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*e permeability coefficient of soils is an essential measure for designing geotechnical construction. *e aim of this paper was to
select a highest performance and reliable machine learning (ML) model to predict the permeability coefficient of soil and quantify
the feature importance on the predicted value of the soil permeability coefficient with aided machine learning-based SHapley
Additive exPlanations (SHAP) and Partial Dependence Plot 1D (PDP 1D). To acquire this purpose, five single ML algorithms
including K-nearest neighbors (KNN), support vector machine (SVM), light gradient boosting machine (LightGBM), random
forest (RF), and gradient boosting (GB) are used to build ML models for predicting the permeability coefficient of soils.
Performance criteria for ML models include the coefficient of correlation R2, root mean square error (RMSE), mean absolute
percentage error (MAPE), and mean absolute error (MAE).*e best performance and reliable single MLmodel for predicting the
permeability coefficient of soil for the testing dataset is the gradient boosting (GB) model, which has R2 � 0.971,
RMSE� 0.199×10−11m/s, MAE� 0.161× 10−11m/s, and MAPE� 0.185%. To identify and quantify the feature importance on the
permeability coefficient of soil, sensitivity studies using permutation importance, SHapley Additive exPlanations (SHAP), and
Partial Dependence Plot 1D (PDP 1D) are performed with the aided best performance and reliable MLmodel GB. Plasticity index,
density>water content, liquid limit, and plastic limit> clay content> void ratio are the order effects on the predicted value of the
permeability coefficient. *e plasticity index and density of soil are the first priority soil properties to measure when assessing the
permeability coefficient of soil.

1. Introduction

One of the most fundamental elements that governs the fluid
flow properties of soil is its permeability. Permeability is
defined as the quantity of water that passes through the
interconnected voids of a soil mass in a given period, and it
may be measured using field and laboratory techniques. *e
permeability of soil is an essential component in the con-
struction of most civil engineering projects that are built on
soil, such as highways, tunnels, and dams [1]. *e perme-
ability coefficient of soil k is a coefficient that assesses the
capacity of liquids to flow through interconnected spaces in
soil under hydraulic gradients ranging from high to low
value [2].

It is worth noting that the permeability coefficient of soil
k is one of the important properties of soil that need to be

calculated. In fact, the permeability coefficient of soil k is
used in many theoretical and practical applications. *e
permeability coefficient value is used to solve a variety of
geotechnical issues, including slope stability, construction
collapse due to ground, seepage, and leakage. *e required
permeability coefficient value varies greatly depending on
the kind of soil and the service life of buildings. For instance,
a high value of the soil permeability coefficient is necessary
for filter layer and drainage construction, but roadbeds’ and
dams’ construction requires a low value of the soil per-
meability coefficient. In general, many factors such as
density, void (size and kind), distribution of grain size (clay
content, for example), and the Atterberg limits influence on
permeability coefficient values [3].

For that reason, several investigations were attempted to
establish empirical correlations between the permeability
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coefficient and affecting variables [4–6]. A few researchers
estimated soil permeability based on bulk density, grain size,
and particle shape [7, 8]. Although determining the soil
permeability coefficient is extremely important, but because
this process is very complicated, time-consuming and ex-
pensive, the number of research articles on this topic is still
limited. *erefore, there is still no exact formula to predict
the permeability coefficient of soil.

Due to the rapid advancement of artificial intelligence
technology in recent decades, artificial intelligence (AI) or
machine learning (ML) models have become widely
employed in many parts of life [9, 10] and many complex
civil engineering subjects, such as structural engineering
[11–13], geotechnical engineering [9, 14–18], and mate-
rials science [19, 20]. In geotechnical engineering, soft
computer approaches such as fuzzy logic, artificial neural
network (ANN), and support vector machines (SVM) are
currently being technically utilized to artificially forecast
soil compressive and shear strength, load bearing capacity
of foundations, and other soil properties [16, 18, 21].
Gajurel et al. [22] proposed the k-nearest neighbors
(KNN) and support vector machines (SVM) for esti-
mating the unconfined compressive strength. Elevado
et al. [23] used the KNN model to predict successfully the
compressive strength of concrete mixed with fly ash and
waste ceramics. Najafzadeh and Oliveto [24] developed
support vector machine (SVM), multivariate adaptive
regression spline (MARS), and random forest (RF) models
for estimating the approach densimetric Froude number.
Najafzadeh and Niazmardi [25] used the SVM model for
estimating the water quality parameters. Quan Tran [20]
proposed the gradient boosting (GB) model to predict the
chloride diffusion coefficient. Moreover, the GB model
with high performance is used to predict the unconfined
compressive strength of stabilized soil treated with cal-
cium-based additive blended [26]. Shariati et al. [27]
proposed extreme learning machine (ELM) and genetic
programming (GP) for designing steel-concrete com-
posite floor systems at elevated temperatures. ELM was
successfully applied to predict the compressive strength of
lightweight foamed concrete [28]. Recently, Liang et al.
[29] proposed the RF model and the light gradient
boosting machine (LightGBM) model to predict the creep
behavior of concrete. Tran and Do [30] used the light
gradient boosting machine (LightGBM) model for pre-
dicting the California bearing ratio (CBR) of stabilized
soil. Moreover, since 2016, Microsoft Corporation has
created the light gradient boosting machine (LightGBM),
an efficient gradient boosting framework implementation.
Overall, numerous applications of ML models are per-
formed in the civil engineering field. Soft computer-based
models (AI or ML) have been found to be good tools for
forecasting the permeability coefficient of soil. In par-
ticular, popular algorithms such as GB, RF, SVM, KNN,
and LightGBM are usually used for developing ML
models.

In regard to predicting the soil permeability coefficient
by the ML approach, some investigations were performed
in the literature. For instance, Singh et al. [31] showed that

the popular ML algorithm named random forest (RF) could
be used for predicting the permeability coefficient of sta-
bilized soil containing fly ash; the performance of ML
prediction was evaluated by the coefficient of determina-
tion R2 � 0.878. In the investigation of Singh et al. [31], the
input variables of the RF model were directly derived from
the falling head permeability test [32] such as head (cm)
and time of measurement (min). *is ML model required
the input variable derived from the measurement of per-
meability coefficient; therefore, this model is limited in the
practical engineering applications. Other ML models by
Pham et al. [33], Pham et al. [34], Bui et al. [35], and Ahmad
et al. [36] are proposed to predict the permeability coef-
ficient of soil with six input variables including water
content, void ratio, specific density, liquid limit, plastic
limit, and clay content, which include the easy measurable
properties of soil such as the Atterberg limits (liquid limit,
plastic limit, and water content) and grain size distribution
(clay content). Based on 84 data samples, Pham et al. [33]
revealed that the RF model could predict the permeability
coefficient of soil with the performance metrics such as
R2 � 0.724, RMSE � 0.840 ×10−11m/s, and
MAE � 0.490×10−11 m/s. Using the same number of data,
Pham et al. [34] improved the performance of the ML
model for predicting the permeability coefficient of soil
with R2 � 0.766, RMSE � 0.810×10−11m/s, and
MAE � 0.450×10−11 m/s. Proposing the hybrid ML model
ANN-TLBO (combination of ANN and metaheuristic al-
gorithm named teaching learning-based optimization
(TLBO)), Bui et al. [35] enhanced the ML performance for
predicting the permeability coefficient of soil with
R2 � 0.819, RMSE � 0.294×10−11m/s, and
MAE � 0.231× 10−11 m/s. Recently, Ahmad et al. [36] used
the ML model Gaussian process regression (GPR) model
based on the Pearson universal kernel (PUK) for predicting
the permeability coefficient of soil with higher performance
with R2 � 0.951, RMSE � 0.620×10−11m/s, and
MAE � 0.370×10−11 m/s. Using the input variables as the
easy measurable properties of soil makes the prediction of
the permeability coefficient of soil by the ML model easier
to access for engineers. However, the randomness was not
taken into account in these ML models proposed in
[33–36]. In fact, the reliability of these ML models was not
verified by the validation technique such as K-fold cross-
validation or Monte Carlo simulation (MCS), which should
be applied to enhance the performance and reliability of the
ML model [18, 37]. *e K-fold cross-validation (CV) and
Monte Carlo simulation (MCS) may be used to validate the
predictability of ML models in order to confirm their
dependability. In the Monte Carlo simulation, calculations
are repeated at random while accounting for input space
variability, and the associated output is then calculated
using anMLmodel [38]. AlthoughMCS computations take
longer than K-fold CV computations, MCS findings are
more dependable than K-fold CV results due to MCS’s
smaller variance, which is supported by the research of
Fonseca-Delgado and Gomez-Gil [39]. Moreover, the effect
of input variables on the predicted permeability coefficient
of soil was not quantified in the investigations of [33–35].

2 Complexity



Excepting Ahmad et al. [36], the author showed the relative
importance of each input variable in the following order:
water content> void ratio > liquid limit > plastic limit-
> clay content> specific gravity, but the quantification of
feature importance was not performed. Furthermore, the
reliability and performance of the ML model influence
strongly on the order or feature importance analysis. To
improve the understanding of ML and AI models, SHapley
Additive exPlanations (SHAP) was developed [40]. *e
game theory-based method SHAP calculates the Shapley
value for each feature, which measures a feature’s contri-
bution to a prediction value [41]. It quantitatively displays
how each characteristic influences the anticipated value
and the average feature importance. Additionally, the
Partial Dependence Plot (PDP) 1Dmethod, one of the most
often used ML techniques, might be helpful for calculating
the influence of each feature on the forecasted value [42].

*erefore, the aim of this paper was to select a highest
performance and reliable ML model to predict the perme-
ability coefficient of soil and quantify the feature importance
on the predicted value of the soil permeability coefficient
with aided machine learning-based SHAP and PDP 1D.
Obviously, using the metaheuristic algorithm increases the
time consumption of the training process in building ML
models. In order to improve the performance and reliability
of ML models and simplify the training process of ML
models, five popular single ML algorithms including
K-nearest neighbors (KNN), support vector machine
(SVM), light gradient boosting machine (LightGBM), ran-
dom forest (RF), and gradient boosting (GB) are proposed in
this study. *e algorithms are accessible in the open-source
library Sklearn [43]. *e performance and reliability of ML
models will be evaluated by four popular metrics: coefficient
of determination (R2), root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percent
error (MAPE) with verification by the Monte Carlo simu-
lation (MCS) validation technique. In particular, an Excel
file will be generated from the highest performance and
reliable ML model to make ML models more approachable
for the engineers in order to estimate the permeability co-
efficient of soil.

To acquire the aim of this study, a database needs to be
created for training the ML algorithms proposed in this
study. *e database is generated from the investigation of
Pham et al. [34] in which 84 data samples and 6 input
variables such as easy measurable properties of soil such as
water content, void ratio, the Atterberg limits (liquid limit
and plastic limit), grain size distribution (clay content), and
specific gravity; however, an Atterberg limit “plasticity in-
dex” is proposed to add in this database as a seventh input
variable for attempting to improve the performance of ML
models.

2. Database Description and Analysis

*e database containing 84 samples and 6 input variables,
such as density, volume content, liquid limit, clay content,
void ratio, and plastic limit, is collected from the literature

[34]. In order to improve the performance of ML models,
a supplementary input variable “plasticity index � liquid
limit–plastic limit” is added as a seventh input variable.

*e simple relation between the input and output var-
iables is shown in Figure 1 by a regression line that has the
same direction and value as the Pearson correlation R. *e
gray region reflects the fitted linear regression line’s 95
percent confidence range.

*e Pearson correlation coefficient measures the linear
relation of two variables and runs [−1.0; 1.0]. *e scatter
distribution figure in Figure 1 depicts linear interactions
between input and output variables. *is section evaluates
the magnitude of the relations and distribution of data for
reducing the dimension of ML models and enhancing the
ML performance.

Table 1 describes the distribution value of all variables
including input and output. Clay concentration ranges from
4 to 64% (mean value 24.694% andmedian value 12.6%).*e
water content fluctuates between 15.09 and 99.9% (mean
value 34.228% and median value 21.135%). *e liquid limit
ranges between 18.9% and 88.93% (mean value 37.268% and
median value 27.350%). *e percentage of plastic allowed
ranges from 12.2 to 54.8% (mean value 22.214% and median
value 17.415%). *e void ratio might range from 2.58 to
2.634% (mean value 0.968% and median value 2.634%).
Density ranges from 2.58 g/cm3 to 2.74 g/cm3, with the
content value of silica fume focusing on 2.675 g/cm3,
resulting in a median value of 2.68 g/cm3. *e permeability
coefficient ranges from 0.3 10–11m/s to 7.1 10–11m/s, with
the mean value being 1.45 10–11m/s and the median value
being 0.64 10–11m/s, implying that the size of the coefficient
is focused on the low end.

*e correlations between the input and output param-
eters are then shown in Figure 2. *e Pearson rank corre-
lation coefficient (rs) between each paired variable shown in
Table 2 was used to create this map. In this map, the cor-
relations between all parameters are shown simply and
clearly, with various hues representing different correlation
values.

Figure 2 shows the details of variable correlations,
including inputs and outputs. *e matrix of the Pearson
correlation coefficient between input and output variables
(Figure 2) demonstrates that practically all input factors
have high and very strong correlations with the output
variable permeability coefficient of soils in the value range
from 0.48 to 0.0.83. *e greatest association coefficient is
between water content and permeability coefficient, and
between void ratio and permeability coefficient with a
correlation value of 0.83, implying that the higher the
water content and void ratio, the higher the permeability
coefficient. In correlation values between seven input
variables, the greatest correlation value is between water
content and void ratio. ML models are trained in this
study using seven specified input variables. In feature
selection, the Pearson correlation coefficient is a preferred
approach [44]. *e Pearson correlation matrix shows that
the number of inputs can be considered in building ML
models. As a result, seven variables could be useful for
developing ML models.
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Figure 1: Continued.

4 Complexity



3. Machine Learning Methods

3.1. Support Vector Machine Algorithm (SVM). Cortes and
Vapnik [45] invented the SVM algorithm, which is a su-
pervised artificial intelligence model. It is frequently used to
evaluate data and find out what form it is in. *is algorithm
is widely used to anticipate and return. *e SVM algorithm
has a number of parameters; it is solved using optimized
algorithms that pinpoint a close value to a limiting value on
an experimental size. *e SVM is more admirable intel-
lectual thinking because of its benefits.

In the SVM algorithm, the estimated function is defined
as follows:

q(x) � aφ(x) + c, (1)

where φ(x) is the higher dimensional feature space converted
from the input vector x; a and c are the weights vector and a
threshold, respectively, which is calculated by minimizing
the following regularized risk function:

R(P) � P
1
m

􏽘

m

i�1
Z ei, yi( 􏼁 +

1
2

a
2����
����, (2)

where P is the penalty parameter of the error, ei is the desired
value, m is the number of observations,
P(1/m) 􏽐

m
i�1 Z(ei, yi) is the empirical error, and (1/2)a2 is

the so-called regularization term.
*e detailed information and computation procedures

of the SVM algorithm are presented in [45].

3.2. K-Nearest Neighbors (KNN). *e suggested novel
mechanism for integrating heterogeneous data into the
KNN framework, which consists of two key components:
regression-based weighting approaches and probability
voting diagrams, is the main contribution of this approach.
*e weighting of each data source is determined by the
regression approach, which takes into account their pro-
portional significance to their functional and linked pre-
dictions. *e voting method makes statistical inference
easier by combining function class nominations from the k
closest neighbors and producing a sorted list of predictions
with matching confidence scores [46]. A gene can also be
classified into many function classes using this method. *e
local regression technique performs better with one or two
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Figure 1: Simplest linear correlation between permeability coefficient and each input variable.

Table 1: Distribution value of variables.

Number of
samples

Mean
value

Min
value

Max
value Q25% Median Q75% Standard

deviation Skewness

Clay content (%) 84 24.694 4.000 64.000 8.775 12.600 44.850 18.577 0.606
Water content (%) 84 34.228 15.090 99.900 18.233 21.135 26.155 26.623 1.499
Liquid limit (%) 84 37.268 18.900 88.930 21.978 27.350 42.913 21.039 1.201
Plastic limit (%) 84 22.214 12.200 54.800 14.500 17.415 22.925 11.356 1.410
Plasticity index 84 15.054 5.140 43.160 6.408 10.335 20.853 10.657 0.968
Density (g/cm3) 84 2.675 2.580 2.740 2.660 2.680 2.693 0.038 −0.572
Void ratio 84 0.968 0.462 2.634 0.581 0.640 0.794 0.673 1.497
Permeability coefficient× 10−11

(m/s) 84 1.450 0.300 7.100 0.700 0.800 1.250 1.511 1.996
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data sources, possibly due to more model flexibility, while
the logistic regression method is more resilient and accurate.

*e predictive power of any data source, however, may
fluctuate between classes, as well as their weights. *e
abundance of training samples is one advantage of this
present technique; nevertheless, one evident disadvantage is
the lack of descriptive power. *e one-layer/one-model
strategy is the polar opposite. For classes with huge pop-
ulations, an intermediate method is to create class-specific
models. *e regression model can be quite unstable when
features are highly linked. To develop more robust models,
principles such as component decomposition or conditioned
regression techniques such as lasso regression or ridge re-
gression might be used. *e adoption of more complicated
regression models is another possible expansion.

3.3. Light Gradient BoostingMachine Algorithm (LightGBM).
LightGBM is a tree-based steep frame that increases model
efficiency while lowering memory use.

Gradient-Based One-Side Sampling (GOSS) and Ex-
clusive Feature Bundling (EFB), two cutting-edge methods,
are used by the LightGBM algorithm to speed up compu-
tation while preserving excellent accuracy.

3.3.1. Using a Gradient-Based Sample for LightGBM. *e
various data formats play diverse roles in determining how to
enhance information, with higher levels contributing more to
information gathering. To maintain the accuracy of infor-
mation, the SS store in cases of high slopes and merely at
random in situations of short slopes. *is approach can
produce a more accurate advantage estimate than a single
random sample, while keeping the target samples moving at
the same speed, especially when the information value is high.

3.4. Random Forest (RF) and Gradient Boosting Algorithm
(GB). *e random forest (RF) was created by Ho [47] and
Breiman [48], and that is a strong machine learning
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Figure 2: Pearson’s correlation coefficient of input-output relations.

Table 2: Pearson’s rank correlation coefficient.

rs Magnitude Relation

0÷ 0.19 Very weak Clay content vs density, water content vs density, liquid limit vs density, plastic limit vs density, plasticity index vs
density, void ratio vs density, permeability coefficient vs density

0.2÷ 0.39 Weak None
0.4÷ 0.59 Moderate Permeability coefficient vs clay content

0.6÷ 0.79 Strong
Clay content vs water content, clay content vs plastic limit, clay content vs void ratio, liquid limit vs permeability
coefficient, plastic limit vs permeability coefficient, plasticity index vs permeability coefficient, density vs void

ratio, density vs permeability coefficient

0.8÷1.0 Very strong

Clay content vs liquid limit, clay content vs plasticity index, liquid limit vs water content, water content vs plastic
limit, water content vs plasticity index, water content vs void ratio, water content vs permeability coefficient, liquid
limit vs plastic limit, liquid limit vs plasticity index, liquid limit vs void ratio, plastic limit vs plasticity index, plastic

limit vs void ratio, void ratio vs permeability coefficient
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algorithm regression problem. *e practical applications of
RF include bioinformatics [49], materials sciences [50],
remote sensing [51], and land cover classification [9]. RF is a
statistical algorithm that uses the process of extracting
bootstrap samples to extract numerous samples from the
original sample. When generating trees in the forest, a set of
traits is used.

On the contrary, the tree number should be sufficient to
ensure that all attributes are used several times. In most
cases, 500 trees are used for classification and 1000 trees are
used for regression.

*e phases in the random forest algorithm modeling
method are as follows:

Step 1: N estimator training sets were randomly se-
lected from the original dataset (bootstrap sample). *e
training dataset is around two-thirds of the first
dataset’s dimensions. About a third of the data is
considered out-of-bag since they are not involved in the
tree-building process. *ese out-of-bag samples are
used by the RF method to evaluate and quantify the
attribute significance of the CART tree in the forest.

Step 2: For each bootstrap training set, a regression tree
is created. A forest is created by combining the re-
gression trees ofN estimators, but these regression trees
are not trimmed. Each tree’s best qualities for
branching are not decided throughout its growth phase.
As a result, the RF technique enhances the difference
between regression models by creating various training
sets and boosting the combined regression model’s
extrapolation forecasting performance.

Step 3: For the classification problem, the value of the
new sample was derived using the majority voting
approach, while for the regression problem, the average
of the projected values from trees was used.

*e gradient boosting algorithm (GB) is a popular al-
gorithm that has been demonstrated to be effective in a range
of applications [52]. *is approach uses continuous learning
to create a more accurate response variable prediction,
which is great for new models. *e primary idea behind this
technique is to create new elementary learners that are
ideally correlated with the collection’s negative gradient of
the loss function.

3.5. Partial Dependence Plots. A partial dependence plot
depicts the functional relationship between a small number
of input parameters and forecasts (PDP). PDP demonstrates
how the values of relevant input factors impact the pre-
dictions to some extent. *e PDP also illustrates how
characteristics have a little impact on the machine learning
model’s predicted outcomes [53].

PDP can indicate the linear relationship in a linear re-
gression model, and the partial dependence function for
regression may be constructed using the following formula:

􏽢qxA
xA( 􏼁 � ExM

􏽢q xA, xM( 􏼁􏼂 􏼃 � 􏽚 􏽢q xA, xM( 􏼁 dP xM( 􏼁. (3)

Here, xA represents the partial dependence function to
be shown, and xM represents the other features in the
machine learning model q. A are the characteristics that the
user wants to think about and forecast (only one or two
features in set A). *e features in set A impact the prediction
outcomes that we wish to know about.*e feature vectors xA
and xM make up the whole feature space x. *e function
illustrates the connection between the features in set A by
marginalizing the machine learning model output across the
distribution of the features in set M.

*e partial function q is calculated using the Monte
Carlo approach by averaging all of the training data in set A
so that PDP can handle multilayer issues by creating a line or
plot for each layer as follows:

􏽢qXA
xA( 􏼁 �

1
m

􏽘

m

i�1
􏽢q xA, x

(i)
M􏼐 􏼑, (4)

where x
(i)
M is the dataset’s actual feature values for the fea-

tures we do not care about, and m is the dataset’s total
number of occurrences. PDP indicates thatM’s attributes are
unconnected to A’s. Without this assumption, the PDP
average computation would contain exceedingly unlikely
data points.

In addition, the PDP shows the likelihood of a certain
layer in the various values for set A’s attributes. PDP may
therefore manage multilayer difficulties by constructing a
line or plot for each layer. Because it analyzes all cases and
reveals a worldwide link between a feature and the antici-
pated result, the PDP is a global technique.

3.6. Evaluation Criteria of the Machine Learning Model.
In this study, four criteria were used, namely, correlation
coefficient (R2), RMSE (root mean square error), MAE
(mean absolute error), and MAPE (mean absolute per-
centage error), to evaluate the accuracy of the developed
model.

R2 represents the rate of variation of the dependent
variable caused by the total variation of the explanatory
variables. *e value of R2 is closer to 1, and the predicted
value is closer to the target value. MAE is a statistic that
assesses the average amount of mistakes in a series of
forecasts without taking into account their direction. *e
root mean square error (RMSE) is a widely used measure of
the differences between values predicted by a model or
estimator and the values observed. Because of its extremely
obvious interpretation in terms of relative error, MAPE is
often employed as a loss function for regression issues and
model assessment. *e MAE, RMSE, and MAPE criteria
have one thing in common: they all indicate the mean model
prediction error per unit of the desired output.*e lower the
value of RMSE, MAE, and MAPE, in contrast to higher R2

scores, the better the model.
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where N is the number of datasets, valex and valex
avg are the

experimental value and mean experimental value, respec-
tively, and valpre is the predicted value by the ML model.

4. Methodology Flowchart

*e current study’s approach flowchart for the permeability
coefficient of soil contains three basic steps:

Step 1: Make a database.
As a first step, the dataset was compiled from 84 easily
accessible literatures published in recognized journals.
*e database has seven input variables and one output
variable. All data are split into two halves at random: a
training dataset and a testing dataset, with 70% of the
data (59 examples) being used to train the models and
30% being used to test the models.
Step 2: Create training models and select the suitable
ML models.
*e machine learning (ML) models were trained using
training datasets and methodologies in this step, with
the five single algorithms available in the Sklearn library
of Python language programming [43], such as
K-nearest Neighbors (KNN), support vector machine
(SVM), light gradient boosting machine (LightGBM),
random forest (RF), and gradient boosting (GB). *e
performance of five single ML models is evaluated with
aided four metric criteria including R2, RMSE, MAE,
and MAPE. Based on the ML performance, the suitable
ML models will be selected for the next step.
Step 3: Prediction of permeability coefficient and ex-
tensive sensitivity analyses are performed with the
aided suitable ML models.
Machine Learning-based approaches such as GB- and
RF-based SHapley Additive exPlanations and GB-
based Partial Dependence Plot (PDP) 1D are used to
comprehend the impact of each input variables on the
permeability coefficient of soil.

A method schematic diagram is shown in Figure 3.

5. Results and Discussion

5.1. Evaluating Performance ofMLModels. *e performance
of five single machine learning models is compared in this
section. *e Monte Carlo simulation is used to evaluate the
performance and reliability of each ML model. Each ML
model is subjected to a total of 10000 runs. *e performance
and reliability comparisons are carried out throughout four
evaluation criteria R2 value, RMSE value (×10−11m/s), MAE
value (×10−11m/s), and MAPE (%), in Figures 4(a)–4(d),
respectively.

It is worth noting that with the exception of the
LightGBMmodel, the performance of the four MLmodels is
an excellent fit for both training and testing datasets.

*e LightGBM model has the lowest performance when
compared to other variants. In both the training and testing
datasets, the coefficient of determination R2 is less than 0.6.
Meanwhile, the root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE) values produced by the LightGBMmodel are larger
than those obtained by other models. *is approach appears
to be ineffective for estimating the permeability coefficient of
soils.

Table 3 presents the results of the models based on the
four evaluation criteria mentioned above.

For the evaluation criterion of the coefficient of de-
terminations R2, the GB model gives the best results. *e
results obtained from training are asymptotically close to
the value 1. According to the obtained results of the R2

evaluation criteria in the training, the performance of ML
models can be arranged in the sequence:
LightGBM < SVM <KNN < RF <GB. In the testing, the
performance of ML models can be ordered as follows:
LightGBM <KNN < SVM < RF <GB.

For the two evaluation criteria RMSE and RMSE, the
GB model also gives the best results compared with
remaining models. According to the results obtained by the
RMSE evaluation criteria in the training, the performance
of ML models can be arranged in the sequence:
LightGBM< SVM <KNN <RF <GB. In the testing, the
performance of ML models can be ordered as follows:
LightGBM<KNN < SVM <RF <GB. *e performance of
ML models can be set in the following order for the MAE
assessment criteria in the training:
LightGBM<KNN < SVM <RF <GB. *e performance ML
models in the testing may be ordered as follows:
LightGBM<KNN <RF < SVM <GB.

In comparison with the other models in testing, the GB
model produced the best results for the MAPE assessment
criterion. In training, the GBmodel produces the best results
compared with other models, but the results in testing are
not as good. *e performance of ML models may be or-
ganized in the following order for the MAPE assessment
criteria in training: LightGBM< SVM�KNN<RF<GB.
*e performance of ML models in the testing may be put in
the following order: LightGBM<RF<GB<KNN< SVM.
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Table 4 shows the best performance of the ML model
according to the highest value R2 for the testing dataset. *e
results show that among themodels, RF and GBmodels have
the highest performance for predicting the permeability
coefficient of soils, in which the GB model is the most
dominant model in both training and testing datasets. *e
two ML models GB and RF are used to predict the per-
meability coefficient of soils and investigate the feature
importance-sensitivity analyses in the next sections.

5.2. Predicting Permeability Coefficient by ML Models.
Figure 5 shows a correlation graph between experimental
permeability coefficient and permeability coefficient pre-
dicted by the (a) RF model and (b) GB model. For the RF
model, the precision of both training and testing data results
is lower than that of the GB model with the metric criteria
R2, RMSE, MAE, and MAPE to be equal to 0.960, 0.236,
0.196, and 0.238, and 0.971, 0.199, 0.161, and 0.185 for the
testing dataset of the RF and GB model, respectively. In
addition, the calculation time of the RF model is 0.183 s
larger than that of the GB model (0.041 s). Using error line
−20% and +20%, all correlation points including training
and testing datasets in case of GB-based prediction are
limited in a zone created by two lines; these correlation
points approach very closely the perfect line y� x, where

some correlation points including training and testing
datasets in case of RF-based prediction exceeded the zone
created by two lines. *erefore, the GB model is more
suitable and gives the most accurate prediction where the
four evaluation metrics of the GB model are better than
those of the RF model.

Furthermore, according to the investigation of Najaf-
zadeh et al. [54, 55] and the investigation of Saberi-Movahed
et al. [56], scatter index (SI) and BIAS are the important
metrics in evaluating the performance of ML models.
*erefore, scatter index (SI) and BIAS are also used for
evaluating the performance of GB and RF models. *e lower
the value of SI and BIAS, the higher the ML performance.
*e formula of scatter index (SI) and BIAS is described as
follows:

SI �

��������������������������������������

(1/N) 􏽐
N
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2
􏽱

(1/N) 􏽐
N
k�1 val

ex
k

,
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􏽐

N
k�1 valprek − valexk􏼐 􏼑

N
.

(6)

Table 5 summarizes the values of SI and BIAS for the
training dataset and the testing dataset of the GB and RF
models. *e value of SI and BIAS of the GB model is sig-
nificantly lower than that of the RF model in two cases of

DATABASE

Training Models

permeability
coefficient of soils

based

1. Density
2. Plasticity index
3. Water content
4. Liquid limit
5. Clay content
6. Void ratio
7. Plastic limit

INPUT OUTPUT
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(II)

(IIII)
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datase
(70%)

Model of 
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(30%)SVM
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RF Light GBM

KNN

Best ML model

RFGB

MAPEMAE

R2 RMSE

K prediction PDP 1DSHAP value

Figure 3: Methodology of investigation.
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dataset including the training dataset and the testing dataset,
which confirms the highest performance of a single GB
model compared with that of other ML models in this study.

Moreover, the uncertainty and reliability analyses are
performed for two specific ML models including the RF
and GB models. According to Saberi-Movahed et al. [56],
restricting the predicted range in which the real value of
an experiment’s outcome lies is the main objective of the
uncertainty analysis. *e uncertainty interval is an in-
terval that represents this estimated range. Based on the
computed errors for the measurement procedure of the
experiment under consideration, it may be approxi-
mated. U95 is one of the methods used in the uncertainty
analysis to calculate the uncertainty interval. If you
execute the given experiment again, you will find that 95
times out of every 100 trials, the real value of the ex-
periment’s outcome will fall inside the provided un-
certainty interval. *is is what the value of U95
associated with a specific experiment result means. U95
can be described as follows:

SI �
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,
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According to Saberi-Movahed et al. [56], the reliability
analysis’s metric is described as follows:

Reliability �
100%

N
􏼒 􏼓 􏽘

N

k�1
ui. (8)

*ere are two stages required to attain ui. An initial
definition of the relative average error (RAE) is a vector with
a kth component, which is expressed as follows:

RAEk �
valex

k − valeprek

valex
k
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Figure 4: Performance evaluation of 5 machine learning models after 10000 simulations: (a) R2, (b) RMSE, (c) MAE, and (d) MAPE.
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where delta is the threshold value of a permeability coeffi-
cient parameter, ui � 1 if RAEi< delta and ui � 0. According
to Chinese standards, the ideal value is 20%. *erefore,
Table 6 summarizes the value of U95 and reliability of the GB
and RF models.

*e results in Table 6 show the higher reliability and
lower uncertainty of the GB model compared with those of
the RFmodel where the U95 value and reliability value of the
GB model for the testing dataset are, respectively, equal to
0.4569 and 61.5385% versus 0.4595 and 46.1538% for the
testing dataset of the RFmodel. Overall, the single GBmodel
of this study has highest reliability compared with other ML
models for predicting the permeability coefficient of soil.

Table 7 shows the comparison between the predicted
permeability coefficient and the experimental permeability
coefficient. Pham et al. [33], Pham et al. [34], Bui et al. [35],
and Ahmad et al. [36] used the same number of 84 data
samples for this investigation; however, the performance of
the single ML model “gradient boosting” is significantly
improved with R2 � 0.971, RMSE� 0.199, MAE� 0.161, and
MAPE� 0.185 for the testing dataset. With the ML model’s
sharply improved performance and reliability with R2 (mean

value of 10000 runs)� 0.804 for the testing dataset, the
highest performance and the reliability of the GB model
seem to come from the supplementary input variable
“plasticity index” proposed in this study. *e input variable
effect on the predicted permeability coefficient is deeply
investigated in the next section.

*e single ML model gradient boosting appears to be an
outstanding soft tool for forecasting soil permeability. An
Excel file created from the highest performance gradient
boosting is supplied to forecast the soil permeability coef-
ficient for enhancing the use of ML models in engineering
applications (please find the Excel file at this link: https://
drive.google.com/file/d/1jjNs6qwR_BuFhCjjSzxt56DlNA9F
plLl/view?usp�sharing).

5.3. Investigation of Input Variable Effect on Permeability
Coefficient. Figure 6 shows the feature importance analysis
of the predicted value of the soil permeability coefficient
including (a) RF model-based permutation and (c) GB
model-based permutation analysis; and (b) RF model-based
and (d) GB model-based SHAP value.

Table 3: Min, max, average, and StD of performance values of 10000 performance values.

R2 RMSE (×10−11m/s)
StD Min Average Max StD Min Average Max

Training

SVM 0.046 0.541 0.745 0.884 0.090 0.428 0.754 0.943
KNN 0.047 0.613 0.765 0.935 0.107 0.252 0.711 0.927

LightGBM 0.057 0.380 0.587 0.784 0.097 0.530 0.938 1.192
RF 0.009 0.884 0.947 0.972 0.031 0.237 0.342 0.438
GB 0.000 0.998 0.999 1.000 0.007 0.019 0.036 0.067

Testing

SVM 0.092 0.597 0.740 0.960 0.234 0.148 0.740 1.333
KNN 0.085 0.549 0.715 0.961 0.208 0.173 0.801 1.403

LightGBM 0.088 0.342 0.522 0.819 0.196 0.460 1.054 1.749
RF 0.055 0.721 0.801 0.960 0.167 0.209 0.658 1.036
GB 0.054 0.724 0.804 0.971 0.153 0.199 0.641 1.013

MAE (×10−11m/s) MAPE (%)

Training

SVM 0.042 0.214 0.351 0.457 0.028 0.156 0.252 0.356
KNN 0.058 0.180 0.381 0.526 0.028 0.156 0.252 0.356

LightGBM 0.083 0.346 0.666 0.931 0.112 0.411 0.793 1.191
RF 0.025 0.087 0.177 0.243 0.017 0.087 0.138 0.196
GB 0.005 0.014 0.028 0.051 0.006 0.017 0.035 0.061

Testing

SVM 0.109 0.118 0.394 0.761 0.045 0.147 0.258 0.703
KNN 0.108 0.137 0.446 0.876 0.055 0.155 0.293 0.602

LightGBM 0.134 0.309 0.756 1.267 0.247 0.297 0.855 1.939
RF 0.084 0.163 0.396 0.680 0.074 0.167 0.324 0.784
GB 0.081 0.161 0.390 0.656 0.077 0.157 0.321 0.830

Table 4: Best performance of the ML model according to highest R2 for the testing dataset.

ML model
Training dataset Testing dataset

R2 RMSE (×10−11m/s) MAE (×10−11m/s) MAPE R2 RMSE (×10−11m/s) MAE (×10−11m/s) MAPE
SVM 0.725 0.867 0.436 0.244 0.819 0.199 0.181 0.282
KNN 0.688 0.889 0.504 0.300 0.960 0.248 0.179 0.211
LightGBM 0.573 1.068 0.779 0.860 0.960 0.484 0.362 0.639
RF 0.948 0.367 0.215 0.147 0.961 0.236 0.196 0.238
GB 0.999 0.047 0.037 0.043 0.971 0.199 0.161 0.185
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Inspiring from sensitivity analysis of investigation per-
formed by Najafzadeh and Saberi-Movahed [55], the feature
importance analysis based on permutation importance is
carried out in this section to reveal the most important
feature for predicting the permeability coefficient of soil by
the single GB model. *e permutation analyses based on the
Sklearn library of Python language programming [43] (cf.
Figures 6(a) and 6(c)) show that the plasticity index is the
most important input variable on the predicted value of
permeability coefficient. Ranked 2nd in the importance is the
input variable “density.” According to the feature impor-
tance value, the sum of the relative importance value for two
most importance feature “plasticity index and density” is
equal to about 0.9 and 1.0 for the RF model and GB model,

respectively. *e other features, such as liquid limit, plastic
limit, water content, clay content, and void ratio, have an
insignificant effect on the predicted value of permeability
coefficient. *e results are cross-checked simultaneously by
the GB model and the RF model. *e obtained results (water
content> void ratio> liquid limit> plastic limit> clay con-
tent> specific gravity) are different from those of the feature
importance investigated by Ahmad et al. [36].

*e SHapley Additive exPlanations (SHAP) is based on
the two best performance metrics of ML models such as RF
(cf. Figure 6(b)) and GB (cf. Figure 6(d)) to identify and
quantify each of the input variables such as density, plasticity
index, water content, liquid limit, plastic limit, clay content,
and void ratio on the permeability coefficient of soil.
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Figure 5: Comparison between the experimental and the predicted permeability coefficient of soil in two cases: (a) RF model and (b) GB
model.

Table 5: SI and BIAS values of the GB and RF models.

Model Data SI BIAS

GB Training dataset 0.0299 0.0000
Testing dataset 0.1714 0.0192

RF Training dataset 0.2391 0.0346
Testing dataset 0.2000 0.0615

Table 6: U95 and reliability values of the GB and RF models.

Model Data U95 Reliability (%)

GB Training dataset 0.4149 98.2759
Testing dataset 0.4569 61.5385

RF Training dataset 0.4260 72.4138
Testing dataset 0.4598 46.1538
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Table 7: Comparison between ML models in previous studies and the GB model proposed in this study for predicting the permeability
coefficient of soil.

Reference Best machine
learning algorithm Number of inputs Dataset

size
Best performance evaluation for

testing part

Pham et al.
[33] RF 6 inputs: water content, void ratio, specific density,

liquid limit, plastic limit, and clay content 84
R2 � 0.724

RMSE� 0.840×10−11m/s
MAE� 0.490×10−11m/s

Pham et al.
[34] M5P 6 inputs: water content, void ratio, specific density,

liquid limit, plastic limit, and clay content 84
R2 � 0.766

RMSE� 0.810×10−11m/s
MAE� 0.450×10−11m/s

Bui et al. [35] TLBO-ANN 6 inputs: water content, void ratio, specific density,
liquid limit, plastic limit, and clay content 84

R2 � 0.819
RMSE� 0.294×10−11m/s
MAE� 0.231× 10−11m/s

Ahmad et al.
[36] GPR-PUK 6 inputs: water content, void ratio, specific density,

liquid limit, plastic limit, and clay content 84
R2 � 0.951

RMSE� 0.620×10−11m/s
MAE� 0.370×10−11m/s

*is study GB
7 inputs: water content, void ratio, specific density,
liquid limit, plastic limit, and clay content + plasticity

index
84

R2 (mean value of 10000 runs)�

0.804
R2 � 0.971

RMSE� 0.199×10−11m/s
MAE� 0.161× 10−11m/s

MAPE� 0.185
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Figure 6: Feature importance analysis with (a) RFmodel-based permutation and (b) RFmodel-based and (c) GBmodel-based permutation;
and global interpretation SHAP value with (d) GB model-based influence of input variable on the permeability coefficient of soil.
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Figure 7: Continued.
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SHAP values based on the RF model clearly show that
density, plastic limit, and clay content negatively affect soil
permeability. When these inputs tend to increase, the per-
meability coefficient of soil will decrease. For the remaining
factors, there will be a positive trend with the permeability of
soil; when these factors increase, the permeability coefficient
of soil will also increase. Density is the most essential input
variable in the RF model, followed by plasticity index, water
content, and liquid limit.*e plasticity index, however, is the
most essential input in the GB model, followed by density,
plastic limit, and water content.

SHAP values based on the GB model clearly show that
density, clay content, and void ratio negatively affect soil
permeability. When these inputs tend to increase, the per-
meability coefficient of soil will decrease. For the remaining
factors, there will be a positive trend with the permeability of
soil; when these factors increase, the permeability coefficient
of soil will also increase.

Figure 6 shows that the two most essential inputs are
density and plasticity index, which have been cross-checked
by the GB and RFmachine learningmodels. Furthermore, the
plasticity index was used in this study; the performance of the
machine learningmodel is better than that of the model in the
previous investigations (cf. Table 5).*e density of soil can be
considered as one of the most important parameters on the
prediction of permeability coefficient because the higher value
of density implies that the distribution of soil particles is
denser, and the pore of soil is decreased. *at induces the
decreasing value of permeability coefficient. Overall, based on
GB-RF, the feature effect on the permeability coefficient of
soil can be sorted in order: (plasticity index, density)> (water
content, liquid limit, plastic limit)> clay content> void ratio.
*erefore, the plasticity index and density of soil are the first
priority soil properties to measure when assessing the per-
meability coefficient of soil.

Figure 7 shows individual conditional expectation (ICE)
of each feature on the coefficient of permeability. In the
range from 8 to 30% (cf. Figure 7(a)), the plasticity index is
directly proportional to the water permeability of soil.

However, from the range of 32% onwards, in terms of av-
erage amplitude, there is the clearest jump in soil water
permeability up to 2 to 3 times of the previous range and a
wide range of fluctuations. With plasticity index varying
from 30% to 40%, the magnitude value of permeability
coefficient increases about from 0.2 to 2.0×10−11 (m/s). *e
input parameter density (cf. Figure 7(b)), although it is
proportional to the soil’s water permeability, is only in a very
small, insignificant range. In general, it can be estimated that
this parameter is inversely proportional to the permeability
coefficient of soil. For the plastic limit parameter (cf.
Figure 7(c)), the oscillation amplitude fluctuates unpre-
dictably, sometimes being inverse with the permeability
coefficient. However, in general, it can be seen that the main
trend is proportional. In the range from 50% to 60%, the
water content (cf. Figure 7(d)) that is directly proportional to
the water permeability of soil is most pronounced. Liquid
limit is inversely proportional to soil water permeability in
the range from 20% to 42% and from 67% to 75% (cf.
Figure 7(e)). However, the average amplitude of oscillation
tends to go up (proportional) over a wider range, so overall,
this parameter is directly proportional to the soil’s water
permeability. For clay content, the dominant trend is in-
versely proportional to soil water permeability (cf.
Figure 7(f)). In the range from 0.75 to 1.3 (cf. Figure 7(g)),
the void ratio that is directly proportional to the water
permeability of soil is the most obvious. Overall, excepting
density and clay content, the higher the value of the plasticity
index, plastic limit, water content, liquid limit, and void ratio
is, the higher the permeability coefficient of soil is.

6. Conclusions and Perspectives

In order to select the single machine learning (ML) model
with high performance and reliability for predicting and
investigating the permeability coefficient of soil, five single
machine learning algorithms including support vector
machine (SVM), K-nearest neighbors (KNN), light gra-
dient boosting machine (LightGBM), random forest (RF),
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Figure 7: Individual conditional expectation of each feature on the permeability coefficient of soil.
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and gradient boosting (GB) are introduced in this study.
Seven input variables such as plasticity index, plastic limit,
liquid limit, clay content, density, water content, and void
ratio are used to build ML models. R2, RMSE, MAE,
MAPE, SI, and BIAS are six measures used to assess the
performance of machine learning models. 10000 Monte
Carlo simulation runs are used to carefully verify ML
model performance and reliability. *e uncertainty and
reliability analyses are also performed. *e results of these
analyses demonstrate that the single GB model is the most
effective including highest performance and highest re-
liability ML model for predicting the soil permeability
coefficient with the best performance metrics such as
RMSE � 0.971, RMSE � 0.199 ×10−11 m/s,
MAE � 0.161 × 10−11 m/s, MAPE � 0.185, SI � 0.1714, and
BIAS � 0.0192 for the testing dataset.

Machine learning-based approaches such as GB- and
RF-based SHAP and GB-based PDP 1D are used to com-
prehend the impact of input variable on the permeability
coefficient of soil in extensive sensitivity studies. According
to the results, the order influence on the value of the per-
meability coefficient may be ordered as plasticity index,
density>water content, liquid limit, plastic limit> clay
content> void ratio. *e plasticity index and density of soil
are the first priority soil properties to measure when
assessing the permeability coefficient of soil.

Engineers can determine the soil permeability coefficient
from the 7 variables with the aided Excel file generated by the
GB model in real situations. Alternative machine learning
techniques and a greater data number with out-of-range
values may be used in the future to undertake a more in-
depth examination.

Data Availability

*e processed data are available from the corresponding
author upon request.

Additional Points

(i) To estimate the soil permeability coefficient, five single
machine learning algorithms with default hyperparameters
are provided. (ii) *e gradient boosting algorithm is the
most suitable machine learning algorithm for predicting the
permeability coefficient of soil. (iii) Factors’ influence on the
permeability coefficient of soil is quantified by SHapley
Additive exPlanations (SHAP) and Partial Dependence Plot
1D. (iv) Plasticity index and density of soil are the first
priority soil properties to measure when predicting the
permeability coefficient of soil by the machine learning
model.
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