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Dynamical analysis, chaos suppression and electronic implementation of the synchronous reluctance motor (SynRM) without
external inputs are investigated in this paper. -e different dynamical behaviors (including monostable periodic behaviors,
bistable periodic behaviors, monostable chaotic behaviors, and bistable chaotic behaviors) found in the SynRM without external
inputs are illustrated in the two parameters largest Lyapunov exponent (LLE) diagrams, one parameter bifurcation diagram, and
phase portraits. -e three single controllers are designed to suppress the chaotic behaviors found in SynRM without external
inputs. -e three proposed single controllers are simple and easy to implement. Numerical simulation results show that the three
proposed single controllers are effective. Finally, the dynamical behaviors found in the SynRM without external inputs and the
physical feasibility of the three proposed single controllers are validated through circuit implementation on OrCAD-
PSpice software.

1. Introduction

An electrical motor converts electrical energy into me-
chanical energy thank to the discovery by Michael Faraday
in the 19th century. He stated that a current carrying coil
within a magnetic field will experience a force. Electrical
motors can be found in steel rolling mills, drilling ma-
chines, railway traction, industrial robots, and in most
household items and office equipment [1–6]. Today, there
are several variants of electric motors including the in-
duction motor [7,8], permanent-magnet brushless motor
[9–12], and variable-reluctance motor. -e variable-re-
luctance motor class takes the advantages of a simple and

rugged structure, good compatibility with the power
converter, and high recyclability for the core and winding
[13]. -e variable-reluctance motor is divided into the
switched reluctance motor [14,15] and synchronous re-
luctance motor (SynRM). -e SynRM uses a distributed
winding and sinusoidal wave which can essentially elimi-
nate the torque pulsation and acoustic noise problems. It is
broadly used in the field of transportation, industrial and
agricultural production, commercial and household ap-
pliances, medical appliances and equipment, and so on
[16–20]. Because of its advantage over other types of
electrical motors in simple mechanical construction, there
were no slip ring and no permanent magnet and over other
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servomotors in high efficiency, high power density, and low
manufacturing cost [21].

For industrial automationmanufacturing, the secure and
stable operation of the SynRM is an essential requirement
because chaotic behaviors can extremely destabilize the
SynRM and even cause the drive system to fail [20]. Hopf
Bifurcation and chaos have been found in the SynRM [13].
In this paper, it is demonstrated that the SynRM can exhibit
monostable periodic behaviors, bistable periodic behaviors,
monostable chaotic behaviors, and bistable chaotic behav-
iors. -e chaotic behaviors found in the SynRM induces
instability in this motor and shortens its service time [9].
-ereafter, a variety of methods to control chaos have been
used to suppress the chaotic behavior in SynRM. A passive
adaptive controller [21], a nonlinear feedback controller
[22], a controller based on tridiagonal structure matrix
stability theory [23], a vector controller [24–26], a sliding
mode controller [27], and an adaptive sliding mode con-
troller [28] were used for the control of chaotic behavior in
SynRM. Most of the existing techniques for the control of
chaotic behavior in SynRM use a nonlinear and complicated
controller.

To the best of authors’ knowledge, no study on the chaos
suppression in SynRMwithout external inputs has been carried
out with the single state feedback controller. -e single state
feedback control method is simple, concise, and easy to im-
plement. -erefore, the main contribution of this paper is to
investigate the dynamical analysis of SynRM without external
inputs and to design three single and simple controllers to
suppress chaos in SynRM. -e dynamical analysis and chaos
suppression via a single controller of SynRM without external
inputs are analytically, numerically, and electronically analysed
in this paper. -e dynamical analysis of SynRM without ex-
ternal inputs is investigated in Section 2. In Section 3, three
proposed single controllers are employed to achieve the sup-
pression of chaos in SynRM without external inputs. Section 4
presents the electronic implementation in order to check the
existence of dynamical behaviors found in SynRM and the
effectiveness of the three proposed single controllers. Finally,
conclusions are given in Section 5.

2. Dynamical Analysis of SynRM without
External Inputs

-e SynRM can be described by the following rate equations
[1, 2, 13]:
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where 􏽥id,􏽥iq are the d (direct)- and q (quadrature)-axis
stator currents, 􏽥ω is the mechanical rotor speed, ωe is the

electrical rotor speed, 􏽥ud is the stator voltage on d axis, Rs

is the stator resistance per phase, kp is the feedback co-
efficient, and ωref is the reference rotor speed, Ld, Lq are
the d- and q-axis stator inductors, P is the number of
poles, J, 􏽥TL, and B are the inertia constant of the motor
and load, load torque, and viscous friction coefficient,
respectively. -e normalization of equations (1a)–(1c)
leads to the following dimensionless form of the math-
ematical model of SynRM:

dx

dt
� ud − bx + yz, (2a)

dy
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� − y − xz + c z − zref( 􏼁, (2b)

dz

dt
� xy − az + TL, (2c)

with the following rescaling variables and parameters:
τ � Lq/Rs,􏽥t � τt, a � BLq/(JRs), b � Lq/Ld,
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�����������������������
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􏽱

, ωref � τzref , x � [1/
(bk)]􏽥id, y � (1/k􏽥iq), z � (Lq/Rs)􏽥ω, c � 2kd/(kPLq), ud � 􏽥ud/
(kRs), TL � Pτ2􏽥TL/(2J). -e external inputs are removed
(ud � zref � TL � 0), and System (2a)–(2c) becomes
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System (3a)–(3c) is invariant under the transformation:
(x, y, z)⇔(x, − y, − z) and dissipative if ∇V � (z(dx/dt)/
zx) + (z(dy/dt)/zy)+ (z(dz/dt)/zz) � − (a + b + 1)< 0. It
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/2) if Δ> 0 [13]. -e

linear stability analysis of system (2) revealed that the
equilibrium points displayed Hopf bifurcation [13]. When
the parameters a, b, c are varied, SynRM without external
inputs can be expected to exhibit steady state, periodic, and
chaotic behaviors. In order to identify the dynamical be-
haviors of SynRM without external inputs, two parameters
LLE diagrams are constructed in Figure 1.

From Figure 1, periodic or steady state regions are
characterized as a combination of light blue-light blue-green
colors, and chaotic regions are characterized by yellow and
red colors. For b � 0.2 and c � 22, the bifurcation diagrams
and LLE of SynRM without external inputs as a function of
the parameter a are plotted in Figure 2.

Figure 2 shows that the SynRM without external inputs
exhibits monostable period-3 oscillations, bistable period-3
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oscillations followed to period tripling to bistable chaos and
monostable chaos interspersed with bistable andmonostable
periodic regions.-e dynamical behaviors shown in Figure 2
are illustrated in Figure 3 for a specific value of a.

-e SynRM without external inputs exhibits monostable
periodic attractors in Figure 3(a), bistable periodic attractors

in Figure 3(b), bistable one-scroll chaotic attractors in
Figure 3(c), and monostable double-scroll chaotic attractors
in Figure 3(d). -e bifurcation diagrams of SynRM without
external inputs obtained numerically by the parameters b

and c reveal monostable chaos and bistable chaos inter-
spersed with monostable and bistable periodic regions
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Figure 1: Two parameters LLE diagrams in (a)(a, b) space for c � 22 and (b)(b, c) space for a � 1.53.
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Figure 2: Bifurcation diagrams of y(t) (a) and LLE (b) of SynRM versus the parameter a for b � 0.2 and c � 22. Bifurcation diagrams are
obtained by scanning the parameter a upwards (black) and downwards (red). -e initial conditions are (x(0), y(0), z(0)) � (0.1, 0.2, 0.2).
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followed by monostable period-3-oscillations, but the results
have not presented here for brevity.

3. Chaos Suppression in SynRM without
External Inputs Using Single Controller

In this section, three single controllers are mathematically
designed by using the principle of Lyapunov’s method for
asymptotic global stability to suppress the chaotic behavior
found in SynRM without external inputs [29].

3.1. Proposed Controller 1. System (3a)–(3c) with the first
single controller u1 � − yz is described by

dx

dt
� − bx + yz + u1, (4a)

dy

dt
� − y − xz + cz, (4b)

dz

dt
� xy − az. (4c)

-e controlled system (4a)–(4c) can be rewritten as

dx

dt
� − bx, (5a)

dy

dt
� − y − xz + cz, (5b)

dz

dt
� xy − az. (5c)

-e solution of equation (5a) is x(t) � x(0)e− bt. -at is,
yield limt⟶∞x(t) � 0. So, system (5a)–(5c) can be reduced
as follows:

dy

dt
� − y + cz, (6a)

dz

dt
� − az. (6b)

-e solution of equation (6b) is z(t) � z(0)e− at. -at is,
yield limt⟶∞z(t) � 0. So, system (6a) and (6b) can be
rewritten as follows

dy

dt
� − y. (7)

-e solution of equation (7) is y(t) � y(0)e− t. -at is,
yield limt⟶∞y(t) � 0. -erefore, the chaotic behavior
found in the SynRM without external inputs can be con-
trolled using the controller u1 � − yz. -e curves of the state
responses and the output of the controller 1 are shown in
Figure 4.

-e results of Figure 4 show the efficiency of the con-
troller u1.

3.2. Proposed Controller 2. System (3a)–(3c) with the second
single controller u2 � z(x − c) is described by

dx

dt
� − bx + yz, (8a)

dy

dt
� − y − xz + cz + u2, (8b)

dz

dt
� xy − az. (8c)

-e controller u2 into the controlled system (8a)–(8c)
can be rewritten as

dx

dt
� − bx + yz, (9a)

dy

dt
� − y, (9b)

dz

dt
� xy − az. (9c)

-e solution of equation (9b) is y(t) � y(0)e− t. -at is,
yield limt⟶∞y(t) � 0. -us, the system (9a)–(9c) can be
reduced as follows:

dx

dt
� − bx, (10a)

dz

dt
� − az. (10b)

-e solution of system (10a) and (10b) is given by
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Figure 3: Phase planes of SynRMwithout external inputs for a specific value of parameter a: (a) a � 1.5, (b) a � 1.8, (c) a � 2, and (d) a � 3.
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x(t) � x(0)e
− bt

, (11a)

z(t) � z(0)e
− at

. (11b)

-at is, yield limt⟶∞y(t) � 0 and limt⟶∞z(t) � 0.
-erefore, the chaotic behavior found in the SynRMwithout
external inputs can be controlled using the controller
u2 � z(x − c). -e curves of the state responses and the
output of the controller are shown in Figure 5.

-e results of Figure 4 reveal the efficiency of the
controller u2.

3.3. Proposed Controller 3. System (3a)–(3c) with the third
single controller u3 � − xy is described by

dx

dt
� − bx + yz, (12a)

dy

dt
� − y − xz + cz, (12b)

dz

dt
� xy − az + u3. (12c)

Substituting the expression of the controller u3 into the
controlled system (12a)–(12c) becomes

dx

dt
� − bx + yz, (13a)

dy

dt
� − y − xz + cz, (13b)

dz

dt
� − az. (13c)

-e solution of equation (13c) is z(t) � z(0)e− at. -at, is
yield limt⟶∞z(t) � 0. -us, system (13a)–(13c) can be
reduced as follows:

dx

dt
� − bx, (14a)

dy

dt
� − y. (14b)

-e solution of system (14a) and (14b) can be rewritten
as follows:

x(t) � x(0)e
− bt

, (15a)

y(t) � y(0)e
− t

. (15b)

-at is, yield limt⟶∞x(t) � 0 and limt⟶∞y(t) � 0.
-erefore, the chaotic behavior found in SynRM without
external inputs can be controlled using the controller
u3 � − xy.-e curves of the state responses and the output of
the single controller 3 are shown in Figure 6.
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-e results of Figure 6 show the efficiency of the con-
troller u3. From practical realization point of view, the single
controllers 1 and 3 are preferred because of the inclusion of
two states variables (i.e. y and z or x and z) in a single
expression signifying a lesser requirement of sensing devices
during their fabrication. Hence, this making the system to
become cheap.

4. Circuit Implementation of SynRM without
External Inputs and Chaos Suppression in
SynRM without External Inputs

-e electronic implementation of system (3a)–(3c) is
depicted in Figure 7.

-e electronic circuit of Figure 7 is made of three ca-
pacitors, thirteen resistors, six TL081 operational amplifiers,
and three analog devices AD633 multipliers. Based on the
circuit diagram of Figure 7, the phase portraits of dynamical
behaviors found in SynRM without external inputs are il-
lustrated in Figure 8 for specific values of capacitors and
resistors.

-e good qualitative agreement between the Pspice
results of Figure 8 and the numerical simulations results
of Figure 3 confirms the existence of the dynamical be-
havior found in SynRM without external inputs. -e
electronic implementations of the controlled systems
(5a)–(5c), (9a)–(9c), and (13a)–(13c) are deduced from
the electronic implementation of system (5a)–(5c) in
Figure 7 (not shown). -e time series of the state re-
sponses and the output of the single controller 1 gen-
erated from the circuit diagram of the controlled system
(5a)–(5c) are shown in Figure 9.

-e good qualitative agreement between the Pspice re-
sults of Figure 9 and the numerical simulations results of
Figure 5 confirms the efficiency of proposed single controller
3.-e time series of the state responses and the output of the
single controller 2 generated from the circuit diagram of the
controlled system (9a)–(9c) are shown in Figure 10.

-e good qualitative agreement between the Pspice
results of Figure 10 and the numerical simulations results
of Figure 5 confirms the efficiency of proposed single
controller 2. -e time series of the state responses and the
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output of the single controller 3 generated from the
circuit diagram of the controlled system (13a)–(13c) are
shown in Figure 11.

-e good qualitative agreement between the Pspice results
of Figure 11 and the numerical simulations results of Figure 6
confirms the efficiency of proposed single controller 3.
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R6 � 3.33 kΩ.
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5. Conclusion

-is paper is dealt with the dynamical analysis, chaos
suppression, and electronic implementation of synchronous
reluctance motor without external inputs. -e numerical
analysis of synchronous reluctance motor without external

inputs was revealed as monostable periodic attractors,
bistable periodic attractors, monostable double-scroll cha-
otic attractors, and bistable one-scroll chaotic attractors.
-anks to the principle of Lyapunov’s method for asymp-
totic global stability, three single controllers were designed
to suppress chaotic behavior found in synchronous
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Time Time

Time Time

Figure 10: Time series of chaos suppression in SynRMwithout external inputs generated from the Pspice oscilloscope for the capacitors and
resistors: C1 � C2 � C3 � 10 nF, R3 � R8 � R9 � R10 � R11 � R12 � R13 � 10 kΩ, R5 � 454.55 kΩ, R1 � 50 kΩ, R2 � R4 � R7 � 1 kΩ,
R6 � 3.33 kΩ.
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Figure 11: Time series of chaos suppression in SynRMwithout external inputs generated from the Pspice oscilloscope for the capacitors and
resistors: C1 � C2 � C3 � 10 nF, R3 � R8 � R9 � R10 � R11 � R12 � R13 � 10 kΩ, R5 � 454.55 kΩ, R1 � 50 kΩ, R2 � R4 � R7 � 1 kΩ,
R6 � 3.33 kΩ.
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reluctance motor without external inputs, and it was
revealed that they were simple and easy to implement. -e
single controllers 1 and 3 could be a preferable choice be-
cause of the use of two states variables (i.e. y and z or x and z)
in a single expression. Numerical simulations results were
provided to demonstrate the efficiency of three proposed
single controllers. To access the physical feasibility of three
designed single controllers and the existence of the dy-
namical behaviors found in synchronous reluctance motor
without external inputs, electronic circuits were imple-
mented and validated on OrCAD-PSpice software. In the
future works, it will be interesting to study the synchronous
reluctance motor with external inputs such as the load
torque and the stator voltage.
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