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An ontological approach as a tool formanaging the processes of constructingmathematical models based on interval data and further use
of these models for solving applied problems is proposed in this article. Mathematical models built using interval data analysis are quite
effective inmany applications, as they have “guaranteed” predictive properties, which are determined by the accuracy of experimental data.
However, the application of mathematical modeling methods is complicated by the lack of software tools for the implementation of
procedures for constructing this type of mathematical models, creating an ontological model that operates by the categories of the subject
area of mathematical modeling, regardless of the modeling object proposed in this article.(is approach has made it possible to generate
tools formathematical modeling of various objects based on the interval data analysis for any software development environment selected
by the user. (e technology of creating the software on the basis of the developed ontological superstructure for mathematical modeling
using the interval data for different objects, as well as various forms of user interface implementation, is presented in this article. A number
of schemes, which illustrate the technology of using the ontological approach of mathematical modeling based on interval data, are
presented, and the features of its interpretation when solving environmental monitoring problems are described.

1. Introduction

Mathematical modeling is one of the main tools that allows
describing the object in a simple form, exploring it, and
predicting behavior. Mathematical modeling is understood
as the process of building a model and its application to
certain applied problems [1–4].

Mathematical modeling processes consist of a large number
of procedures, which are mainly implemented in the relevant
tools, that is, in the form of certain software systems [3, 4].

Examples of these software environments are Matlab,
GNU Octave, Scilab, and SageMath. (ese tools are mul-
tipurpose and well developed. However, practitioners often
need to use more specialized tools for building mathematical
models, as well as to adapt existing tools to nonstandard
conditions that are absent in the noted environments. In this
case, there are difficulties in using and interpreting such
tools because the simulation procedures are hidden from the
researcher, and this makes it difficult to use them by making
appropriate software changes [4–8].

In this case, the most appropriate solution is to create an
ontological description of certain methods of mathematical
modeling. It describes in detail the components of a model
building process and its application. (en this ontological
description is used to generate appropriate software. (is
approach, on the one hand, will allow the integration of the
created software in various applied systems and, on the other
hand, will make changes to existing software [4, 9–12].

(e availability of ontological descriptions of modeling
processes based on certain methods makes it possible to
unify the software used for a wide range of tasks. It enables,
based on experience, a repository of mathematical model
creation that can be used to model a wide range of math-
ematically similar properties [13–23].

(e positive effect of this approach will be a significant
simplification of the process of creating tools for both the
modeling processes organization and their application to
applied problems.

One of the directions of mathematical modeling is the
inductive approach, which is based on a self-organized process
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of the evolutionary transition from primary data to explicit
mathematical models that reflect the patterns of functioning of
simulated objects and systems, which are implicit in existing
experimental research and statistical data [24–27].

An important feature of the inductive approach
implementation is the nature of the uncertainty in infor-
mation data sets (probabilistic, interval, fuzzy), as this ap-
proach is based on methods of data analysis. In a number of
works [28–30], the ontological approach for the construc-
tion of themathematical models within the framework of the
inductive approach is based on a group of methods of data
handling (GMDH). Within the framework of the proposed
approach, the key parameters for the main components of
the modeling process are identified, which determine the
possibility of generalization and expediency of constructing
multifunctional software modules in the development of
computer inductive modeling tools based on GMDH
[26, 31, 32]. Since the mentioned approach has a complex
structure, which is interpreted using Protege [33–36] and
does not contain applied software-interpreted solutions, its
practical use in other approaches to mathematical modeling
is not advisable. (e use of such an approach is time-
consuming to formalize the subject area and, due to the
complexity of its presentation within the Protege system, will
not contribute to support among the developers of the
appropriate applied software solutions [19, 37, 38].

Another direction in mathematical modeling according
to the inductive approach is presented by the methods of
mathematical modeling based on interval data [39–43]. (e
multiple estimates of the parameters of the “input-output”
model, built on the results of an experiment in which the
output variables are obtained in interval form, are the pe-
culiarities of these methods [44, 45].

As a result of the application of the methods of interval
analysis, instead of one “input-output”model, there is a corridor
(set) of equivalent interval models of the system.(e properties
of the obtained models depend on the chosen method of sets of
parameter estimation. Preferably, sets of parameter estimates
can be presented in the forms of a polyhedron, a multidi-
mensional ellipsoid, or a rectangular parallelepiped that specifies
the intervals of parameter values [46, 47].

Given that the methods of systems modeling, based on
the analysis of interval data, require minimal information
about the research system, their applications significantly
expand the class of research systems [48].

However, these methods are limited for use by both re-
searchers and users-practitioners due to the lack of developed
ontological description for this area of mathematical mod-
eling, which would make it possible to expand the scope of
application of the existing interval models for a particular
subject area and to develop new models. An example, in this
case, is the field of buildingmathematical models formedicine
[41] or environmental monitoring, in particular, the de-
scription of mathematical models based on interval data for
the processes of air pollution by harmful emissions from
vehicles [46–48]. (e long-term experience of the authors of
this work in creating and applying this type of model has
shown that in the case of changes in the state of the envi-
ronment, or conditions for obtaining interval data, most built

interval models lose accuracy or become inadequate. (e
application of the ontological superstructure to the process of
development and use of models significantly expands the
possibilities of modeling the characteristics of these systems
and increases the accuracy of the model in specific cases.
Simply put, an ontological model as an “add-on” can use the
“switch” functions to select the best model from the repos-
itory, depending on changes in the simulation environment.

(e need for automated, systematic, and reusable
mathematical models as an environment for knowledge
obtaining, accumulating, and reusing is fully justified in the
context of a large amount of information about knowledge,
which is generated and stored.

(erefore, the aim of this article is to create an ontology of
mathematical modeling based on interval data, which would
expand the possibilities for researchers dealing with the objects
of different nature, data on which were obtained in interval
form, as well as for practitioners who can use it for modeling
processes in medicine, environmental monitoring, etc.

2. Statement of the Problem of Mathematical
Modeling Based on Interval Data

(e problem of object modeling based on interval data is
considered in [42, 47]. (e authors of the interval approach
declare that it has a number of advantages over the stochastic
(probabilistic) approach. Among them is the absence of a
requirement to research the statistical characteristics of the
simulated object. As it is known, this reduces the number of
experiments (data sampling). (erefore, the interval ap-
proach is more useful for researching the object properties in
conditions of limited data sampling. A declarative approach
to presenting knowledge about object modeling methods
based on interval data analysis makes it possible to develop
tools for using this approach by both researchers and
practitioners. To develop a declarative ontology, the basic
concepts of this approach should be considered.

First, the basic concept refers to a method of presenting
data in the form of intervals of possible values of the sim-
ulated characteristic:

z
−
i,j,h,k; z

+
i,j,h,k􏽨 􏽩, i � 0, . . . , I, j � 0, . . . , J, h � 0, . . . , H,

k � 0, . . . , K,
(1)

where z−
i,j,h,k, z+

i,j,h,k are, accordingly, the lower and upper
bounds of intervals of possible values of the output char-
acteristic at a point with discretely given spatial coordinates
i � 0, . . . , I, j � 0, . . . , J, h � 0, . . . , H (for objects with
distributed parameters) and time discrete k � 0, . . . , K (for
dynamic objects, for example, a dynamic of air pollution
from vehicles in discrete time).

Note that in the measuring experiment, the lower and
upper bounds can be set by the relative error of the mea-
suring device: z−

i,j,h,k � zi,j,h,k − zi,j,h,k · ε and z+
i,j,h,k � zi,j,h,k+

zi,j,h,k · ε, where zi,j,h,k is the measured value of characteristic;
ε is a relative error of measuring.

Representation of experimental data in interval form (1) is
reasonable in cases: when the measurement error significantly
exceeds themethodological errors andmodeling errors, intervals
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(1) set the tolerance bounds of deviations of the simulated
characteristic of the object from the nominal, under conditions
of known maximum values of errors in the experiment.

Next, it is necessary to determine the mathematical
object to represent the object model. In this case, it is limited
to a discrete linear model in general

vi,j,h,k � f
→T

vi− d,j− d,h− d,k− d, vi− d+1,j− d,h− d,k− d, . . . , vi− 1,j− 1,h− 1,k− 1, u
→

i,j,h,0, . . . , u
→

i,j,h,k􏼐 􏼑 · g
→

,

i � d, . . . , I, j � d, . . . , J, h � d, . . . , H, k � d, . . . , K,

(2)

where f
→T

(•) is a vector of basic functions, in general
nonlinear, with the help of which the values of the simulated
characteristic of the object are transformed, as well as the
input variables at discrete space points and for a certain time
are discrete.

As a result of performing the procedure of structural
identification, a discrete model is determined, in particular:

the vector of basic functions f
→T

(•); sets and dimension of
vectors of input variables (controls) u

→
i,j,h,0, . . . , u

→
i,j,h,k; d is

an order of a discrete model, which as is known is equivalent
to the order of a differential equation analogous to a discrete
model. To implement a discrete model, it is also necessary to
specify the initial conditions, i.e., the value of each element
in the set v0,0,0,0, . . . , vd− 1,d− 1,d− 1,d− 1, u

→
i,j,h,0, . . . , u

→
i,j,h,k for

certain discrete, as a rule, initial one, and set the value of the
components in the parameters vector g

→.

If the general form of the discrete model is known, for
example, due to physical considerations, it remains to
identify the parameters g

→ in a way to ensure maximum
agreement of the simulated characteristic of the object with
the experimentally obtained values of this characteristic.
(is task is called the parametric identification task [42].

Let’s assume that the vector of estimates g
→
⌢

of pa-
rameters g

→ in the difference operator (2) is obtained on the
basis of interval data analysis. Substituting a vector of pa-
rameter estimates g

→
⌢

from difference operator instead of the
vector of their true values g

→ in expression (2) together with
the specified initial interval values of each element of the set
[v
⌢
0,0,0,0], . . . , [v

⌢
d− 1,d− 1,d− 1,d− 1] and given vectors of input

variables u
→

i,j,h,0, . . . , u
→

i,j,h,k an interval estimate of the
simulated characteristic [v

⌢
i,j,h,k] at points with discrete

spatial coordinates i � d, . . . , I, j � d, . . . , J, h � d, . . . , H

and on time discrete k � d, . . . , K can be obtained:

v
⌢

i,j,h,k􏽨 􏽩 � v
⌢−

i,j,h,k; v
⌢+

i,j,h,k􏽨 􏽩 � f
→T

v
⌢

i− d,j− d,h− d,k− d􏽨 􏽩, . . . , v
⌢

i− 1,j− 1,h− 1,k− 1􏽨 􏽩, u
→

i,j,h,0, . . . , u
→

i,j,h,k􏼐 􏼑 · g
→
⌢

,

i � d, . . . , I, j � d, . . . , J, h � d, . . . , H, k � d, . . . , K.

(3)

Now, the problem of parametric identification of the
interval discrete model (IDM) based on the interval data
analysis can be mathematically formulated.

(e conditions of matching the experimental data
presented in the interval form (1) with the data obtained on
the basis of the macromodel in the form of IDM (3) are
formulated as follows:

v
⌢−

i,j,h,kv
⌢+

i,j,h,k􏼔 􏼕 ⊂ z
−
i,j,h,k; z

+
i,j,h,k􏽨 􏽩,∀i � 0, . . . , I,

∀j � 0, . . . , J,∀h � 0, . . . , H,∀k � 0, . . . , K.

(4)

Conditions (4) provide obtaining the interval estimates
of the simulated characteristic of the object within the

intervals of possible values of the characteristic obtained
experimentally.

Substitute in equation (4) instead of interval estimates
[v
⌢−

i,j,h,k; v
⌢+

i,j,h,k] of the simulated characteristic; its interval
values are calculated on the basis of IDM (3) together with
taking into account the given initial interval values of each
element from a set:

v
⌢
0,0,0,0􏽨 􏽩⊆ z0,0,0,0􏽨 􏽩, . . . , v

⌢
i− 1,j− 1,h− 1,k− 1􏽨 􏽩⊆ zi− 1,j− 1,h− 1,k− 1􏽨 􏽩,

(5)

and given vectors of input variables u
→

i,j,h,0, . . . , u
→

i,j,h,k, and
receive the following:

v
⌢−

0,0,0,0; v
⌢+

0,0,0,0􏽨 􏽩⊆ z
−
0,0,0,0; z

+
0,0,0,0􏽨 􏽩;

. . .

v
⌢−

d− 1,d− 1,d− 1,d− 1; v
⌢+

d− 1,d− 1,d− 1,d− 1􏽨 􏽩⊆ z
−
d− 1,d− 1,d− 1,d− 1; z

+
d− 1,d− 1,d− 1,d− 1􏽨 􏽩;

z
−
i,j,h,k ≤ f

→T

v
⌢

i− d,j− d,h− d,k− d􏽨 􏽩, . . . , v
⌢

i− 1,j− 1,h− 1,k− 1􏽨 􏽩, u
→

0, . . . , u
→

k􏼐 􏼑 · g
→
⌢

≤ z
+
i,j,h,k;

i � d, . . . , I; j � d, . . . , J; h � d, . . . , H; k � d, . . . , K.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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(erefore, an equation (6) is obtained by substituting
interval estimates of initial characteristics [v

⌢−

i,j,h,k; v
⌢+

i,j,h,k]

(given as initial conditions and predicted on the basis of
expression (3) in the remaining nodes of the grid) in con-
ditions (4).

As it is known, the obtained system is an interval system
of nonlinear algebraic equations (ISNAE). (erefore, the
task of identifying the parameters of IDM (3) under con-
ditions (4) is the task of solving ISNAE in the form (6).

It should be noted that ISNAE (6) is formed recurrently.
(e total number of interval equations is a product of
I × J × H × K.

Obviously, the greater the number of equations in the
interval system, the more difficult it is to find the ISNAE
solution.

Given that this problem cannot be solved for a pre-
determined number of iterations, this type of problem be-
longs to NP-complete. (e only way to solve it is to do a full
search or random search. Given the complexity of the task of
IDM parametric identification, to find at least one ISNAE
solution, random search methods can be used [42].

(ese computational schemes for the implementation of
the method of IDM parametric identification are based on
four-step procedures [44].

Step 1. Set the initial conditions in the form (5).

Step 2. Set the initial g
→
⌢

or randomly generate the

current g
→
⌢

estimate of the vector of the IDMparameters.
Step 3. Calculate the interval estimates of the simulated
characteristic [v

⌢
i,j,h,k] at points with discrete-given

spatial coordinates i � d, . . . , I, j � d, . . . , J, h �

d, . . . , H and on time discrete k � d, . . . , K using a
recurrent scheme (4).
Step 4. Check the “quality” δ( g

→
⌢

l) of the current ap-
proximation of the estimate g

→
⌢

of the vector of IDM
parameters [39, 40].

In this step, assume that the “quality” of the approxi-
mation will be higher if the predicted corridor is closer, built
on the basis of this parameter vector approximation, to the
experimental one.

If the calculated value of “quality” δ( g
→
⌢

l) of the current
approximation of the estimate g

→
⌢

of the vector of IDM
parameters at the current iteration is zero (δ( g

→
⌢

l) � 0), then
the procedure is over; otherwise, go to Step 2.

(e quality of the approximation will be quantified as the
difference between the centers of the most distant predictive
and experimental intervals in the case when they do not
intersect, and the width of the intersection of the predictive
and experimental intervals is the smallest, for the case of
their intersection [40].

Formally, these conditions are written as follows:

δ g
→
⌢

l􏼠 􏼡 � max
i�d,...,I,j�d,...,J,h�d,...,H,k�d,...,K

|mid v
⌢

i,j,h,k􏽨 􏽩􏼐 􏼑􏽮 − mid zi,j,h,k􏽨 􏽩􏼐 􏼑|􏽯,

if v
⌢

i,j,h,k􏽨 􏽩∩ zi,j,h,k􏽨 􏽩 � ∅∃i � d, . . . , I∃j � d, . . . , J∃h � d, . . . , H,

∃k � d, . . . , K.

(7)

δ g
→
⌢

l􏼠 􏼡 � max
i�d,...,I,j�d,...,J,h�d,...,H,k�d,...,K

wid v
⌢

i,j,h,k􏽨 􏽩􏼐 􏼑−􏽮 wid v
⌢

i,j,h,k􏽨 􏽩, ∩ zi,j,h,k􏽨 􏽩􏼐 􏼑􏽯

if v
⌢

i,j,h,k􏽨 􏽩∩ zi,j,h,k􏽨 􏽩≠∅∀i � d, . . . , I, ∀j � d, . . . , J, ∀h � d, . . . , H, ∀k � d, . . . , K,

(8)

where mid(•) and wid(•) are operations for determining the
center and width of the interval correspondingly.

(erefore, the problem of parametric identification of
interval models of the object is formulated in the form of an
optimization task:

δ g
→
⌢

l􏼠 􏼡⟶ g
⟶
⌢

l

min , g
⌢

jl ∈ g
low
jl ; g

up
jl􏼔 􏼕, j � 1, . . . , m, l � 1, . . . , S, (9)

where the value of the objective function δ( g
→
⌢

l) is calculated
by formula (7) or (8).

Let’s consider the problem of IDM structural identifi-
cation in general (3). (e complexity of the task of con-
figuring IDM (3) is that not only the parameters are
unknown, but the same is with the structure. In this case, to
find the IDM parameters, it is necessary to solve the problem

of parametric identification and identify the structur-
e–structural identification. Note that both these tasks are
very closely related because parametric identification is a
structural stage, and to find one solution to the latter, it is
necessary to make many attempts to find the vector of IDM
parameters. Note that the “success” of the task of finding the
vector of IDM parameters directly depends on the success of
the process of selecting its structure. After all, if the defined
IDM structure is “unsuccessful,” then it is impossible to find
a solution of the parametric identification task.

(erefore, parametric identification is a stage of struc-
tural identification. When the data is given in interval form,
this step is to find estimates of the IDM parameters by
solving the ISNAE (6) for some known vector of basic
functions (structural elements of the IDM).

To solve ISNAE (6), the method of parametric identifi-
cation based on random search procedures is used. (e ap-
plication of this method involves, instead of ISNAE (6) solving,
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the search for some approximation to its solution, which
determines the quality of the current IDM structure [47].

Let’s use some notations that are necessary to reveal the
essence of the task formulation. Denote by λs the current
IDM structure

λs � f
s
1(•) · g

s
1; f

s
2(•) · g

s
2; . . . ; f

s
ms

(•) · g
s
ms

􏽮 􏽯, (10)

where f
→s

� f1
s(•); f2

s(•); . . . ; fs
ms

(•)􏽮 􏽯 ⊂ F is a set of
structural elements that specify the current s IDM structure.

Next, denote the following symbols: ms ∈ [Imin; Imax] is a
number of elements in the current structure λs; F is the set of
all structural elements, F � f1(•); . . . ; fl(•); . . . ; fL(•)􏼈 􏼉,

where |F| � L (power of the set F); g
→s

� gs
1; gs

2; . . . , gs
ms

􏽮 􏽯 is
a vector of unknown parameter values. Structural identifi-
cation aims at finding the IDM structure λ0 in the form of (10)
so that the interval discrete model is formed on its basis [48].

vi,j,h,k λ0( 􏼁􏽨 􏽩 � f1
0
(•)􏽨 􏽩 · g

⌢0
1 + f2

0
(•)􏽨 􏽩 · g

⌢0
2

+ . . . + f
0
m0

(•)􏽨 􏽩 · g
⌢0

m0
,

(11)

(e conditions (4) are true, i.e., the interval estimates of
the predicted value of the simulated characteristic are in-
cluded in the intervals of tolerance values of the simulated
characteristic on the set of all discrete.

(e quality of the current IDM structure is estimated on
the basis of the value of the indicator δ(λs), which quantifies
the proximity of the current structure to a satisfactory level
in terms of providing conditions (4). Afterward, δ(λs) will be
called the objective function of the optimization task of the
structural identification of a mathematical model with
guaranteed prognostic properties.

(e value of the quality indicator δ(λs) for the current
IDM structure λs is calculated using modified expressions
(7) and (8):

δ λs( 􏼁 � max
i�d,...,I,j�d,...,J,h�d,...,H,k�d,...,K

| mid f
→T

s

v
⌢

i− d,j− d,h− d,k− d􏽨 􏽩,

. . . , v
⌢

i− 1,j− 1,h− 1,k− 1􏽨 􏽩, u
→

i,j,h,0, . . . , u
→

i,j,h,k

⎛⎜⎝ ⎞⎟⎠ · g
→
⌢ s

⎛⎜⎝ ⎞⎟⎠ − mid zi,j,h,k􏽨 􏽩􏼐 􏼑|
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (12)

if v
⌢

i,j,h,k􏽨 􏽩∩ zi,j,h,k􏽨 􏽩 �∅, ∃i � d . . . ,I, j � d, . . . ,J, ∃h � d, . . . ,H, ∃k � d, . . . ,K

δ λs( 􏼁 � max
i�d,...,I,j�d,...,J,h�d,...,H,k�d,...,K

wid f
→T

s v
⌢

i− d,j− d,h− d,k− d􏽨 􏽩, . . . , v
⌢

i− 1,j− 1,h− 1,k− 1􏽨 􏽩, u
→

i,j,h,0, . . . , u
→

i,j,h,k􏼐 􏼑 · g
→
⌢

􏼠 􏼡−

− wid f
→T

s v
⌢

i− d,j− d,h− d,k− d􏽨 􏽩, . . . , v
⌢

i− 1,j− 1,h− 1,k− 1􏽨 􏽩, u
→

i,j,h,0, . . . , u
→

i,j,h,k􏼐 􏼑 · g
→
⌢

􏼠 􏼡∩ zi,j,h,k􏽨 􏽩􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

if v
⌢

i,j,h,k􏽨 􏽩∩ zi,j,h,k􏽨 􏽩≠∅, ∀i � d, . . . , I, ∀j � d, . . . ,J, ∀h � d, . . . ,H, ∀k � d, . . . ,K,

(13)

where mid(•),wid(•) are operations from interval analysis
determining the center and width of the intervals,
accordingly.

Expression (12) describes the “proximity” of the current
structure to a satisfactory level in the initial iterations, and

expression (13) in the case of δ(λs) � 0 ensures the fulfill-
ment of conditions (4).

(e task of IDM structural identification is written
formally in the form of the task of finding the minimum of
the objective function δ(λs):

δ λs( 􏼁⟶
λs

� (f
s
1 V
⟶

) · g
s
l1, f

s
2( V
⟶

) · g
s
l2, . . . , f

s
ms

( V
⟶

) · g
s
lms

min,
(14)

ms ∈ Imin; Imax􏼂 􏼃, f
s
1(V

→
), f

s
2(V

→
), . . . , f

s
ms

(V
→

) ∈ F

g
→
⌢ s

jl ∈ g
low
jl ; g

up
jl􏼔 􏼕, j � 1, . . . , m, l � 1, . . . , S,

(15)

where ms ∈ [Imin; Imax] is a number of elements in s interval
model structure; F � f1(V

→
), f2(V

→
), . . . , fm(V

→
)􏼚 􏼛 is a set

of potential structure elements in a model.

From expressions (12) and (13), it is seen that for the
calculated value of the objective function δ(λs) for the IDM
structure λs, the inequality δ(λs)≥ 0 will be satisfied under
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any conditions. (erefore, the objective function δ(λs) has a
global minimum only at those points for which the equality
δ(λs) � 0 holds. Based on the theory of multiplicity of
models [40], it can be stated that in the search space for
solutions to the IDM structural identification task, the
function δ(λs) has many global minima.

(e smaller the value of δ(λs), the “better” the current
IDM structure. If δ(λs) � 0, then the current IDM structure
makes it possible to build an adequate model for which the
interval estimates of the predicted characteristic belong to
the intervals of possible values of the modeled characteristic.

As it can be seen, the IDM structural identification is
reduced to the multiple repeating of the parametric iden-
tification problem-solving. (erefore, it is important to
develop methods of structural identification, which would
reduce the number of iterations of the method for finding an
adequate structure of the mathematical model and, ac-
cordingly, would reduce the required number of repeating
the parametric identification problem-solving.

3. Methods ofMathematicalModeling Based on
Interval Data

(e previous section presents a four-step procedure for
solving the problem of parametric identification. However,
to date, the most effective methods for solving this opti-
mization problem are methods based on behavioral models
of artificial bee colonies (ABC) [49]. (e substantiation of
this fact is given in [40, 44].

To build a method of parametric identification, the
principles of behavioral models of the bee colony are used.

Initialization phase. Vectors that determine the possible
minimum points of the objective function (9) are the vectors

of parameter estimates and are denoted by g
→
⌢

l. In the
context of the behavioral model of the bee colony, this means
that each vector of the nectar source coordinates corre-
sponds to one l bee that investigates it. Let’s set the number
of the entire population to be equal to the value S and set the
bounds of the parameter estimates

g
⌢

jl ∈ g
low
jl ; g

up
jl􏼔 􏼕, j � 1, . . . , m, l � 1, . . . , S. (16)

In this phase the following formula is used:

g
⌢

jl � g
low
jl + rand(0, 1)∗ g

up
jl − g

low
jl􏼒 􏼓,

j � 1, . . . , m, l � 1, . . . , S,

(17)

where glow
jl , g

up
jl are lower and upper bounds of parameter

values at the initialization phase.
Notice that in this phase, all the parameters of the al-

gorithm are also configured [42].
(e phase of worker bees. In the context of the opti-

mization task, the phase of worker bees means the search for
new estimates of solutions (16) with smaller values of the
objective function. To calculate the possible points of the
local minimum of the objective function, the following
formulas are used:

g
⌢msn

jl � g
⌢

jl + Vjl∗ g
⌢

jl − g
⌢

jp􏼐 􏼑, j � 1, . . . ,m,p≠ l � 1, . . . ,S.

(18)

After calculating the coordinates of the possible points of
the minimum g

→msn

l a pairwise comparison of the existing
and current values of the parameter estimates (16) is per-
formed using the objective function:

g
→
⌢

l � g
→
⌢

l, if δ g
→
⌢

l􏼠 􏼡≤ δ g
→
⌢ mcn

l􏼠 􏼡􏼨 􏼩 or g
→
⌢

l � g
→
⌢ mcn

l , if δ g
→
⌢

l􏼠 􏼡> δ g
→
⌢ mcn

l􏼠 􏼡􏼨 􏼩. (19)

(e phase of researchers bees. In the context of the
optimization task, at this stage, the most probable points
(vectors of parameter values) were determined, around
which it is necessary to conduct a detailed study of the
objective function. It is these points that claim to provide
local minima of the objective function. For these purposes,
the probabilistic approach is used, namely, the probabilities
of the expediency of research are calculated, and each
specific point is given by the vector of parameter values from
the previously found ones.(e expression for calculating the
specified probability is as follows:

Pl �

1 − δ g
→
⌢

l􏼠 􏼡

􏽐
S
l�1 1 − δ g

→
⌢

l􏼠 􏼡􏼠 􏼡

. (20)

It should be noted that in the case of a significant de-
viation between the values of the objective function δ( g

→
⌢

l),

calculated for different points (vectors of parameter values),
it is necessary to rewrite formula (20), taking into account
the normalization of the values of this function. In this case,
the formula takes the following form:

Pl �
1

δ g
→
⌢

l􏼠 􏼡 􏽐
S
l�1 1/δ g

→
⌢

l􏼠 􏼡

.
(21)

Based on the calculated probabilities, the number of
points for researching the possible local minima of the
objective function from task (9) is determined. However,
given that the value of ml in this formula must be an
integer because it determines the number of points in the
neighborhood of the studied point to find the minimum of
the objective function, the formula will be rewritten as
follows:

ml � ToInt Pl · S( 􏼁, l � 1, . . . , S, ml�1 � 0, (22)
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where ToInt(·) is the operator of selection of the integer part
from number.

(en the procedure is repeated to determine the points
where the lowest value of the objective function is achieved.

To avoid focusing on the local minima of the objective
function, the phase of scout bees is used.

(e phase of scout bees. (is is the phase where new
solutions to the optimization problem are randomly cal-
culated again. To do this, formula (18) is used. As mentioned
above, in the context of the behavioral model of the bee
colony, this means the exhausting of current nectar sources.

Each iteration of calculations involves obtaining a new
number of points in addition to the current ones. At the end
of each iteration, it has 2S points - applicants for research.
(erefore, at the end of the iteration, a group selection of
points is performed with the smallest value of the objective
function δ( g

→
⌢

l), so that their number is equal to the value of
S. (is procedure is called group selection. (e procedure
ends under the condition δ( g

→
⌢

l) � 0.
Given the analogy between the mathematical formu-

lation of problems of parametric and structural identifi-
cation of object models, the main phases of the method for
structural identification of models of dynamic objects
based on the behavioral models of the bee colony are
considered.

Initialization phase. In this phase, the main parameters
of the method are set: LIMIT; S; [Imin; Imax]; mcn � 0 is a
current iteration number; MCN is the total number of it-
erations and the set of structural elements is F, and also the
initial set Λ0 (with power S) of the structures λs from the set
of structural elements F is randomly formed.

In this case, the structural elements will look different
than in Table 1. (e results of coding the structural elements
for the case of developing a model of the characteristics of a
dynamic object are shown in Table 1.

Next, to form structures, consider a set of operators.
Note that their names and purposes are stored by analogy
with the existing method of structural identification built on
the ABC.

(e phase of worker bees. In the phase of worker bees,
the operator P(Λmcn, F), which transforms the structure of
the interval model in the form (10), is used. On the current
iteration of implementation of the method of structural
identification, this operator P(Λmcn, F) forms, on the basis
of each of the current structures λs of the mathematical
model, one “new” structure λs

′, which is close to the current
one. (erefore, the operator P(Λmcn, F) converts the set
Λmcn of the current structures λs generated on the mcn

iteration into the set Λmcn
′ structures λs

′ by randomly
selecting and replacing part of the elements of the current
structure λs and also replaces on selected elements from the
set F � f1(V

→
), f2(V

→
), . . . , fm(V

→
)􏼚 􏼛. In this case, the set

of ns elements of the current structure that need to be
replaced is inversely proportional to the value of the

objective function δ(λs), which is calculated by formulas
(12) or (13).

Next, in this phase, using the operator D1(λs, λs
′),

pairwise selection is performed to choose the best structure
from the two ones: the current and the generated one. To do
this, the following formula is used:

D1 λs, tλs
′( 􏼁: λ1s �

λs, if δ λs( 􏼁≤ δ λs
′( 􏼁;

λ′, if δ λs( 􏼁> δ λs
′( 􏼁.

⎧⎨

⎩ (23)

(e operator D1(λs, λs
′) implements the process of

synthesis of the set of “best” structuresΛ1mcn from the current
sets Λmcn, Λ1mcn. (us, a set of structures of the first series of
formation λ1s ∈ Λ

1
mcn, s � 1 · · · S is obtained.

(e phase of researchers bees. As already mentioned, in
this phase, the number of Rs structures is determined. It will
be generated on the basis of each λ1s structure from the set
Λ1mcn. (is indicator Rs is calculated by formulas:

Ps λ1s􏼐 􏼑 �
1 − δ λ1s􏼐 􏼑

􏽐
S
s�1 1 − δ λ1s􏼐 􏼑􏼐 􏼑

, s � 1 . . . S,

Rs � ToInt Ps λ1s􏼐 􏼑 · S􏼐 􏼑, s � 1 . . . S.

(24)

Next, in this phase also, the operator Pδ(Λmcn, F) is used,
which converts the current structure into a certain number
of Rs structures. In this case, the total number of structures
distributed between the current structures is equal to S.
(us, Pδ(Λmcn, F) means the transformation of each
structure λ1s from the set of structures λ1s ∈ Λ

1
mcn of the first

series of formations, generated by iterating the algorithm
mcn � 0, to the set of structures λs

′, s � 1 · · · S. Replacement
of elements in each current structure (or some structures) is
carried out randomly on the basis of the calculated value of
the number ns elements in the current structure and is
inversely proportional to the value of the objective function
δ(λs). (is substitution is also performed on randomly
selected elements from the set F � f1(V

→
), f2(V

→
), . . . ,􏼚

fm(V
→

)}.
Also, in this phase, group selection D2(λ

1
s , λs
′) of the

“best” structure from the current λ1s is performed and the set
λs
′ � λ1 . . . λr . . . λRs􏼈 􏼉 is formed in its neighborhood by the

values of the objective function. (is selection operator, as
distinct from the pair selection operator D1(λs, λs

′), has the
following form:

Table 1: Coding of structural elements for the model of dynamic
objects.

No Structural elements
1 f1(V

→
)

2 f2(V
→

)

. . . . . .

m fm(V
→

)
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D1 λ1s ,Λs
′􏼐 􏼑: λ2s �

λ1s , if Rs � 0( 􏼁;

λ1s , if δ λ1s􏼐 􏼑≤ δ λr( 􏼁􏼐 􏼑∧ Rs ≠ 0( 􏼁􏼐 􏼑,∀λr ∈ Λs
′, r � 1 . . . Rs;

λs
r, if δ λ1s􏼐 􏼑> δ λr( 􏼁􏼐 􏼑∧ Rs ≠ 0( 􏼁􏼐 􏼑,∃λr ∈ Λs

′, r � 1 . . . Rs.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

. (25)

Operator (25) implements the process of synthesis of the
set of “best” IDM structures Λ2mcn from the current sets Λ1mcn

and Λ’’mcn � Λ1′ ∪Λ2′ . . .Λs
′ . . . ∪ΛS

′􏼈 􏼉, s � 1 . . . S in the
method of ranking all structures by the values of the ob-
jective function (12) or (13) with subsequent selection of s �

1 . . . S structures λ2s by the highest value of the objective
function of the optimization task (12), (13). (us, the set of
structures of interval models of the second series of for-
mation Λ2mcn is obtained.

Exit from the local minima of the objective function in
task (12), (13) is carried out in the phase of scout bees.

(e phase of scout bees. To do this, for each current
structure λs

′ enter the LimitS counter, which is incremented
by “1” each time. If during pairwise or group selection, the
current structure is not “updated,” and reset, otherwise.
Comparing the value of this counter with some LIMIT
constant given in the initialization phase makes it possible to
decide whether the current structure has exhausted itself. If
the counter LimitS reaches the value LIMIT, it is no longer
appropriate to modify this current structure.(is means that
the function (14) is in the local minimum. (en, use the
operator PN(F, Imin, Imax), which randomly generates a
“new” structure λ2s from the set F of all structural elements
randomly, as in the initialization phase, only for one
structure. (erefore, such structures will be only a few
percent of the S value (of all worker bees).

(e procedure is completed under the condition that for
some structure in the task of parametric identification, the
condition is true: δ( g

→
⌢

l) � 0.
(e main problem with using these methods is the lack

of declarative ontological description, which does not allow
developing software environments as a tool. On the other
hand, as it is seen from the description of the structural
identification task, the main problem for its solving is the
formation of a set of potential structural elements of the

model F � f1(V
→

), f2(V
→

), . . . , fm(V
→

)􏼚 of difference (dis-

crete) equation, which represents a mathematical model of
the object. (is problem can be solved by the ontological
description of the subject area of modeling, i.e., operational
ontology.(erefore, solutions to these problemswill reduce the
complexity of the modeling procedure and adequate models
with guaranteed prognostic properties will be obtained.

4. Features of the Ontological
Approach Implementation

(e need for automated, systematic, reusable mathematical
models as an environment for obtaining, accumulating, and
reusing knowledge is fully justified in the context of a large
amount of information about the process and production of
previously generated and stored knowledge. To achieve these
goals, as well as in order to expand the possibilities of the

researchers of objects of different nature in cases when the
data is presented in interval form, it is necessary to build an
ontology of mathematical modeling based on interval data.

In the proposed ontological approach to represent the
concepts, methods, and tools of mathematical modeling
based on interval data, namely the declarative and proce-
dural parts, mathematical knowledge is separated. (e de-
clarative part consists of the information needed to build the
model, the information obtained from the model, and the
corresponding mathematical expressions that represent the
model. (e procedural part consists of detailed parts of the
model, appropriate methods and algorithms for their
implementation, and procedures for initializing variables
and their interpretations. Among the tools used to build and
apply the ontology, Protege and OntoStudio are the most
commonly used [33, 34, 50]. Due to their reliability,
widespread use, scalability, and extensibility, these tools can
also be used in the process of building appropriate onto-
logical models to represent and manage the knowledge they
accumulate in the process of mathematical modeling
[35, 51, 52]. However, these tools are difficult to integrate
into software and hardware systems, which, in particular, are
often used in medicine, where the speed and quality of
managing decisions are a priority. (erefore, for building an
ontology in this paper, the following tools are used:

(i) tools of modern relational databases for information
storage [53–55];

(ii) algebra of tuples for the formalized presentation of
knowledge and its subsequent program interpre-
tation regardless of the selected software platforms
for its implementation, as well as for implementa-
tion of effective methods of managing accumulated
knowledge [56–59];

(iii) Python and Java as programming languages for the
appropriate interpretation of the proposed methods
and tools [60–63].

In Figure 1 a general scheme of the relationship between
the declarative and procedural parts of the knowledge that is
accumulated in the process of mathematical modeling based
on interval data within the proposed ontological approach is
shown.

(e declarative part of the ontological approach consists
of an ontology of formalized mathematical models (de-
clarative ontology), which contains model definitions and an
information repository. (e ontology of using mathematical
models (operational ontology) contains design data, oper-
ating conditions, and equipment parameters for the use of
models. Model ontology consists of a model class that has
both attributes and instances.

A class of equations denotes model equations (integral
equations, algebraic equations or functions), model
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parameters, dependent and independent variables, and
universal classes of constants. All of the above attributes of
the class describe some knowledge about the mathematical
model in a very explicit way, which makes representation
more computer-interpreted, systematic, and more gener-
alized in nature.

�e feature of the proposed approach is that the com-
ponents of the model created in this way can be reused. �at
is, equations, variables, and assumptions from one model
can be reused when creating another model or the formed
repository of mathematical models can be reused in the
process of interpretation in other information systems.�us,
the process of creating mathematical models and their
practical use becomes more intuitive and user-oriented,
which is not very oriented in the modeling process. Each
model in this approach is a speci�c instance of the ontology
model class.

�e ontology of formalized mathematical models also
contains a functional representation of the model in the
form of a graphical interpretation for the diagnosis of
inaccuracies based on the improved model.

A subset of concepts and relationships that are �xed in
the general ontological model is shown in Figure 2.

�e procedural part of the ontological approach consists
of a mechanism for construction based on methods of data
relationship analysis, which analyzes equations in the on-
tological interpretation of mathematical models and
translates them into expressions that can be interpreted in
other external software environments. �e general scheme
of this approach is shown in Figure 3.

�e ontology of a mathematical model consists of an
operating class, the subclasses of which are various

operations that occur during the implementation of the
model and also contain the conditions for the imple-
mentation of each operation. �is ontology also consists of a
class of results, which stores the results of the model solving,
as well as the results of experiments.

�e model selection process control subsystem creates
operators to initialize model parameters with corresponding
values, creates associations between index variables and
values for which it is denoted, initializes universal constants,
collects actual model solution commands, and �nds the
appropriate solution to a set of equations.

�is software-interpreted ontological approach provides
the user with a number of additional features in the form of
implemented functions. Among these features is symbolic
processing, which directly analyzes the equations in di�erent
formats and provides their interpretation in di�erent pro-
gramming languages.

�e graphical user interface is designed to display the
results of solving (graphs or expressions) along with saving
returns to the ontology of mathematical models and is also
used to select the best instance of the model that is best
suited for use in a particular application area.

Based on the analysis of the structure of interval models,
the modeling process, and the features of experiments, the
mathematical model from the point of view of the onto-
logical approach is formalized by the following structures:

Mm � Ma,Mi,Mo, Par,Mr,Mc, SuMth,Mmt{ }, (26)

whereMa is the subject area within which the mathematical
model is constructed or used;Mi are the descriptions of the
mathematical model;Mo is a set of objects where the model

Text description
Visualization

Formulation of the
problem

Model selection
Initialization of parameters
The solution

Process management

Project data
Terms of use
Equipment settings
for using models

Ontology of using
mathematical models

Model parameters
Variables
Constants
Equation

Mathematical description

Experimental
research
Database

Experiments

Definition of models
Information repository

Ontology of formalized
mathematical models

Integration of results
Analysis of decisions
Specification

External information systems

Optimization
Accumulation

External simulation
environments

Formalization

Option

Description

Realization Applying

Engineering

Modeling

Figure 1: General scheme of implementing an ontological approach to mathematical modeling.
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can be used; Par is a set of parameters; Mr is a set that
describes the result of building object models;Mc is a set of
characteristics of the experiments; SuMth is a set of methods
for structural identi�cation of models; Mmt is a set of
methods for identifying model parameters.

In turn, the subject area is described by a tuple

Ma �〈IdMa,NmMa〉, (27)

where IdMa is the subject area identi�er;NmMa is a subject
area.

Descriptions of the mathematical model have the fol-
lowing structure:

Mi �〈IdMi,NmMi, IdMa〉, (28)

where IdMi is the identi�er of equation; NmMi is a for-
malized description of the equations of a mathematical
model.

�e structure of the description of the set of objects where
the model can be used has the following representation:

Mo �〈IdMo,NmMo, IdMa, IdMi〉, (29)

where IdMo is an object identi�er; NmMo is the infor-
mation that describes the structure of the object of the model
usage.

Tuple description of the set of parameters:

Par �〈IdPar, PT, PV, IdMa, IdMi, IdMo〉, (30)

where IdPar is a parameter identi�er; PT is a parameter
type; PV are the values of model parameters.

�e presentation of the results of building object models
is as follows:

Mr �〈IdMr, RNm, IdMa, IdMi, IdMo〉, (31)

where IdMr is a result identi�er; RNm are the statements
that describe the result.

�e characteristics of the experiments are presented as
follows:

Mc �〈IdMc,MA,Dsc, IdMa,NA, IdMo, IdMi,
IdPar〉,

(32)

where IdMc is the identi�er of the features that a�ect the
experimental conditions; MA are the main characteristics;
NA are the alternative characteristics;Dss is a statement that
describes the conditions of mathematical model usage.

Tuple for many methods of model structural
identi�cation:

SuMth �〈IdMmt,NmMth, Ac, IdMth〉, (33)

where IdMmt is a method identi�er;NmMth is a method of
model structure identi�cation; Ac is the set of statements

Ontology of
mathematical

modeling based on
interval data

model
description

model
description

Assumptions

Dependent
variable

Input

Variable

Mathematical
model

Mathematical
model

Input

Input

Formalization of options for building
mathematical models

Universal
Constants

LinkIndependent
variable

Variable

Model
Parameters

Variable

Simple Varible

Array Variable

Size of list

Input

Equation
partial differential

Integral

Algebraic

Differential-algebraic
equations
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HasModelIndex

hasModel
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hasModel
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hasInDepVar
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Figure 2: Scheme of description of the ontology of mathematical models on the basis of interval data.

An ontological approach to managing the choice of mathematical models based on
interval data
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Download
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Practical use

Figure 3: Scheme of implementation of the ontological approach
for mathematical modeling based on interval data for practical use.
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that describes the method; IdMth is the identi�er of the
parametric identi�cation method.

�e set of methods for identifying the parameters of the
models will be presented as follows:

Mth �〈IdMth,NmMth, Ac〉, (34)

where IdMth is an identi�er of the model parameter
identi�cation method; NmMth is a method of model
structure identi�cation; Ac is the set of statements that
describes the method.

An example of implementation of the ontological ap-
proach for constructing models of �elds of harmful emission
concentrations in the squat layer of the atmosphere in the
conditions of large errors of observations is shown in
Figure 4.

�e scheme of formalization of the mathematical model
using the developed tool SmartOntologyModeller re�ects
the main structural components within the proposed on-
tological approach. As seen, the information repository with
a formalized model description and external modeling

environment, which describes the use of software-imple-
mented models (in this case, an interval model with guar-
anteed interval parameter estimates), is translated to the
index representation and stored in the HasEquation attri-
bute. �e diagram shows the dependent and independent
variables and parameters combined to represent the struc-
ture of the interval model with guaranteed interval estimates
of the parameters. On the right side of the diagram, the
process of using assumptions for the implementation of
methods, the conditions of experiments, recommendations
for the use of methods, and visualization of simulation
results are formalized.

As an option for using the above ontological description,
consider the method of constructing a mathematical model
for modeling based on interval data.

Let’s present this method as a sequence of steps.

(1) �e user selects the subject area: IdMa C. �e
notation “_” means the pre�x of choice, C is the
selection procedure.

SmartOntologyModeller

Main system

Information
repository

External
modeling system

Interval model with
guaranteed interval

estimates of parameters

Assumptions

To check the "quality" of the current estimation of the
parameter vector of the difference operator, it is assumed

that the quality of the approximation will be higher the closer
the predicted corridor, built on the basis of this approximation

of the parameter vector, to the experimental one.

The quality of the approximation is determined by the
difference between the centers of the most distant predictive

and experimental intervals - in the case when they do not
intersect and the smallest width of the intersection among

the predicted and experimental intervals - for the case
of their intersection.

Dependent variable

Independent variable

Network2

Model Parameters

Network3

Software interpreter

Visualization of results

Ontology Server

hasExper

hasModelParam

hasResulthasIndepVar

hasDepVar

hasAssumptions

hasEquation

Figure 4: An example of implementing the ontology of the interval model for simulating the �elds of harmful emission concentrations in
the squat layer of the atmosphere in the conditions of large errors of observations in the SmartOntologyModeller environment.
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(e result is a proposed set of mathematical models
for a set of Mi C objects.

(2) Selection of the object of modeling.
(e formal description of this procedure is as
follows:

Mo C � πIdMo,NmMo

· σMo(IdMa)�IdMa C∧MoIdMi�IdMi C(τ(Mo))􏼐 􏼑,

(35)

where π is the projection operation of the tuple
algebra, σ is the sampling operation from the set by
the given attributes, τ is the ordering operation by
the values of the corresponding attributes.
(e result of the operation is a selected object with a
set of possible models if any of them are in the
repository.

(3) Choosing the conditions of application of the model:

Mc C � πIdMc,Dsc,IdPar σ Mc(IdMa) � IdMa C∧Mc(IdMi) �

� IdMi C∧Mc(IdMo) � IdMo C

(Mc)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (36)

(4) Model selection.
For this case use the following procedure:

Mi C � πIdMi,IdMc,NmMi

· σMi(IdMa)�IdMa C∧McIdMc(τ(Mi))􏼐 􏼑.
(37)

(5) To select Mi C and Mo C, a set is formed that
represents the results of building object models using
the following description:

Mr C � πIdMr,RNm σ Mr(IdMa) � IdMa C∧Mr(IdMi) �

� IdMi C∧Mr(IdMo) � IdMo C

(τ(Mr))
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (38)

If the repository does not have adequate models to
describe the object, continue to build models.

(6) Choosing the conditions of model application
(characteristics of the experiment):

Mc C � πIdMc,Dsc,IdPar σ Mc(IdMa) � IdMa C∧Mc(IdMi) �

� IdMi C∧Mc(IdMo) � IdMo C

(Mc)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (39)

(7) (e user chooses the method of identifying the
model structure

Mmt C � πIdMmt,IdMth σ Mmt(IdMa) � IdMa C∧Mmt(IdMi) �

� IdPi C∧Mmt(IdMo) �

� IdMo C∧Mmt(IdPar) � Par C

(Mmt)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)
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(8) Determining the structure of the model and its
parameters

SuMth C � πIdMmt,Ac,IdPar σ SuMth(IdMa) � IdMa C∧SuMth(IdMi) �

� IdMi C∧SuMth(IdMo) � IdMo C∧
∧SuMth(IdMth) � IdPar C

(τ(SuMth))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Par C � πIdPar,Ac, σ Par(IdMa) � IdMa C∧Par(IdMi) �

� IdMi C∧Par(IdMo) � IdMo C

(τ(Par))
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(41)

(e result of this operation is a set of object models. (9) For certain Mi and Mo, a set is formed that describes
the results of model construction:

Mr C � πIdMr,RNm σ Mr(IdMa) � IdMa C∧Mr(IdMi) �

� IdMi C∧Mr(IdMo) � IdMo C

(τ(Mr))
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (42)

Performing steps 1-5 makes it possible to choose an
adequate model for describing the object in the repository.
Steps 1, 2, 6–9 are used in case of the absence of models in
the repository.

(e proposed ontological description makes it possible
to develop the environment for modeling on the basis of
interval data.

5. Results and Discussion

(e practical implementation of the ontology of mathe-
matical modeling based on interval data leads to the for-
mation of common structural elements based on the
specifics of their use for a particular subject area. (e
practical implementation of software as one of the options
for using the developed repository of model experiments in
various subject areas within the proposed ontological ap-
proach is described in this paper.

As an example of the application of the ontological
approach, the problem of building models of fields of
harmful emissions concentrations in a squat layer of at-
mosphere on the basis of macromodels in the form of
difference operators is considered, which structure needs to
be selected under conditions of coordination with experi-
mental data and when big errors in observations occur.
Differential equations in partial derivatives, or their differ-
ence analogs, serve as a theoretical basis for modeling the
processes of pollutants spreading in the atmosphere. In
addition, due to big observation errors, the boundaries of
which are usually known, the difference operators are built
on the basis of methods of interval data analysis.

Consider the case of describing the field of concentra-
tions of harmful emissions of a substance in the squat layer
of the atmosphere by a macromodel in the form of a dif-
ference operator (2):

vi,j � f
T

v0,0, . . . , v0,j, v1,0, . . . , v1,j, . . . , vi− 1,j− 1􏼐 􏼑 · g
→

,

i � 1, . . . , N, j � 1, . . . , L,
(43)

where in our case vi,j is the predicted (true) value of the
concentration of harmful substances in the squat layer of the
atmosphere at a point in the city with discrete coordinates
i, j; g

→ is unknown vector (dimension m × 1) of parameters
of the difference operator.

To estimate the vector of parameters g
→ of the difference

operator, use the results of observations of the concentration
of harmful substances for given discrete coordinates i, j:

􏽥vi,j � vi,j + ei,j, i � 1, . . . , N, j � 1, . . . , L, (44)

where 􏽥vi,j is measured value of the concentration of harmful
substances in the squat layer of the atmosphere at a point in
the city with discrete coordinates i, j; ei,j are the random
limited by the amplitude errors

e1,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � e2,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � · · · � ei,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Δi,j,Δi,j > 0∀i . . . . . . , N,

j � 1, . . . , L,
(45)

which in the general case depend on the discrete values of the
space coordinates.

Using the model of observations (44) and taking into
account the limitation on the amplitude of the error (45),
estimates of the concentration of harmful substances
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Table 2: Example of formalized representation of mathematical models based on interval data for air pollution processes by harmful
emissions from vehicles.

Attribute Description Value

Ma Subject area
Harmful emissions

Atmospheric pollution
Emissions from vehicles

Mi Descriptions of the
mathematical model

[v
⌢−

j ; v
⌢+

j ] � v
⌢

1 · [v
⌢−

k− 1; v
⌢+

k− 1] + g
⌢

2 · ([v
⌢−

k− 2; v
⌢+

k− 2] − [v
⌢−

k− 1; v
⌢+

k− 1])

[v
⌢−

0 ; v
⌢+

0 ] ⊂ [52,25; 57,75], [v
⌢−

1 ; v
⌢+

1 ] ⊂ [44,65; 49,35], g
⌢

1 � 0, 8897; g
⌢

2 � − 0, 0261.

Mo Set of object characteristics

Distribution of carbon monoxide concentrations
Straight section of the street

Uniform traffic flow
Constant emission capacity

Attr Set of parameters

v
⌢−

k is a concentration SP at the k moment of time
xk is a distance

uk is an intensity of traffic flows
zk is a measured concentration

[vk] � [v−
k ; v+

k ] are the interval values of carbon monoxide concentration

Mr Many possible results
Predicted dynamics of daily cycle of changes in carbon monoxide concentrations

(e concentration of carbon monoxide within the observation errors
A set of interval models of atmospheric pollution processes by harmful emissions from vehicles

Mc Many characteristics of the
experiments

Carbon monoxide concentration measurement error 25%
Daily cycle of concentration of harmful emissions of motor transport

Change in the intensity of traffic flows

Mmt Many identification
methods

Identification with a random search procedure with linear tactics
Identification with the procedure of random search on the best attempt
Identification with a random search procedure using a directed cone

Identification with a random search procedure with adaptation of the random step distribution
Identification based on the behavioral model of the bee colony

Mi Descriptions of the
mathematical model

v
⌢

k � 0, 0149 − 0, 5788v
⌢

k− 2 + 0, 7425v
⌢

k− 3 + 0, 046v
⌢

k− 1/v
⌢

k− 4, k � 4, . . . , 18
v
⌢

k � 0, 124 − 0, 5764v
⌢

k− 2 + 0, 7078v
⌢

k− 3 + 0, 0473v
⌢

k− 1/v
⌢

k− 4 + 0, 0159v
⌢

k− 1v
⌢

k− 2/v
⌢

k− 1, k � 4, . . . , 18
v
⌢

k � 0, 0226 − 0, 6114v
⌢

k− 2 + 0, 7781v
⌢

k− 3 + 0, 037v
⌢

k− 1/v
⌢

k− 4 + 0, 0282v
⌢

k− 1v
⌢

k− 4/v
⌢

k− 2, k � 4, .., 18

Mo Set of object characteristics
Dynamics of nitrogen dioxide concentrations

Uniform intensity of traffic flows
Straight section of the street

Attr Set of parameters
v
⌢−

k is a concentration NO2 at the k moment of time
uk is an intensity of traffic flows

xk is a distance

Mr Many possible results
Intervals of predicted values of nitrogen dioxide concentrations

Intervals of measured values of concentrations of nitrogen dioxide
Interval model with a simpler structure

Mc Many characteristics of the
experiments

Error of measurement of concentrations of nitrogen dioxide 15%
Control intensity of traffic flows
Uniform period of measurements

Mi Descriptions of the
mathematical model

vi,j � 0.512 + 1.047 · vi,j− 1 − 0.201 · vi,j− 2 + 0.338 · vi− 1,j + 0.238 · vi− 1,j− 1 − 0.515 · vi− 1,j− 2+

+0.385 · vi− 2,j − 0.851 · vi− 2,j− 1 + 0.447 · vi− 2,j− 2

Mo Set of object characteristics
Distribution of nitrogen dioxide concentrations

Uniform intensity of traffic flows
Center part of the city

Attr Set of parameters vi,j is a concentration NO2 in the point with discrete coordinates i, j

Mr Many possible results
Intervals of predicted values of nitrogen dioxide concentrations

Intervals of measured values of concentrations of nitrogen dioxide
Interval model with a simpler structure

Mc Many characteristics of the
experiments

Error of measurement of concentrations of nitrogen dioxide 15%
Uniform period of measurements

14 Complexity



obtained on the basis of experimental data acquire interval
representation

z
−
i,j; z

+
i,j􏽨 􏽩 � 􏽥vi,j − Δi,j􏼐 􏼑; 􏽥vi,j + Δi,j􏼐 􏼑􏽨 􏽩,

i � 1, . . . , N, j � 1, . . . , L,
(46)

where [z−
i,j; z+

i,j] is a guaranteed interval which includes the
true unknown concentration of the substance, i.e.,

vi,j ∈ z
−
i,j; z

+
i,j􏽨 􏽩∀i � 1, . . . , N, j � 1, . . . , L. (47)

(en, substituting in expression (5) the value of vi,j,
which is given by the difference operator (43), the conditions
for matching the experimental values of concentrations with
the simulated ones are obtained.

z
−
i,j ≤f

T
v0,0, . . . , v0,k, v1,0, . . . , v1,j, . . . , vi,j􏼐 􏼑 · g

→≤ z
+
i,j

i � 1, . . . , N, j � 1, . . . , L.
(48)

Further, according to the description in paragraph 2, it is
necessary to solve the problem of structural and parametric
identification of the model using ABC algorithms.

One of the initial structures generated on the basis of the
ontological description has the following form:

vi,j � g1 + g2 · vi− 1,j + g3 · vi,j− 1 + g4 · vi− 1,j− 1. (49)

As a result of solving the problem of structural and
parametric identification, a difference operator that ade-
quately describes the spatial distribution of concentrations
of nitrogen dioxide is obtained:

vi,j � 0.512 + 1.047 · vi,j− 1 − 0.201 · vi,j− 2 + 0.338 · vi− 1,j

+ 0.238 · vi− 1,j− 1−

− 0.515 · vi− 1,j− 2 + 0.385 · vi− 2,j − 0.851 · vi− 2,j− 1

+ 0.447 · vi− 2,j− 2.

(50)

(emathematical models obtained in this way are stored
in the repository.

If the object is changed, then in general the identification
scheme remains unchanged.

(e authors of this article have developed a number of
models not only for predicting the spatial distribution of
nitrogen dioxide concentrations for different conditions but
also for predicting the dynamics of this harmful substance or
the dynamics of carbon monoxide for different conditions.
However, for their effective use, it is necessary to obtain a
correct ontological description.

Based on the developed method of ontological de-
scription of the mathematical modeling of objects on the
basis of interval data, some results of such description are
shown in Table 2.

Based on the method of choosing a mathematical
model within the ontological approach for modeling
based on interval data, it is possible to switch models from
the information repository depending on the conditions
and specifics of the relevant experimental studies. (e

ability to control the switching process was practically
implemented in the web-based information system
SmartOntologyModeller.

Table 2 contains three columns that correspond to the
description of the ontological model, namely: Attribute
Description Value. (ese structural elements represent the
subject area, object, modeling conditions (two groups of
conditions), variables, etc. Also, for the specified conditions
of application, there is a repository of models (4 such models
are given in the table).

(us, having a repository for the specified object
(concentrations of harmful emissions in the squat layer of
the atmosphere), the first five steps of the above method of
choosing a mathematical model for modeling based on
interval data can be applied:

Step 1. Selection of the subject area: IdMa C is
“pollution of the squat layer of the atmosphere by
harmful emissions from vehicles.”
Step 2. Selection of the Mo C modeling object is “con-
centration of nitrogen dioxide emissions from vehicles.”
Step 3. Selection of the conditions for the application of
the model Mc C is “error in measuring the concen-
tration of nitrogen dioxide at the level of 15%; control
of traffic intensity; uniform period of measurements.”
Step 4. Selection of a model from the repository for
approximation of the fields of concentrations of ni-
trogen dioxide emissions from vehicles in Ternopil city,
taking into account the results obtained in the previous
steps:

vi,j � 0.512 + 1.047 · vi,j− 1 − 0.201 · vi,j− 2 + 0.338 · vi− 1,j

+ 0.238 · vi− 1,j− 1 − 0.515 · vi− 1,j− 2 + 0.385 · vi− 2,j

− 0.851 · vi− 2,j− 1 + 0.447 · vi− 2,j− 2.

(51)

Step 5. For the obtained model, tabular and visual
results of its use from the repository can also be

Table 3: (e results of predicting the nitrogen dioxide concen-
trations at control points.

Point No i xi (m) j yj (m) v−
i,j (mg/dm3) v+

i,j (mg/dm3)

1 0 0 0 0 0.011 0.019
2 0 0 6 1650 0.015 0.025
3 0 0 8 2200 0.015 0.025
4 1 275 8 2200 0.030 0.050
5 2 550 0 0 0.015 0.025
6 2 550 6 1650 0.015 0.025
7 2 550 7 1925 0.057 0.095
8 3 825 4 1100 0.065 0.109
9 4 1100 6 1650 0.045 0.075
10 6 1650 4 1100 0.069 0.115
11 7 1925 1 275 0.065 0.109
12 7 1925 3 825 0.068 0.113
13 7 1925 4 1100 0.036 0.060
14 8 2200 0 0 0.056 0.094
15 8 2200 5 1375 0.015 0.025
16 8 2200 8 2200 0.023 0.038
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received. For example, Table 3 compares the results of
predicting nitrogen dioxide concentrations and those
measured at control points.

Figure 5 shows an example of switching by choosing a
mathematical model based on interval data depending on
changes in the subject characteristics of themodel. Switching

Figure 6: Example of switching the mathematical model due to the changes in the conditions of the simulation environment or the
conditions of the corresponding experiment.

Figure 5: Example of switching the mathematical model depending on the change in control characteristics and conditions of experiments
in SmartOntologyModeller environment.
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occurs by changing the conditions of the simulation
environment.

It should be noted that in the case of another task, such as
modeling the dynamics of concentrations of harmful carbon
monoxide emissions during the day in a certain area of the
city and the existing repository of these models, the scheme
of applying the method of choosing a mathematical model
for modeling based on interval data will be the same.
However, in the fifth step, the results will be presented
adequately to the selected object. For this case, the results are
presented in Figure 6.

(e accuracy of the model of the dynamics of atmo-
spheric pollution by vehicles is characterized by the
equivalent accuracy of the measurement experiment. If the
conditions of the experiment are changed, the accuracy of
the model may also change. (e advantage of the proposed
approach is the saving of resources, which is achieved
through the reuse of the developed model repository for the
relevant objects from the repository.

Figure 6 shows the results of the corresponding
switching, related to changes in the conditions of tracking
traffic flows and according to the characteristics of the
section of the street under research.

(e connected Python toolkit allows the user to select a
sample of the model and the corresponding operational
example, after which the operators can build using the
appropriate libraries that interpret equations from format-
ted, indexed parts, initialize model parameters based on the
corresponding sample of operation, and finally allow the
model to build the necessary solution. When calculating, the
results are interpreted in the appropriate graphical interface
using graphs, and tables, resulting in files, as well as other
results that are stored in the operational part of the
mathematical model with the appropriate refinements. (is
refinement will allow in the future choosing the right models
depending on the specifics of the conditions of the exper-
iments and the relevant subject area.

6. Conclusions

(e inductive approach to mathematical modeling of
complex systems based on interval data is limited to strictly
formalized and algorithmic procedures. (e proposed on-
tological superstructure for mathematical modeling of ob-
jects based on interval data makes it possible to generate
tools in the form of software for building interval models.
On the other hand, in the presence of previously constructed
interval discrete models, the ontological superstructure
makes it possible to create a repository of these models, as
well as to manage this repository. In this case, it serves as a
“switch” that choose the most accurate and adequate model
from the repository of previously created models. (e ad-
vantage of the proposed approach is illustrated by the ex-
ample of modeling the processes of air pollution by harmful
emissions from vehicles. In particular, the example illus-
trates the “switching” of the choice of a mathematical model
based on interval data depending on changes in the subject
characteristics of the model. Switching occurs by changing
the conditions of the simulation environment.

In further research, the implementation of tools for
integration of the offered ontology in external information
systems for the purpose of their expansion and qualitative
improvement is planned.
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[36] M. A. Musen, “(e protégé project,” AI Matters, vol. 1, no. 4,
pp. 4–12, 2015.

[37] S. W. Tu, H. Eriksson, J. H. Gennari, Y. Shahar, and
M. A. Musen, “Ontology-based configuration of problem-
solving methods and generation of knowledge-acquisition
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