6. (see [36]). �e T strength and F strength of
connectedness between two vertices vi and vj are denoted
and de�ned by CONNT(χ)(vi, vj) � max ST{ } and
CONNF(χ)(vi, vj) � min SF{ } for all paths P: vi − vj.

De�nition 7. (see [36]). An arc (wi, wj) is known as a bridge
in χ if it has one of the following:

(1) CONNT(χ)− (wi,wj)(wi, wj)<CONNT(χ)(wi, wj) and
CONNF(χ)− (wi,wj)(wi, wj)≥CONNF(χ)(wi, wj)

(2) CONNT(χ)− (wi,wj)(wi, wj)≤CONNT(χ)(wi, wj) and
CONNF(χ)− (wi,wj)(wi, wj)>CONNF(χ)(wi, wj)

De�nition 8. (see [36]). An edge (wi, wj) is strong if
TM(wi, wj)≥CONNT(χ)(wi, wj) and FM(wi, wj)≤
CONNF(χ)(wi, wj), and (wi, wj) is weakest if TM(wi, wj)<
CONNT(χ)(wi, wj) and FM(wi, wj)>CONNF(χ)(wi, wj).

De�nition 9. (see [36]). If P is a path between any two nodes
vi and vj such that ST(P) � CONNT(χ)(vi, vj) and SF(P) �
CONNF(χ)(vi, vj), then it is called strongest path between vi
and vj.

De�nition 10. (see [36]). A path P from vertex vi to vertex vj
in an IFG is known as strong provided it has just strong arcs.

Example 1. In Figure 1, the arcs (v1, v2), (v1, v3), (v1, v4),
(v2, v3), and (v2, v4) are all strong arcs, while (v3, v4) is the
only weak arc. �e path P: v3v2v1v4 is a strong path, as well
as strongest path between the vertices v3 and v4.

De�nition 11. (see [36]). An arc (vi, vj) in an IFG is such
that

(1) TM(vi,vj)>CONNT(χ)− (vi,vj)(vi,vj) and FM(vi,vj)<
CONNF(χ)− (vi,vj)(vi,vj) are known as α-strong

(2) TM(vi, vj) � CONNT(χ)− (vi,vj)(vi, vj) and FM(vi,
vj) � CONNF(χ)− (vi,vj)(vi, vj) are known as β-strong

(3) TM(vi, vj)<CONNT(χ)− (vi,vj)(vi, vj) and FM(vi,
vj)>CONNF(χ)− (vi,vj)(vi, vj) are known as δ-weak

De�nition 12. (see [35]). A connected IFG χ � (N,M) is an
IF tree if χ has an IF spanning subgraphH � (N,M′), which
is a tree, where for all arcs (vi, vj) not in H, TM(vi,
vj)<CONNT(H) (vi, vj), FM(vi, vj)>CONNF(H)(vi, vj).

Example 2. Here, we have taken (TN(u), FN(u)) � (1, 0)
for all u ∈ N. As CONNT(H)(v2, v3) � 0.7 and
CONNF(H)(v2, v3) � 0.3, we see that TM(v2, v3) � 0.6<
CONNT(H)(v2, v3) and FM(v2, v3) � 0.4>
CONNF(H)(v2, v3). �us, χ is an IF tree, and H is spanning
tree of χ. �e graph is shown in Figure 2.

De�nition 13. (see [49]). �e CI of an IFG, χ � (N,M), is
de�ned by CI(χ) � TCI(χ) +FCI(χ), where
TCI(χ) and FCI(χ) are T-connectivity and F-con-
nectivity indices of χ, respectively, given as follows:

TCI(χ)(χ) � ∑
v,v′∈V(χ)

TN(v)TN(v′)CONNT(χ)(v, v),

FCI(χ) � ∑
v,v′∈V(χ)

FN(v)FN(v′)CONNF(χ)(v, v′).
(2)

Theorem 1. (see [49]). Let χ � (N,M) be a complete IFG,
and χ � (N,M) with N∗ � w1, w2, w3, . . . , wn{ } such that
r1 ≤ r2 ≤ . . . ≤ rn and s1 ≥ s2 ≥ s3 ≥ . . . ≥ sn, where ri �
TN(wi) and si � FN(wi). �en,

CI(χ) � ∑
n− 1

i�1
r2i ∑

n

j�i+1
rj +∑

n− 1

i�1
s2i ∑

n

j�i+1
sj. (3)

FGs contain less information than IFGs. �ere are certain
situations where we need information from both sides. IFGs
are more useful in such type of situations. So, to ful�ll these
requirements, we aim to establish the concept ofWI for IFGs
settings. We have made the extension in the results forWI of
FGs. One thing is interesting to see that we have two WIs,
one for truth membership values and other for falsity
membership values, which produce a comparison between
them. To get single value, we take the sum of both the values of
these indices.

3. Wiener Index for Intuitionistic Fuzzy Graphs

�e concepts of geodesic path and WI for IFGs are pre-
sented in this section. Some relevant illustrations are given
for these concepts, and some bounds of WI are
investigated.

De�nition 14. A path P between two vertices is known as
geodesic if:

(1) P is strong
(2) �ere does not exist any strong pathQ shorter than P
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Figure 1: An intuitionistic graph χ.

Complexity 3



�e T weight and F weight are the sum of truth and
falsity membership values assigned to all the arcs in the
geodesic.

Example 3. In Figure 1, all arcs except (v3, v4) are strong.
�e strongest path between v3 and v4 is P: v3v2v1v4, which is
mentioned already in Example 1, and therefore,

CONNT(χ)(V3, V4) � 0.2 and CONNF(χ)(V3, V4) � 0.7.
Moreover, the strong paths between v3 and v4 are
v3v2v1v4, v3v1v4 and v3v2v4. �e latter two of them are
shortest, and hence, both are geodesic.

De�nition 15. �eWI of an IFG, χ � (N,M) is de�ned as
follows:

WI(χ) � ∑
ζ,ζ′∈N∗

TN(ζ), FN(ζ)( ) TN(ζ′), FN(ζ′)( )ds(ζ, ζ′)

� ∑
ζ,ζ′∈N

∗

TN(ζ), FN(ζ)( ) TN(ζ′), FN(w)( ) Tds(ζ, ζ′), Fds(ζ, ζ′)( )

� ∑
ζ,ζ′∈N

∗

TN(ζ)TN(ζ′)Tds(ζ, ζ′) + ∑
ζ ,ζ′∈N

∗

FN(ζ)FN ζ′( )Fds(ζ, ζ′)

� FWI(χ) +FWI(χ),

(4)

where Tds(ζ, ζ′) is the minimum T weight sum and
Fds(ζ, ζ′) is the maximum F weight sum of the geodesics
from ζ to w and both lie on the same geodesic.

Remark 1. In 3.3, if both Tds(v, v′) and Fds(v, v′) do not lie
on the same geodesic, we left it for the user to choose the

geodesic according to his will. In that case, one of the two
geodesics must be compromised.

Example 4. From Figure 1, we have the following:

TWI(χ) �(0.5)(0.8)(0.5) +(0.5)(0.6)0.5) +(0.5)(0.2)(0.2) +(0.8)(0.6)(0.6) +(0.8)(0.2)(0.2) +(0.6)(0.2)(0.7) � 0.774,
FWI(χ) �(0.4)(0.2)(0.4) +(0.4)(0.3)(0.3) +(0.4)(0.7)(0.7) +(0.2)(0.3)(0.4) +(0.2)(0.7)(0.7) +(0.3)(0.7)(1) � 0.596,
Thus,

WI(χ) �TWI(χ)+FWI(χ) � 0.774+0.596� 1.37.
(5)

Note 1. It may be noted that FWI(χ)<TWI(χ), which
shows that this problem has more truth level.

Theorem 2. Let χ � (N,M) be an IFG with |N∗| � n and
(TN(w), FN(w)) � (λ, μ) for all w ∈ V(χ) with 0≤ λ + μ≤ 1.

Let p � ∧{TM(w,w′)|(w,w′) ∈M
∗ and (w,w′) is not a δ −

arc} and q � ∧{FM(w,w′)|(w, w′) ∈M∗ and (w,
w′)is not a δ − arc}. �en,

WI(χ)≥ pλ2 + qμ2( ) n(n − 1) − M∗
∣∣∣∣

∣∣∣∣[ ]. (6)

v1 v2
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(0.5,0.5)

(0.
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(0.
7,0
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Figure 2: An IF tree χ and its spanning tree H.
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Proof. Let χ � (N, M) be an IFG. Suppose that p �

∧{TM(w, w′)|(w, w′) ∈M∗and (w, w′) is not a δ − arc}. Let
w, w′∈ N∗. If (w, w′) ∈M∗, then Tds(w, w′)≥p. &e
number of unordered pairs (v, w) satisfying Tds(w, w′)≥p

is |M∗|, and the number of unordered vertex pairs (v, v′)
satisfying Tds(v, v′)≥ 2p is n

2􏼠 􏼡 − |M∗|. &en,

TWI(χ) � 􏽘
c,d∈N∗

TN(c)TN(d)Tds(c, d)

� λ2 􏽘
c,d∈N∗

Tds(c, d)

� λ2 􏽘

w,w′∈N∗
Tds(w, w′) + 􏽘

v,v′∈N∗
Tds(v, v′)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≥ λ2 M
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌p +

n

2

⎛⎜⎜⎝ ⎞⎟⎟⎠ − M
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
2p

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

� pλ2 M
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2

n(n − 1)

2
− 2 M

∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼢 􏼣

� pλ2 n(n − 1) − M
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩.

(7)

Now, let q � ∧ FM(w, w′)|(w,􏼚 w′) ∈M∗ and (w,

w′) is not a δ − arc}. &en, as argued before, we have the
following:

FWI(χ)≥ qμ2 n(n − 1) − M
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩. (8)

&us, we have the following:

WI(χ) � TWI(χ) + FWI(χ)

≥ pλ2 + qμ2􏼐 􏼑 n(n − 1) − M
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩.

(9)

□

Theorem 3. Let χ1 � (N1, M1) and χ2 � (N2, M2) be two
IFGs such that χ1 is isomorphic to χ2. ?en, WI(χ1) �

WI(χ2).

Proof. Suppose that χ � (N1, M1) and χ2 � (N2, M2) are
two isomorphic IFGs. &en, there exists a bijective mapping
f: N∗1⟶ N∗2 such that TN1

(w) � TN2
(f(w)) and

FN1
(w) � FN2

(f(w)) for each w ∈ N∗1 and TM1
(w, w′) �

TM2
(f(w), f(w′)), FM1

(w, w′) � FM2
(f(w), tfn(w′)) for

every edge (w, w′) ∈M∗1 . Suppose Pw,w′
be the path for each

w, w′∈ N∗1 serving as Tds(w, w′) and Fds(w, w′). &en,
there will be the corresponding path P(f(w),f(w′))′ in χ2
serving as Tds(f(w), tfn(w′)) and Fds(f(w), tfn(w′))
such that TM1

(v, v′) � TM2
(f(v), f(v′)), FM1

(v, v′) �

FM2
(f(v), tfn(v′)) for each edge (v, v′) ∈ Pw,w′

. Since all
properties are preserved between both the graphs,
Tds(w, w′) � Tds(f(w), tfn(w′)) and Fds(w, w′) �

Fds(f(w), tfn(w′)). &en,

TWI χ1( 􏼁 � 􏽘
w,w′∈N

∗
1

TN1
(w)TN1

w′( 􏼁Tds(w, w′)

� 􏽘
f(w),f(w′)∈N

∗
2

TN2
(f(w))TN2

f w′( 􏼁( 􏼁

· Tds(f(w), f(w′))
� TWI χ2( 􏼁,

FWI χ1( 􏼁 � 􏽘
w,w′∈N

∗
1

FN1
(w)FN1

(w′)Fds(w, w′)

� 􏽘
f(w),f(w′)∈N

∗
2

FN2
(f(w))FN2

(f(w′))

· Fds(f(w), f(w′))
� FWI χ2( 􏼁.

(10)

Hence,TWI(χ1) + FWI(χ1) � TWI(χ2)+ FWI

(χ2), which implies that WI(χ1) � WI(χ2). □

4. Relationship between the Connectivity Index
and Weiner Index

In the forthcoming example, it can be noted that
CI(χ) � WI(χ), but this is not always the case. Examples
5 and 6 are given to show this matter.

Example 5. Since every arc in Figure 3 is strong, therefore
CONNT(χ)(v, w) � Tds(v, w) and CONNF(χ)(v, w) �

Fds(v, w). We see that for all v, w ∈ V(χ),CONNT(χ)(v,

w) � TM(v, w) and CONNF(χ)(v, w) � FM(v, w). &us,
Tds(v, w) � TM(v, w) and Fds(v, w) � FM(v, w). &en,

TWI(χ) � (0.5)(0.8)(0.5) +(0.5)(0.6)(0.5)

+(0.5)(0.2)(0.2) +(0.8)(0.6)(0.6)

+(0.8)(0.2)(0.2) +(0.6)(0.2)(0.2)

� 0.714,

FWI(χ) � (0.4)(0.2)(0.5) +(0.4)(0.3)(0.5)

+(0.4)(0.7)(0.7) +(0.2)(0.3)(0.4)

+(0.2)(0.7)(0.7) +(0.3)(0.7)(0.7)

� 0.565

(11)

&us, WI(χ) � TWI(χ) + FWI(χ) � 0.714+ 0.565
� 1.279. Obviously, CI(χ) � 1.279, and thus, WI(χ)

� CI(χ).

Note 2. In last example, we can observe that

(1) Every arc is strong
(2) Every pair of vertices is connected by an edge
(3) &ere is no δ-arc

Example 6. Consider χ is a graph depicted in Figure 4. After
calculations, we get TCI(χ) � 0.714, FCI(χ) � 0.565,

Complexity 5



and CI(χ) � 0.714 + 0.565 � 1.279. Since each arc is
strong,

CONNχ v1, v2( ) � ds v1, v2( )

�(0.5, 0.5),
CONNχ v1, v4( ) � ds v1, v4( )

�(0.2, 0.7),
CONNχ v2, v3( ) � ds v2, v3( )

�(0.6, 0.4),
CONNχ v3, v4( ) � ds v3, v4( )

�(0.2, 0.7).

(12)

�e paths v1v2v3 and v1v4v3 are strong between v1 and v3
and of equal length.�e sum of membership values of v1v2v3
and v1v4v3 is (1.1, 0.9) and (0.4, 1.4). �us ds(v1, v3) �
(0.4, 1.4). �is implies that Tds(v1, v3) � 0.4 and Fds(v1,
v3) � 1.4. Similarly, we have Tds(v2, v4) � 0.7 and Fds(v2,
v4) � 1.2.

TWI(χ) �(0.5)(0.8)(0.5) +(0.5)(0.6)(0.4) +(0.5)(0.2)(0.2)
+(0.8)(0.6)(0.6) +(0.8)(0.2)(0.7) +(0.6)(0.2)(0.2)
� 0.764,

FWI(χ) �(0.4)(0.2)(0.5) +(0.4)(0.3)(1.4) +(0.4)(0.7)(0.7)
+(0.2)(0.3)(0.4) +(0.2)(0.7)(1.2) +(0.3)(0.7)(0.7)

� 0.743.
(13)

Hence, WI(χ) � 0.764 + 0.743 � 1.507.

Note 3. Note that in Example 6,CI(χ)<WI(χ) although
every arc is strong. �is inequality does not happen always.

Theorem 4. Let χ � (N,M) be an IFG with the following
two conditions.

(1) χ has no δ-arcs

(2) For every pair ζ, w ∈ N∗, (ζ, w) ∈M∗

�en,

CI(χ) �WI(χ). (14)

Proof. Consider χ � (N,M) is an IFG satisfying (i) and (ii).
Since χ has no δ-arcs, all arcs will be either α- or β-strong. In
each of the case, we have for all ζ, ζ′∈ N

∗:

TM(ζ, w) � CONNT(χ)(ζ, ζ′)
� Tds ζ, ζ′( ),

FM(ζ, ζ′) � CONNF(χ)(ζ, ζ′)
� Fds(ζ, ζ′).

(15)

So, we have the following:

TCI(χ) � ∑
ζ,ζ′∈N

∗

TN(ζ)TN(ζ′)CONNT(χ)(ζ, ζ′)

� ∑
ζ,ζ′∈N∗

TN(ζ)TN(ζ′)TM(ζ, ζ′)

� ∑
ζ,ζ′∈N∗

TN(ζ)TN(ζ′)Tds(ζ, ζ′)

� TWI(χ),

FCI(χ) � ∑
ζ,ζ′∈N∗

FN(ζ)FN(ζ′)CONNF(χ)(ζ, ζ′)

� ∑
ζ,ζ′∈N∗

FN(ζ)FN(ζ′)FM(ζ, ζ′)

� ∑
ζ,ζ′∈N∗

FN(ζ)FN(ζ′)Fds(ζ, ζ′)

� FWI(χ).
Hence,

CI(χ) � TCI(χ) +FCI(χ)
� TWI(χ) +FWI(χ)
�WI(χ).

(16)

□
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Figure 4: IFG with CI(χ) � 1.279 and WI(χ) � 1.507.
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Figure 3: IFG with WI(χ) � 1.279.
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Theorem 5. Let χ � (N, M) be a complete IFG with
|N∗| � n. Also, r1 ≤ r2 ≤ r3 ≤ · · · ≤ rn such that TN(wi) � ti

for i � 1, 2, 3, . . . , n and s1 ≥ s2 ≥ s3 ≥ · · · ≥ sn be such that
FN(wi) � si for i � 1, 2, 3, . . . , n. ?en,

WI(χ) � 􏽘
n− 1

i�1
r
2
i 􏽘

n

j�i+1
rj + 􏽘

n− 1

i�1
s
2
i 􏽘

n

j�i+1
sj. (17)

Proof. Suppose χ � (N, M) is a complete IFG. &en, χ does
not have any δ-arc. By the previous theorem,
CI(χ) � WI(χ). By &eorem 1, we obtain the required
result. □

Corollary 1. Let χ � (N, M) be a complete IFG. ?en,
WI(χ) � CI(χ).

Theorem 6. If χ � (N, M) is an IF tree and |N∗|≥ 3, then
WI(χ) � CI(χ).

Proof. Assume that χ � (N, M) is an IF tree with |N∗|≥ 3.
&en, a unique strong path exits between every two vertices.
Indeed, it is also unique and strongest. For all v, w ∈
N∗, TdS(v, w) � 􏽐(c,d)∈PTM(c, d) and FdS(v, w) �

􏽐(c,d)∈PFM(c, d), while CONNT(χ)(v, w) � min(c,d)∈P
TM(c, d) and CONNF(χ)(v, w) � max(c,d)∈PFM(c, d). So, we
have the following:

CONNT(χ)(v, w)≤TdS(v, w) andCONNF(χ)(v, w)

≤FdS(v, w).
(18)

If (v, w) is a strong arc, then CONNT(χ)(v, w) �

Tds(v, w) and CONNF(χ)(v, w) � FdS(v, w), but if
TM(v, w) � 0 or (v, w) ∈M∗ is not strong, then CONNT(χ)

(v, w)<TdS(v, w) and CONNF(χ)(v, w)<FdS(v, w). &us,
􏽐CONNT(χ)(v, w)< 􏽐 Tds(v, w), which implies that
TCI(χ)<TWI(χ). Similarly, we have 􏽐CONNF(χ)(v,

w)< 􏽐 Fds(v, w), which gives FCI(χ)<FWI(χ).
Hence:

TCI(χ) + FCI(χ)<TWI(χ) + FWI(χ)CI(χ)

<WI(χ).

(19)□

Corollary 2. Let χ � (N, M) be an IF tree. ?en,
CI(χ)≤WI(χ).

Proof. Suppose χ � (N, M) is an IF tree and |N∗| � 2.&en,
χ has only one arc joining its two vertices. Obviously, this arc
is strong, and therefore, CI(χ)<WI(χ). By &eorem 6
with |N∗|≥ 3, we have CI(χ)<WI(χ). By combining
both CI(χ)<WI(χ) and CI(χ)<WI(χ), we get
CI(χ)<WI(χ) as desired. □

Example 7. From Figure 2, we calculate connectivity index
as follows:

TCI(χ) � 􏽘
u,v∈V(χ)

TN(u)TN(v)CONNT(χ)(u, v)

� (0.9)
2
[0.5 + 0.5 + 0.5 + 0.5 + 0.7 + 0.8 + 0.9 + 0.7 + 0.7 + 0.8]

� 5.346,

FCI(χ) � 􏽘
u,v∈V(χ)

FN(u)FN(v)CONNF(χ)(u, v)

� (0.1)
2
[0.5 + 0.5 + 0.5 + 0.5 + 0.3 + 0.2 + 0.1 + 0.3 + 0.3 + 0.2]

� 0.034.

(20)

&us, CI(χ) � TCI(χ) + FCI(χ) � 5.346+ 0.034
� 5.38. All the arcs except (v2, v3) are strong. Now, we
calculate WI as follows:

TW(χ) � 􏽘
u,v∈V(χ)

TN(u)TN(v)Tds(u, v)

� (0.9)
2
[0.5 + 2.9 + 2.2 + 1.4 + 2.4 + 1.7 + 0.9 + 0.7 + 1.5 + 0.8]

� 12.15,

FW(χ) � 􏽘
u,v∈V(χ)

FN(u)FN(v)Fds(u, v)

� (0.1)
2
[0.5 + 1.1 + 0.8 + 0.6 + 0.6 + 0.3 + 0.1 + 0.3 + 0.5 + 0.2]

� 0.05.

(21)

Complexity 7



So, WI(χ) � TWI(χ) +FWI(χ) � 12.15 + 0.05 �
12.2. Clearly, we can observe that WI(χ)>CI(χ).

Theorem 7. IfH � (N′,M′) is an partial IF subgraph of an
IFG χ � (N,M), then CONNT(H)(v, w)≤CONNT(χ)(v, w)
and CONNF(H)(v, w)≥CONNF(χ)(v, w).

Proof. (i) By the de�nition of partial IF subgraph, we have
TM′(vi, vj)≤TM(vi, vj) for each i, j. If ST′ denotes the T
strength of a path P′ inH and ST denotes the T strength of a
path P in χ, then min TM′

(vi, vj){ }≤min TM(vi, vj){ } im-
plies ST′ ≤ ST. So, we have max ST′{ }≤max ST{ } for all pos-
sible paths P′ in H and P in χ between V andW. �us, we
obtain CONNT(H)(v, w)≤CONNT(χ)(v, w).

(ii) Again by the de�nition of partial IF subgraph, we
have FM′(vi, vj)≥FM(vi, vj), which implies CONNF(H)(v,
w)≥CONNF(χ)(v, w). □

Example 8. Using Figure 5, we have prepared the following
table after routine computations. From Table 1, we see that
WI of χ has been increased and decreased by deleting
α-strong edges. We also have made the observation that
WI of χ is increased by removing β-strong edges, but by
deleting the δ-arc (v1, v2), the strength of connectedness
between every pair of vertices will remain the same. So, that
is the reason we have WI(χ) �WI(χ − (v1, v2)).

Theorem 8. Let χ � (N,M) be an IFG. For c, d ∈ N∗, let
Pc,d be the path with minimum sum of truth values and

maximum total of falsity values between the entire shortest
strong paths among c& d. Let (v, w) ∈M∗.

(1) If (v, w) is an α-strong or β-strong arc and (v, w) is
not a part of any Pc,d for c, d ∈ N∗ with c, d{ }≠ v, w{ },
then WI(χ − (v, w))≠WI(χ)

(2) If (v, w) is a δ-edge, thenWI(χ − (u, v)) �WI(χ)

Proof. Suppose χ � (N,M) is an IFG and (v, w) ∈M∗. (i)
Let (v, w) be an α-strong or β-strong arc. �en, (v, w) arc
itself is the shortest strong path between v and w. �erefore,
Tds(v, w) � TM(v, w) and Fds(v, w) � FM(v, w). □

Case 1. If (v, w) is a β-strong arc, then one or more strong
paths connecting v and w having length of 2 or more will
exist. Suppose that (v, w) is not a part of any Pc,d for
c, d ∈ N∗ with c, d{ }≠ v, w{ }. �en, one of the following will
hold according to the path Pc,d in χ − (v, w):

(1) Tds(v, w)|χ− (v,w) >Tds(v, w)|χ � TM(v, w) and
Fds(v, w)|χ− (v,w) >Fds(v, w)|χ � FM(v, w)

(2) Tds(v, w)|χ− (v,w) <Tds(v, w)|χ � TM(v, w) and
Fds(v, w)|χ− (v,w) <Fds(v, w)|χ � FM(v, w)

(3) Tds(v, w)|χ− (v,w) >Tds(v, w)|χ � TM(v, w) and
Fds(v, w)|χ− (v,w) <Fds(v, w)|χ � FM(v, w)

(4) Tds(v, w)|χ− (v,w) <Tds(v, w)|χ � TM(v, w) and
Fds(v, w)|χ− (v,w) >Fds(v, w)|χ � FM(v, w)

Let s, t{ }≠ v, w{ }. By supposition, (v, w) is not a part of
any Ps,t. So, we have Tds(v, w)|χ− (v,w) � Tds(v, w)|χ and
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(0
.4
,0
.5
)

(0
.2
,0
.7
)

(0.5,0.2) (0.2,0.5)

v1

v5

(0.3,0.7)

(0.4,0.4)

(0.1,0.8)

(0.2,0.7)

(0.4
,0.6

)

(0.4,0.4)

v2

v3

v4

Figure 5: An IFG with WI(χ) � 2.798.

Table 1: Values of wiener index for χ and χ − (vi, vj).

Arcs Types of arcs Graphs TWI FWI WI

— — χ 0.764 2.034 2.798
(v1, v2) δ-weak χ − (v1, v2) 0.764 2.034 2.798
(v2, v3) β-strong χ − (v2, v3) 0.812 2.202 3.014
(v2, v4) β-strong χ − (v2, v4) 0.921 2.496 3.416
(v3, v4) α-strong χ − (v3, v4) 0.764 2.386 3.15
(v4, v5) α-strong χ − (v4, v5) 0.192 0.548 0.74
(v1, v5) α-strong χ − (v1, v5) 0.332 0.784 1.116
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Fds(s, t)|χ− (v,w) � Fds(s, t)|χ . So, either WI(χ − (v, w)) <
WI(χ) or WI(χ − (v, w))>WI(χ) implies that
WI(χ − (v, w))≠WI(χ).

Case 2. Let (v, w) be an α-strong arc. If v and w are not
connected by any path on χ − (v, w), then Tds(v,
w)|χ− (v,w) � 0 � Fds(v, w)|χ− (v,w). �erefore, Tds(v,
w)|χ− (v,w) <Tds(v, w)|χ and Fds(v, w)|χ− (v,w) <Fds(v, w)|χ .
If v and w are connected in χ − (v, w), then there exits one
or more strong paths connecting v and w of length of 2
or more. So, using the case (1), we get WI(χ − (v, w)) ≠
WI(χ).

(ii) If (v, w) ∈M∗ is a δ-arc, then no geodesic from c to
d for any c, d ∈ N∗ will contain the arc (v, w). �erefore,
the deletion of (v, w) from χ has no e�ect on Tds(c, d)
and Fds(c, d) for any c, d ∈ N∗. So, we must have
WI(χ − (v, w)) �WI(χ).

Theorem 9. Let χ � (N,M) be an IFG with the given
condition. If (u, v) ∈M∗ is β-strong, then a unique strong
cycle of strength (TM(u, v), FM(u, v)) exits through (u, v).
�en, WI(χ − (u, v))>WI(χ).

Proof. Suppose χ � (N,M) is an IFG with the given
condition. Further, suppose (u, v) ∈M∗ is β-strong arc.
�en, by the given condition, there exits only one strong
cycle C through (u, v) having strength (TM(u, v), FM(u, v)),
which implies that TM(c, d)≥TM(u, v) and
FM(c, d)≥FM(u, v) for all arcs (c, d) in C.

Any strong path from u to v in χ − (u, v) will have two or
more arcs with CONNT(χ)(c, d)≥TM(u, v) and
CONNF(χ)(c, d)≥FM(u, v) for each arc (c, d) in the path.
�us,

Tds(u, v)|χ− uv >Tds(u, v)|χ&Fds(u, v)|χ− uv >Fds(u, v)|χ.
(22)

Suppose u, u0, u1, . . . , uk, v is the strong path from u to v
having strength (TM(u, v), FM(u, v)). Let a, b ∈ N∗ such
that (u, v) is an arc of the shortest strong path
P1: a, a0, a1, . . . , ap, u, v, bq, . . . , b0, b from a to b with the
following:

∑
(x,y)∈P1

TM(x,y), ∑
(x,y)∈P1

FM(x,y) � Tds(a,b),Fds(a,b)( ).

(23)

Also, P1 and P2: a, a0, a1, . . . , ap, u, u0, . . . , uk, v, b are
only two strong paths exist from a⟶ b. Now, we prove the
assertion. If possible, there will be a strong path Q between
a⟶ b other than P1 and P2. Let the strong cycle be
C: u, u0, u1, . . . , uk, v, u. Now, consider three cases. □

Case 3. Figure 6 shows that P1 and P2 are internally disjoint
with Q. �en, Q together with P1 makes a strong cycle
through (u, v). �is contradicts the assumption that C: u,
u0, u1, . . . , uk, v, u is the only strong cycle through (u, v).

Case 4. Figure 7 shows that Q is not internally disjoint with
either P1 or P2. SupposeQ and P1 are not internally disjoint.
Let Q: a, a0, . . . , a1, c0, c1, . . . , cm, bd, . . . , b0, b. �en,
a1, . . . , ap, u, v, bq, bq− 1, . . . , bd, cm, . . . , c1, c0, a1 is a strong
cycle through (u, v) di�erent from C, which is again con-
tradiction to the assumption that C is the only strong cycle
through (u, v). �e case when Q have common vertices with
P2 also provides a contradiction.

Case 5. P1 and P2 are not internally disjoint with Q (see
Figure 8).

Suppose that both P1 and P2 are not internally disjoint
withQ. LetQ: a, a0, . . . , ax, d0, d1, . . . , dr, uy, uy− 1, . . . , uk, v.

�en, the path
u, ap, ap− 1, . . . , ax, dr, . . . , d1, d0, uy, . . . , uk, v, u acts as a
strong cycle through (u, v) other than C, which is impos-
sible. �us, there are only two strong paths P1 and P2 be-
tween a and b. �us,

Tds(a, b)|χ− uv >Tds(a, b)|χ&Fds(a, b)|χ− uv >Fds(a, b)|χ.
(24)

If p, q ∈ N∗ such that (u, v) is not an arc of any strong
path from p to q, then Tds(p, q)|χ− uv � Tds(p, q)|χ and
Fds(p, q)|χ− uv � Fds(p, q)|χ . Hence, WI(χ − uv)>
WI(χ).

a0

a

ua1 u0

P1 P2

u1 u2

b0 b1b

Q

ap

bq ukv

Figure 6: Sketch of Case I.
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5. Application: Transport Network Flow

An application of Wiener index is proposed in this section.
�e Wiener index is applied to a transport network ¡ow to
know di�erent situations created by the removal or closing
of certain roads.

Consider a transport network ¡ow as shown in the
Figure 9. In it, vertices and edges represent cities and roads.
�e values given to the vertices and edges are incoming and
outgoing ¡ows of tra¢c. �e maximum values for incoming
and outgoing ¡ows are 25 and 20, and vertices are fuzzi�ed
by dividing their values by 45 (sum of 25 and 20). �e edges
are also fuzzi�ed by the same technique. �e fuzzi�ed
network is shown in Figure 10.

In this network, each arc is strong. By simple calcula-
tions, we have prepared the following table.

From Table 2, we see that cities v1, v4, v5, v8 become
isolated after the removal of arcs or roads (v1, v2),
(v3, v4), (v5, v6), and (v7, v8). �e people of these cities will
be disconnected from the cities v2, v3, v6 and v7. �e deletion
of these edges reduces the overall Wiener index of the
network, but still path number for incoming ¡ow is greater

than the path number for outgoing ¡ow in other places.
From all of these observations, we have arrived at the result
that a given network has more incoming ¡ow.

Table 2 shows that WI(χ − (v2, v3))>WI(χ). �is is
why that elimination of (v2, v3)makes some routes longer
than before. For example, the geodesic route from v1 to v3
was v1v2v3, which is of length 2, but now it has become
v1v2v7v6v3 of 4 in length. Besides its length, its sum of
weights has increased also. People who used to travel from
city v1 to v3 will now have to spend more money and time.
Similarly, the routes from v1 to v4 and from v2 to v3 are also
a�ected by this elimination. All other routes are not af-
fected by this removal, for example, the route from v2 to
v5. �ere are two geodesics between v2 and v5 of the same
length and the same sum of incoming and outgoing ¡ows.
So, alternative route with the same geodetic distances is
available after the removal of (v2, v3) and the people who
used to travel between these cities will not be a�ected
much. �e removal of (v2, v3) is shown in the Figure 11.
Similar information can be obtained for other three re-
movals (v3, v6), (v6, v7), and (v2, v7). �e purpose of this
application is to analyze the results produced by the

a0
a

Q

u0c0

c1

u1u

v

a1

p1

b0
b

p2

ap

bd
bqcm

uk

Figure 7: Sketch of Case II.
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Figure 8: Sketch of Case III.
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closing or removal of certain routes connecting di�erent
cities.

By comparison between the Wiener index and the
connectivity index, we can observe from Table 2 that the

values of both the indices do not agree with each other for χ
and χ − (vi, vj), although each road is strong. �e reason is
that there is no road between every two cities; for example,
the cities v2 and v6 are not connected directly by a road.
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(5,10)

(15,10)

(5,10)

(5,10)
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v7
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(15,20)

(5,1
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Figure 9: A transport network.
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Figure 10: Intuitionistic fuzzi�ed transport network ¡ow.
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Another thing to note is that the values for both the indices
are lower than before by deleting strong roads; that is, the
behavior of both the indices is same, and the values become
higher than before in case of deleting α-strong roads, but the
values of the Wiener index rise than before while the values
of the connectivity index remain the same by deleting
β-strong roads.

6. Conclusion

Mainly, our goal for the setting of this study was to introduce
the concept of WI for IFGs, which deals with two types of
degrees named as truth membership degree and falsity
membership degree.

(i) We have purposed the de�nition of WI for IFGs
structure with numeral examples.

(ii) Some bounds of WI are investigated for IFGs
settings.

(iii) We have discussed the relationship between CI

and WI with examples. Also, some related results
are provided.

(iv) An application in transport network ¡ow is given.

In the future, we will do this work for T-spherical fuzzy
graphs and picture fuzzy graphs. We will also extend this
study for interval-valued IFGs and explore its applications.

6.1. Advantages. Our study has the following advantages:

(i) �e main advantage of our work lies in the fact that
we have developedWI for IFGs settings, which are
de�ned by two membership degrees.

Table 2: WI(χ),WI(χ − (vi, vj)), and CI.

Arcs Types of arcs Graphs TWI FWI WI CI

— — χ 0.98 0.811 1.791 0.78
(v1, v2) Strong arc χ − (v1, v2) 0.452 0.673 1.125 0.586
(v2, v3) α-strong χ − (v2, v3) 1.048 0.943 1.991 0.806
(v3, v4) Strong arc χ − (v3, v4) 0.664 0.621 1.285 0.584
(v3, v6) β-strong χ − (v3, v6) 1.27 0.767 2.037 0.78
(v5, v6) Strong arc χ − (v5, v6) 0.728 0.562 1.29 0.569
(v6, v7) β-strong χ − (v6, v7) 1.33 0.787 2.117 0.78
(v7, v8) Strong arc χ − (v7, v8) 0.749 0.363 1.112 0.458
(v2, v7) α-strong χ − (v2, v7) 1.308 0.991 2.299 0.792
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Figure 11: χ − (v2, v3).
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(ii) FGs are defined by only one degree that is mem-
bership degree and therefore failed to give more
information in some situations. Instead of FGs,
IFGs give two types of information that is mem-
bership and nonmembership and hence are more
suitable in various situations.

(iii) Our study and results are in fact of the general-
ization of the corresponding results of FGs. Our
results will be shifted into the corresponding results
of FGS by ignoring the second membership grades.
In this way, the corresponding results of FGs will be
taken as a special case of the results for IFGs de-
veloped by us.

(iv) Our work shows that IFGs have more information
than FGs.
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