
Research Article
A Brief Survey of the Graph Wavelet Frame

Jie Zhou 1 and Zeze Zhang2

1School of Science, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, China
2Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

Correspondence should be addressed to Jie Zhou; zhoujie0506@126.com

Received 30 May 2022; Accepted 23 August 2022; Published 3 October 2022

Academic Editor: Sigurdur F. Hafstein

Copyright © 2022 Jie Zhou and Zeze Zhang. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In recent years, the research of wavelet frames on the graph has become a hot topic in harmonic analysis. In this paper, we mainly
introduce the relevant knowledge of the wavelet frames on the graph, including relevant concepts, construction methods, and
related theory. Meanwhile, because the construction of graph tight framelets is closely related to the classical wavelet framelets on
R, we give a new construction of tight frames on R. Based on the pseudosplines of type II, we derive an MRA tight wavelet frame
with three generators ψ1,ψ2, and ψ3 using the oblique extension principle (OEP), which generate a tight wavelet frame in L2(R).
We analyze that three wavelet functions have the highest possible order of vanishing moments, which matches the order of the
approximation order of the framelet system provided by the refinable function. Moreover, we introduce the construction of the
Haar basis for a chain and analyze the global orthogonal bases on a graph G. Based on the sequence of framelet generators in
L2(R) and the Haar basis for a coarse-grained chain, the decimated tight framelets on graphs can be constructed. Finally, we
analyze the detailed construction process of the wavelet frame on a graph.

1. Introduction

In the past two centuries, harmonic analysis, including
Fourier analysis and wavelet analysis, has been intensively
researched and widely applied in areas, such as signal
processing, representation theory, and number theory. Since
Daubechies constructed the compactly supported ortho-
normal wavelet bases in 1988 [1], wavelet analysis has been
extensively studied and successfully applied to more fields.
For an orthonormal wavelet basis, the corresponding
refinable function ϕ and its mask a must satisfy the following
conditions:

〈ϕ(· − k), ϕ〉 � 
R
ϕ(x − k)ϕ(x)dx � δk, k ∈ Z, (1)

|a(ξ)|
2

+|a(ξ + π)|
2

� 1, ∀ξ ∈ R. (2)

,ese two conditions enforce very restrictive constraints
for the refinable function, and many refinable functions do
not satisfy the conditions. By introducing redundancy into a

wavelet system, a tight wavelet frame is considered as a
generalization of an orthonormal wavelet basis [2–4]. It is
much easier and more flexible to construct tight wavelet
frames than orthonormal wavelet bases. ,is theory of the
construction of tight wavelet frames on regular Euclidean
domains is relatively mature [5–11]. In recent years, driven
by the rapid progress of deep learning and their successful
applications in an interdisciplinary area, data in deep
learning are typically from social networks, biology, physics,
finance, etc., and can be naturally organized as graphs
[12–22]. ,ere has been a great interest in developing
harmonic analysis for data defined on non-Euclidean do-
mains such as manifold data or graph data [23–26]. Such
data are usually regarded as random samples from a smooth
manifold. ,e matrix is used to organize it as an undirected
graph, where the graph Laplacian approximates the mani-
fold Laplacian. ,e underlying manifold encodes the geo-
metric information of the data, which has been widely used
in various machine learning and statistical models [27–32].

Different from that on Euclidean domains, the con-
struction systems and the corresponding fast algorithm for
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tight framelets on graphs are less studied.,emain reason is
that we do not know how to define the operators of
translation and dilation on the manifolds or graphs similar
to the classical wavelet framelet systems. In order to further
study the construction of tight framelets on non-Euclidean
domains, some alternative approaches are proposed. By
introducing diffusion operators, Coifman and Maggioni in
[33] constructed orthogonal diffusion wavelets on a smooth
manifold. Maggioni and Mhaskar in [34] further extended
the construction from diffusion wavelets to diffusion
polynomial frames on manifolds. In recent years, with the
development of computer science and mathematics, the
classical spectral theory has been introduced into the con-
struction of wavelet framework on the graph. ,e eigen-
values and eigenvectors of the graph Laplacian matrix can be
effectively used to define translation and dilation transfor-
mation of graph functions, and the construction of tight
framelets on graphs can be obtained [23, 24, 35–37]. Based
on spectral theory and graph Laplacian [38], some work
about the construction of tight framelets on graphs has been
derived [23–25, 35–37, 39–44]. In this paper, we focus on the
review of a number of representative construction methods
of tight framelets on graphs and provide a specific intro-
duction for wavelet frame on graphs.

We organize the rest of the paper as follows: in Section 2,
we introduce some basic theoretical knowledge, including
the classical wavelet frame theory, graph, chain, and tight
framelets on the graph, and review some construction
methods of tight framelets on graphs; in Section 3, we
construct three wavelet functions ψ1,ψ2, and ψ3, which
generate a tight wavelet frame in L2(R), and give a specific
example of the construction process of wavelet frame on the
graph; and in Section 4, we conclude this paper and discuss
future challenges of the graph wavelet frame.

2. Wavelet Frame on the Graph

,e construction method of wavelet frames on the graph is
to design the wavelet function on the graph and its corre-
sponding translation and dilation transformation of graph
functions.With the spectral graph theory, by considering the
spectral decomposition of the graph Laplacian, Hammond
in [35] defined translation and dilation transformation on a
graph and constructed the spectral graph wavelets and
spectral graph scaling functions based on an indicator
function. However, the spectral scaling functions in this way
did not generate the graph wavelets, which is analogous to
the construction of traditional wavelets through the two-
scale relation. Hence, the associated construction of wavelet
frames on the graph did not have the filter bank. Dong in
[36] defined the quasi-affine systems on a given manifold by
considering generalized translation and dilation transfor-
mation of wavelet functions in L2(R), and constructed
wavelet frames on both compact manifold and discrete
graphs. ,ese wavelet functions are defined from the scaling
functions, which implies that the associated construction of
wavelet frames on the graph has the filter bank.

However, the graph wavelet frames constructed by the
above two methods are the undecimated wavelet frames.

When the level number of framelet transforms is big, the
undecimated wavelet frames may result in a high redun-
dancy rate. In contrast, using clustering techniques, the
decimated framelet system can be constructed by embedding
edge relation and clustering feature in a chain-based or-
thonormal system and would achieve a low redundancy rate.
Chui [23] first defined an orthogonal system based on a local
filtration and constructed the different orthogonal system at
the vertices at each level. Later, Chui [24] further extended
the work to directed graphs and established an orthogonal
system with localization properties on the tree. Based on
graph clustering algorithms [45–50], a suitable orthonormal
eigenpair can be constructed for a coarse-grained chain on
the graph, and decimated tight framelets can be constructed
based on the orthonormal eigenpair in [37]. By introducing a
Haar basis for a coarse-grained chain on a graph, the graph
neural networks and graph pooling under the Haar basis can
be defined in [25, 39], and achieved low computational cost
when the graph size is large.

,e construction of decimated tight framelets on the
graph first utilizes graph clustering to obtain the coarse-
grained chain. Once a chain of nested graphs is obtained,
we can build the multiscale structure on a graph by framelet
filter banks, which bridges with the classical wavelet fra-
melets systems on R. In this paper, we focus on the
construction of decimated tight framelets on the graph. In
the following, we will review relevant knowledge for the
construction methods of decimated tight framelets on the
graph.

2.1. Tight Wavelet Frames on R. In this subsection, we first
recall some basic theories of the tight wavelet frame on the
L2(R), which are the basis for the construction of decimated
tight framelets [5, 8, 9]. A function ϕ is a refinable function if
it satisfies the following refinement equation:

ϕ � 2 
k∈Z

akϕ(2 · − k), (3)

where ak is called the mask for the refinable function ϕ,
which is a finitely supported sequence on Z. ,e Fourier
series of a sequence ak is defined to be

a(ξ) � 
k∈Z

ake
− iξk

, ξ ∈ R. (4)

,e Fourier transform of a function f ∈ L1(R) is
defined by

f(ξ) � 
R

f(x)e
− ixξdx, ξ ∈ R, (5)

and can be naturally extended to L2(R) functions. In terms
of the Fourier transform, the refinement equation in (3) can
be rewritten as follows:

ϕ(ξ) � a
ξ
2

 ϕ
ξ
2

 , ξ ∈ R. (6)

,roughout this paper, we assume a(0) � ϕ(0) � 1.
According to (6), we have ϕ(ξ) � 

∞
j�1 a(2− jξ).
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We say that a set ψ1, . . . ,ψr  of functions in L2(R)

generates a tight wavelet frame in L2(R) if

‖f‖
2

� 
r

l�1

j∈Z


k∈Z
〈f,ψl

j,k〉



2
, ∀f ∈ L2(R), (7)

where ψl
j,k � 2(j/2)ψl(2j · − k), 〈f, g〉 � 

R
f(x)g(x)dx and

‖f‖2 � 〈f, f〉. ,e set ψ1, . . . ,ψr  is called a set of gen-
erators for the corresponding tight wavelet frame. For any
function f ∈ L2(R), we have the wavelet expansion

f � 
r

l�1

j∈Z


k∈Z
〈f,ψl

j,k〉ψ
l
j,k. (8)

By introducing redundancy into a wavelet system, it has
a lot of freedom in the construction of tight wavelet frames
derived from refinable function. Petukhov [7] showed that if
the mask a satisfies |a(ξ)|2 + |a(ξ + π)|2 ≤ 1 for all ξ ∈ R,
then a symmetric tight wavelet frame with three generators
can be obtained. Jiang [8] systematically analyzed the
construction of hexagonal tight wavelet frame filter banks
with three high-pass filters. For the construction of the
wavelet frame, the oblique extension principle is considered
as a popular approach, which was first proposed in the
literature [5], and the specific contents are as follows.

Theorem 1. Let ϕ be a compactly supported refinable
function in L2(R) with a finitely supported mask a on Z such
that ϕ(0) � a(0) � 1 and a(π) � 0 . Suppose that there exist
finitely supported sequences b1, . . . , br and a 2π -periodic
trigonometric polynomial Θ such that Θ(0) � 1 and

b1(ξ) · · · br(ξ)

b1(ξ + π) · · · br(ξ + π)

⎡⎣ ⎤⎦

b1(ξ) b1(ξ + π)

⋮ ⋮
br(ξ) br(ξ + π)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� MΘ(ξ),

(9)

where

MΘ(ξ)

�
Θ(ξ) − Θ(2ξ)|a(ξ)|

2
− Θ(2ξ)a(ξ)a(ξ+π)

− Θ(2ξ)a(ξ+π)a(ξ)Θ(ξ+π) − Θ(2ξ)|a(ξ+π)|
2

⎡⎣ ⎤⎦.

(10)

,e wavelet functions ψ1, . . . ,ψr is defined as follows:

ψl
(ξ) � bl

ξ
2

 ϕ
ξ
2

 , l � 1, . . . , r. (11)

,en, ψ1, . . . ,ψr  generates a tight wavelet frame in
L2(R). Moreover, ψ1, . . . ,ψr  has m vanishing moments if
and only if

Θ(ξ) − Θ(2ξ)|a(ξ)|
2

� O |ξ|
2m

 , ξ⟶ 0. (12)

,e construction in ,eorem 1 is called the oblique
extension principle. Daubechies et al. in [5] discussed the
importance of the nonconstant Θ in this principle, which

provides a tight wavelet frame with good vanishing mo-
ments. ,e order of vanishing moments is an important
property of a tight wavelet frame. For a set ψ1, . . . ,ψr  of
compactly supported functions in L2(R), it has vanishing
moments of order m if


R

t
jψl

(t)dt � 0 ∀l � 1, . . . r; j � 0, . . . , m − 1. (13)

,e related theory of compactly supported functions
with good vanishing moments can be found in references
[9, 51]. Moreover, some scholars have also studied the
construction of multiwavelet and multiwavelet frames
[52–56]. Based on two-direction refinable functions, Li and
Yang [52] studied the construction of dual multiwavelet
frames with symmetry and discussed the vanishing moment
of the constructed multiwavelet frames. Atreas et al. [53]
discussed homogeneous dual multiwavelet frames from a
pair of refinable function vectors and derived that the mixed
oblique extension principle can be described by dual mul-
tiwavelet frames. For OEP-based tight framelets, Han [54]
also extended to high dimensional case and constructed
compactly supported tight M-wavelet frames from com-
pactly supported M-refinable functions for any d × d dila-
tion matrix M. Based on the approach of polyphase matrix
extension of multiscaling vectors, Cen et al. [55] presented a
novel approach for the construction of symmetric compactly
supported bi-orthogonal multiwavelets with multiplicity of
2. Li and Peng [56] analyzed the sampling property of bi-
orthogonal multiwavelets and discussed the application of
bi-orthogonal multiwavelets in image compression filter
bank. In addition, some researchers investigated the con-
struction and application of multivariate wavelet frames.,e
interested readers are referred to the literature [57–65].

2.2.GraphandChain. In this subsection, we introduce some
basic conceptions about a graph and chain [6, 37].

A graph G � (V, E,ω) is made up of a set of vertices V �

υ1, . . . , υn  and a set of edgesE⊆V × V between vertices.,e
non-negative function ω: E⟶ R indicates weight of edges
between vertices. ω(υi, υj)≠ 0 if there is an edge from the
vertex υi to vertex υj; otherwise, 0. If we ignore the direc-
tionality of the edges, the graph is called an undirected graph.
In this case, weight ω is symmetric, that is,
ω(υi, υj) � ω(υj, υi) for all υi, υj ∈ V. Otherwise, the graphG
is said to be a directed graph. ,e degree of a vertex υ ∈ V is
denoted as d(υ) � p∈V� ω(υ, p). ,e sum of degrees of all
vertices of G is denoted as vol (G) ≔ vol (V) � υ∈Vd(υ),
which is the volume of the graph [6, 37]. For a subset V0 of V,
the volume V0 is the sum of degrees of all nodes in V0.

Let (e1, e2, . . . , en) be a sequence of edges in G. If there
exist distinct vertices v0, . . . vn in V such that any pair of
consecutive nodes is connected by the edges of G, that is,
ei � (vi− 1, vi) for i � 1, 2, . . . , n, then the sequence
(e1, e2, . . . , en) is called a path of the graphG between v0 and
vn. ,e length of the path is defined to be 

n
i�1 ω(vi− 1, vi). If

there exists a path between the vertex υi and vertex υj, the
length of the shortest possible path is defined as the distance
between them, denoted as ρ(vi, vj). If there is no path
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between vertices vi and vj, we define the distance
ρ(vi, vj) �∞. A graph is said to be connected if any two
distinct vertices of G are connected [6, 37].

Let G � (V, E,ω) and Gc � (Vc, Ec,ωc) be two graphs;
we say that Gc is the coarse-grained graph of G if Vc is a
partition of V. In this case, there exists subsets V1, . . . , Vk of
V for some k ∈ N such that

Vc � V1, . . . , Vk ,

V1 ∪ · · · ∪Vk � V,

Vi ∩Vj � ∅, 1≤ i< j≤ k.

(14)

,at is, each vertex Vj ofGc is called a cluster forG. ,e
edges of Gc are the links between clusters of G. We define
that two vertices vi and vj are equivalent, if vi and vj are in
the same cluster, denoted by vi ∼ vj [6]. Generally, we use [v]

to denote a cluster inGwith respect to a vertex in the coarse-
grained graph Gc.

Let J, J0, J≥ J0 be two integers; a coarse-grained chain
GJ⟶J0
≔ (GJ,GJ− 1, . . . ,GJ0

) of G is a sequence of graphs
with GJ ≡ G. Each Gj � (Vj, Ej,ωj) is a coarse-grained
graph of G for all J0⩽j⩽J, and [v]Gj

⊆[v]Gj− 1
for all j � J0 +

1, . . . , J and all v ∈ G.,e graphGj is the level j graph of the
chainGJ⟶J0

, and theGj− 1 can be viewed as a coarse-grained
graph of Gj for j � J0 + 1, . . . , J. If Gj ≡ G for all
j � J0 + 1, . . . , J, the chain GJ⟶J0

is called as an undeci-
mated chain of G. Otherwise, GJ⟶J0

is called an decimated
chain of G. For convenience of discussion, it is usually
assumed each vertex v of the finest level graph GJ ≡ G as a
cluster of singleton. When there is only one vertex in the
coarsest graph GJ0

, we call GJ⟶J0
a tree [6].

2.3. Orthonormal Bases on Graphs. In this subsection, we
introduce the orthonormal bases for the coarse-grained
chain on a graph [6, 35–37].

Let L2(G) ≔ L2(G, 〈·, ·〉G) be the Hilbert space of
vectors f: V⟶ C on the graph G with the inner product
〈·, ·〉G, which is defined as follows:

〈f, g〉G ≔ 
v∈V

f(v)g(v), f, g ∈ L2(G), (15)

where g is the complex conjugate to g. ,e norm ‖ · ‖G is
given by ‖f‖G ≔

�������
〈f, f〉G


for f ∈ L2(G). Let δl,l′ be the

Kronecker delta satisfying δl,l′ � 1 if l � l′ and 0 otherwise,
andN ≔ |V| is the number of vertices. A set μl 

N

l�1 of vectors
in f ∈ L2(G) is an orthonormal basis for f ∈ L2(G) if

〈μl, μl′〉 � δl,l′ , 1≤ l, l′ ≤N. (16)

,e generalized Fourier coefficient of degree l for
f ∈ L2(G) with respect to μl is defined to be fl ≔ 〈f, μl〉.
,en, for all f ∈ L2(G), we have f � 

N
l�1

flμl. Let λl 
N

l�1⊆R
be a nondecreasing sequence of non-negative numbers
satisfying 0 � λ1 ≤ · · · ≤ λN, if μl 

N

l�1 is an orthonormal basis
for f ∈ L2(G) with μ1 ≡ (1/

��
N

√
); we say (μl, λl) 

N

l�1 is an
orthonormal eigenpair for f ∈ L2(G) [35]. Meanwhile,
Hammond [35] also gives the definition of the graph Lap-
lacian L: L2(G)⟶ L2(G)

[Lf](p) ≔ d(p)f(p) − 
v∈V

ω(p, v)f(v),

p ∈ V, f ∈ L2(G).

(17)

If 〈f,Lf〉≥ 0, the equation Lμl � λlμl corresponding
to the eigenvalues λl, l � 1, . . . , N and eigenvectors μl is
non-negative, and satisfies 0 � λ1 ≤ · · · ≤ λN with
μ1 ≡ (1/

��
N

√
) [37].

Based on the properties of the eigenvalues and eigen-
vectors, Wang and Zhuang in [37] gave an orthonormal
basis for the chain. Let GJ⟶J0

≔ (GJ,GJ− 1, . . . ,GJ0
) be a

chain on the graph G with N vertices; L2(GJ⟶J0
) be the set

of all vectors f defined on the union of vertices on all levels
VJ ∪ · · · ∪VJ0

. If the restriction μl, λl 
N
l�1 on the j th-level

graphs Gj is an orthonormal basis for L2(Gj) at each level
j � J0, . . . , J, a set pairs of vectors and complex numbers
μl, λl 

N
l�1 in L2(GJ⟶J0

) are called an orthonormal basis for
the chain GJ⟶J0

.

2.4. Decimated Tight Framelets on Graphs. In this
subsection, we introduce the construction methods of a
decimated tight framelet on a graph. ,e conclusion of this
part mainly comes from reference [6]. LetG � (V, E,ω) be a
graph and GJ⟶J0

≔ (GJ,GJ− 1, . . . ,GJ0
) be a chain on the

graph G. For each vertex [p] in Gj � (Vj, Ej,ωj), a weight
ωj,[p] ∈ R is defined. For the bottom level with j � J, let
ωJ,[p]GJ
≡ 1. Let Qj ≔ ωj,[p]: [p] ∈ Vj  be the set of weights

on Gj, and QJ⟶J0
≔ (QJ, . . . ,QJ0

) be the sequence of
weights for the coarse-grained chain GJ⟶J0

. Zheng et al. in
[6] gave the construction method of the decimated framelets
on the graph, and the details are as follows.

Definition 1. Let Ψj � ϕj;ψ1
j , . . . ,ψr

j  be a tight frame in
L2(R) at scale j for j � J0, . . . , J. ,e decimated framelets
ϕj,[p](v) and ψn

j,[p](v), p, v ∈ V, at scale j � J0, . . . , J for the
chain GJ⟶J0

on the graph Gj are defined by

ϕj,[p](v) �
�����
ωj,[p]




N

l�1

ϕj

λl

Λj

 μl([p])μl(v),

[p] ∈ Vj,

ψn
j,[p](v) �

������
ωj+1,[p]




N

l�1

ψ(n)
j

λl

Λj

 μl([p])μl(v),

[p] ∈ Vj+1, n � 1, . . . , r,

(18)

where for j � J, we letVJ+1 � VJ andωJ+1,[p] � ωJ,[p]. We call
ϕj,[p] and ψn

j,[p] low-pass and high-pass framelets at scale j.
,e decimated tight framelets in Definition 1 are con-

structed based on framelet generators in L2(R) and the
orthonormal basis associated with the chain GJ⟶J0

. ,e
function μl([p]) can be defined by μl([p]) � minv∈[p]μl(v).
In order to obtain the decimated tight framelets on the graph
G, first, we study the construction methods of tight frames
on R. ,en, in next section, we focus on the specific con-
struction process of the graph wavelet frame.
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3. Construction of Tight Wavelet Frames on
the Graph

In this section, we introduce the construction process of
decimated tight framelets on the graph G in detail. First, we
start from the construction of the tight wavelet frames on R

by a given scaling function.

3.1. Construction of Tight Wavelet Frames on R. For the
construction of classical tight wavelet frames on R, there
have been many creative results. ,ese works are generally
based on the multiresolution analysis viewpoint. Chui and
He in [11] demonstrated that a tight wavelet frame with 3
symmetric generators can be derived from the B-spline
functions Bm(m ∈ N). However, this construction only has
single-order vanishing moments. It is desirable to construct
symmetric tight wavelet frames with high vanishing mo-
ments in applications. In order to achieve high order of
vanishing moments, Daubechies et al. [5] considered a tight
wavelet frame with 2 compactly supported generators from
the B-spline functions Bm(m ∈ N), which have m order
vanishingmoments. Unfortunately, this tight wavelet frames
are not symmetry. For studying symmetric tight wavelet
frames, based on symmetric compactly supported refinable
functions, Petukhov [66] discussed the symmetry of tight
wavelet frames using the unitary extension principle and
obtained the existence criterion of the symmetric or anti-
symmetric compactly supported framelets. For any com-
pactly supported symmetric real-valued refinable function,
Bin andMo [67] showed that symmetric tight wavelet frames
with 3 generators and high vanishing moments can be
derived.

,e tight wavelet frames with desired approximation
orders are very critical in practical applications. Dong and
Shen in [68] proved that the tight frame system derived from
a pseudospline normally have better approximation order
than that derived from B-splines. Later, Dong showed that the
shifts of an arbitrarily given pseudosplines are linearly in-
dependent [69]. ,e pseudosplines are considered an im-
portant family of refinable functions and provide a wide
variety of choices of refinable functions. By selecting different
parameters, pseudosplines with various orders fill in the gaps
between the B-splines and orthogonal refinable functions for
the first type and between B-splines and interpolatory
refinable functions for the second type [69]. Hence, pseu-
dosplines have large flexibilities in wavelet and framelet
construction. In this subsection, we focus on the construction
of tight wavelet frames on R based on the pseudosplines.

In many applications, such as computational cost and
storage concern [70–75], we hope a symmetric tight wavelet
frame with as small as possible number of generators; that is,
the symmetric tight wavelet frame is generated by a single
wavelet function. Yet, except the tight frames generated by
the discontinuous Haar wavelet function or its dilated
version, it is impossible to exist an MRA compactly sup-
ported real-valued symmetric tight wavelet frame with one
continuous generator [25]. ,erefore, one is interested in
considering a symmetric tight wavelet frame with two

generators. ,ey have been extensively studied in
[13, 68, 76–80]. As shown in [68], a necessary and sufficient
condition has been derived for the existence of a symmetric
tight wavelet frame with two generators, and details are as
follows: 2π, Θ

(1) ,ere exists a 2π-periodic trigonometric polynomial
Θ with real coefficients such that Θ(0) � 1 and
Θ(ξ)≥ 0 for all ξ ∈ R;

(2) ,ere exists a real-valued sequence b on Z with
symmetry such that detMΘ(ξ) � |b(2ξ)|2, where the
matrix MΘ is defined in (10);

(3) ,e greatest common factor of all the entries of the
matrix MΘ satisfies a technical “gcd” condition. ,e
technical “gcd” condition is shown in [68].

However, it is difficult to obtain a 2π-periodic trigo-
nometric polynomial Θ satisfying all above the conditions,
since there exist nonlinear equations in these conditions.
,erefore, the symmetric tight wavelet frame with three
generators is usually considered. Here, we will derive a new
construction method of a symmetric tight wavelet frame
with three generators based on pseudosplines.

Pseudosplines are defined in terms of their refinement
masks [5, 68]. ,e refinement mask of the first type of
pseudosplines with order (m, l) is given by

1a(ξ)



2

� 1a(m,l)(ξ)



2

� cos2m ξ
2

  

l

j�0

m + l

j

⎛⎝ ⎞⎠sin2j ξ
2

 cos2(l− j) ξ
2

 ,

(19)

and the refinement mask of the second type of pseudosplines
with order (m, l) is given by

2a(ξ) � 2a(m,l)(ξ)

� cos2m ξ
2

  

l

j�0

m + l

j

⎛⎝ ⎞⎠sin2j ξ
2

 cos2(l− j) ξ
2

 ,

(20)

where 0≤ l≤m − 1.
In this subsection, we only consider the construction of

tight wavelet frame from the second type of pseudosplines
using the oblique extension principle. In order to state the
main results, we review the following results in [67].

Theorem 2 (see [67]). Let a be a finitely supported real-
valued mask on Z such that |a(2π/3)|> 1 and
|a(2π/3)| ∉ 2j: j ∈ N} . Aen, there does not exist a2π-
periodic trigonometric rational polynomial Θ with real co-
efficient such that

(i) Θ(0) � 1 and Θ(ξ)≥ 0, a.e.ξ ∈ R;
(ii) Θ(ξ) − Θ(2ξ)|a(ξ)|2can be regarded as a 2π-periodic

trigonometric polynomial and Θ(ξ) − Θ(2ξ)

|a(ξ)|2 ≥ 0 for all ξ ∈ R.
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Consequently, for any positive integer r, there do not exist
finitely supported real-valued sequences ψ1, . . . ,ψr and a
2π-periodic trigonometric rational polynomial Θ with real
coefficient such that all the conditions in ,eorem 2 are
satisfied.

Theorem 3 (see [67]). Let a be a finitely supported real-
valued mask on Z such that a(ξ) � (1 + e− iξ)mb(ξ) for some
positive integer m and some finitely supported sequence b on
Z . Let ϕ be the compactly supported real-valued refinable
function associated with mask a . Suppose that ϕ ∈ L2(R) and
the shifts of ϕ are stable. Aen, there exists a2π-periodic
trigonometric polynomialθsuch that

θ(0) � 1, θ(ξ)> 0, ξ ∈ R. (21)

Theorem 4 (see [67]). Let a be a finitely supported mask inZ
such that |a(ξ)|2 + |a(ξ + π)|2 ≥ 1 for all ξ ∈ R and |a(ξ0)|

2+

|a(ξ0 + π)|2 > 1 for some ξ0 ∈ R . Aen, there does not exist
a2π-periodic trigonometric polynomial θ0 such that θ0(0) � 1
and

θ0(ξ) − θ0(2ξ)|a(ξ)|
2

+|a(ξ + π)|
2 ≥ 0 ∀ξ ∈ [− π, π]. (22)

Symmetry is an important property in various purposes.
For a Laurent polynomial p(z) with real coefficients, we say
that p(z) is symmetric (or antisymmetric) about (k/2) for
some k ∈ Z if p(z) � zk p(1/z) (or p(z) � − zkp(1/z)). For
a nonzero Laurent polynomial p, we introduce an operator S

to be

[Sp](z) �
p(z)

p(1/z)
, z ∈ Z∖ 0{ }. (23)

,e following result can be given, as shown in [76].

Theorem 5 (see [76]). Let p and q be two Laurent poly-
nomials with real coefficients. Aen,

(1) p is (anti)symmetric about (k/2) for some k ∈ Z if
and only if [Sp](z) � ± zk .

(2) [S(p(1/·))](z) � [Sp](1/z) � 1/[Sp](z) .
(3) [S(pq)](z) � [Sp](z)[Sq](z) and [S((·)k)](z) �

z2k for k ∈ Z .
(4) If p and q are (anti)symmetric such that Sq � Sp ,

then p ± q is (anti)symmetric and S(p ± q) � Sp �

Sq .

Next, we give the construction of symmetric tight
wavelet frame. For a given refinable function with mask a,
the key is to find a 2π-periodicΘ, such that OEP condition is
satisfied. We have the following the main result.

Theorem 6. Let 2ϕ denote the second type of pseudosplines of
order (m, l) with a finitely supported mask a , which is defined
in (20). Suppose that there is a2π-periodic trigonometric
polynomial θ with real coefficients such that θ(0) � 1, θ is

symmetric, and θ(ξ)> 0 for all ξ ∈ R. In addition, assume the
following:

θ0(ξ) � Θ(ξ) − Θ(2ξ) |a(ξ)|
2

+|a(ξ + π)|
2

 ≥ 0, ∀ξ ∈ R,

(24)

whereΘ(ξ) � |θ(ξ)|2. By the Fejér–Riesze
�
lemma, there exists

a2π-periodic trigonometric polynomial θ1with real coeffi-
cients such that |θ1(ξ)|2 � θ0(ξ), defined by

b1(ξ) � e
− iξ

a(ξ + π)θ(2ξ), (25)

b2(ξ) �
1
2

θ1(ξ) + e
− iξθ1(ξ) , (26)

b3(ξ) �
1
2

− θ1(ξ) + e
− iξθ1(ξ) . (27)

,e wavelet functions ψ1,ψ2, and ψ3 are defined by

ψ1
(ξ) � b1

ξ
2

 
2

ϕ
ξ
2

 ,

ψ2
(ξ) � b2

ξ
2

 
2

ϕ
ξ
2

 ,

ψ3
(ξ) � b3

ξ
2

 
2

ϕ
ξ
2

 .

(28)

,en, ψ1,ψ2,ψ3  generates a tight wavelet frame in
L2(R) and each of the wavelet functions ψ1,ψ2, and ψ3 is
either symmetric or antisymmetric.

Proof 1. By the oblique extension principle, in order to
prove ψ1,ψ2,ψ3  generates a tight wavelet frame, we need to
check the condition (9). From (26) and (27), we deduce the
following:

b2(ξ)



2

� b2(ξ)b2(ξ)

�
1
4

θ1(ξ) + e
− iξθ1(ξ)  θ1(ξ) + e

iξθ1(ξ) 

�
1
4

θ1(ξ)



2

+ e
iξ θ1(ξ)



2

+ e
− iξ θ1(ξ)




2

+ θ1(ξ)



2

 ,

(29)

and

b3(ξ)



2

� b3(ξ)b3(ξ)

�
1
4

− θ1(ξ) + e
− iξθ1(ξ)  − θ1(ξ) + e

iξθ1(ξ) 

�
1
4

θ1(ξ)



2

− e
iξ θ1(ξ)



2

− e
− iξ θ1(ξ)




2

+ θ1(ξ)



2

 .

(30)

,en,
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b2(ξ)



2

+ b3(ξ)



2

� θ1(ξ)



2

� θ0(ξ).
(31)

Hence,

|a(ξ)|
2Θ(2ξ) + b1(ξ)




2

+ b2(ξ)



2

+ b3(ξ)



2

� |a(ξ)|
2Θ(2ξ) + Θ(2ξ)|a(ξ + π)|

2

+ Θ(ξ) − Θ(2ξ) |a(ξ)|
2

+|a(ξ + π)|
2

 

� Θ(ξ).

(32)

Since θ1 is a 2π-periodic trigonometric polynomial with
real coefficients, we have the following:

b2(ξ) b2(ξ + π) + b3(ξ) b3(ξ + π) � 0, (33)

which implies the following:

b1(ξ) b1(ξ + π) + b2(ξ) b2(ξ + π) + b3(ξ) b3(ξ + π)

� − a(ξ)a(ξ + π)Θ(2ξ).
(34)

,erefore, all the conditions in (9) are satisfied. By
,eorem 1, ψ1,ψ2,ψ3  generates a tight wavelet frame in
L2(R).

Now, we show the symmetry of the wavelet functions
ψ1,ψ2, and ψ3. 2ϕ is the second type of pseudospline of order
(m, l), which is symmetric. ,en, according to the definition
of symmetry and ,eorem 5, we can obtain the wavelet
functions ψ1,ψ2, and ψ3 that are symmetric (or
antisymmetric). □

Remark 1. It is easy to see that 2π-periodic trigonometric
polynomial θ is existent. 2ϕ is the second type of pseu-
dospline of order (m, l) with a finitely supported mask a,
which is defined in (20), and the shifts of 2ϕ are stable. So, the
conditions of ,eorem 3 are satisfied. ,at is, there exists a
2π-periodic trigonometric polynomial θ such that θ(0) �

1, θ(ξ)> 0 for all ξ ∈ R.

Remark 2. Pseudospline’s definition starts with the simple
identity 1 � (cos2(ξ/2) + sin2(ξ/2))m+l for given non-neg-
ative integers l and m with l≤m − 1. By the summation of
the first l + 1 terms of the binomial expansion of this
identity, we can define the refinement mask of pseudosplines
in (20). So, we have |a(ξ)|2 + |a(ξ + π)|2 ≤ 1. ,at is, θ0 of
,eorem 6 can be found.

According to the above results, we give the following
theorem.

Theorem 7. Let 2ϕ denote the second type of pseudospline of
order (m, l) with a finitely supported mask a . Suppose that
there are the wavelet functions ψ1,ψ2,ψ3 being defined in
(28). Aen,

(1) ψ1,ψ2,ψ3 haslvanishing moments.
(2) Ae approximation order of the framelet system,

which be obtained by ψ1,ψ2,ψ3 , is min m, 2l + 2{ }.

Proof 2. Since 2ϕ is the second type of pseudosplines of
order (m, l) and Θ is a 2π-periodic trigonometric polyno-
mial, we have the following:

θ0(ξ) � O |ξ|
2l

  as ξ⟶ 0, (35)

where θ0 is defined in (24). It is straightforward to see that
bl(ξ) � O(|ξ|l) as ξ⟶ 0 for all l � 1, 2, 3, where b1,

b2,
b3

are defined in (3.5) − (3.7). ,erefore, ψ1,ψ2,ψ3  has l

vanishing moments. □

Next, we give an example to illustrate our constructed
tight wavelet frame by ,eorem 6.

Example: Let 2ϕ denote the second type of pseudosplines
of order (3, 1) with a finitely supported mask,

a(ξ) � cos6
ξ
2

  1 + 3 sin2
ξ
2

  , (36)

in which there exists a 2π-periodic trigonometric polyno-
mial θ(ξ), which is expressed as follows:

θ(ξ) �
437
320

−
97
240

cos(2ξ) +
37
960

cos(4ξ), (37)

and satisfies
θ(0) � 1, θ(ξ)> 0, ∀ξ ∈ R. (38)

According to ,eorem 6, we have the following:

θ0(ξ) � Θ(ξ) − Θ(2ξ) |a(ξ)|
2

+|a(ξ + π)|
2

 ≥ 0,

θ1(ξ)



2

� θ0(ξ), ∀ξ ∈ R.
(39)

,e wavelet filters b1, b2, b3 are defined as follows:

b1(ξ) � e
− iξ

a(ξ + π)θ(2ξ),

b2(ξ) �
1
2

θ1(ξ) + e
− iξθ1(ξ) ,

b3(ξ) �
1
2

− θ1(ξ) + e
− iξθ1(ξ) .

(40)

,en, the wavelet functions ψ1,ψ2, and ψ3 are defined as
follows:

ψ1
(ξ) � b1

ξ
2

 
2

ϕ
ξ
2

 ,

ψ2
(ξ) � b2

ξ
2

 
2

ϕ
ξ
2

 ,

ψ3
(ξ) � b3

ξ
2

 
2

ϕ
ξ
2

 .

(41)

According to ,eorem 6, ψ1,ψ2,ψ3  generates a tight
wavelet frame in L2(R). Moreover, all the wavelet functions
ψ1,ψ2,ψ3 are symmetric or antisymmetric. Figure 1 shows the
tight filter bank a; b1, b2, b3  with symmetric functions con-
structed by ,eorem 6. (a) is the graph of the second type of
pseudosplines of order (3, 1). (b) − (d) are the graphs of the
framelet functions ψ1,ψ2,ψ3, respectively. ,e set ψ1,ψ2,ψ3 

generates a symmetric tight wavelet frame in L2(R).
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3.2. Construction of Orthogonal Bases on G. In above sub-
section, we constructed the tight wavelet framelets on R. In
order to achieve the construction of decimated tight fra-
melets on G, according to Definition 1, we need to give the
orthonormal basis associated with the chain GJ⟶J0

. We
only consider the Haar wavelet basis for the chain GJ⟶J0

in
the paper, which is a particular case of Daubechies wavelets,
and is developed onto a graph by Chui, Filbir, and Mhaskar

in [23].,eHaar basis μ(j)

l 
Nj

l�1, j � J0, . . . , J is a sequence of
collections of vectors. Each Haar basis is associated with a
single layer of the chain GJ⟶J0

on a graph G. ,e detail
discussed about the Haar basis is based on the coarse-
grained chain on a graph in [6, 25, 37, 81].

We first give the construction of the Haar basis for a
chain with two levels. For the construction of the Haar basis
for a chain with more levels, one can use this method re-
cursively. Let Gc � (Vc, Ec,ωc) be a coarse-grained graph of
G � (V, E,ω) with Nc � |Vc|. We sequence the vertices of
Gc by their degrees as

Vc � pj 
Gc

: j � 1, . . . , Nc , d pj 
Gc

 ≥d pj+1 
Gc

 .

(42)
Nc vectors μc

l on Gc are defined by

μc
1 v

c
(  �

1
���
Nc

 1, v
c ∈ Vc;

μc
l �

��������
Nc − l + 1
Nc − l + 2



χc
l− 1 −


Nc

j�1 χ
c
j

Nc − l + 1
⎛⎝ ⎞⎠, l � 2, . . . , Nc,

(43)

where χc
j is the indicator function for the j th vertex [pj]Gc

on Gc, which is given by

χc
j([v]) �

1, [v] � pj 
Gc

,

0, otherwise.

⎧⎨

⎩ (44)
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Figure 1: Graphs of the scaling function and the corresponding wavelets.
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,en, the set of function μc
l 

Nc

l�1 forms an orthonormal
basis for L2(Gc) [6, 37].

Now, we extend the orthonormal basis μc
l 

Nc

l�1 for Gc on
the G. For each element of μc

l : l � 1, . . . , Nc  with the
vertex [pl]Gc

on Gc, we define

μl,1(v) �
μc

l ([v])
���
Nc

 , v ∈ V, l � 1, . . . , Nc. (45)

Let kl � |[pl]Gc
|; we order the cluster [pl]Gc

according to
their degrees,

pl Gc
� vl,1, . . . , vl,kl

 ⊆V, d vl,j ≥ d vl,j+1 . (46)

For k � 2, . . . , kl, we define

μl,k �

��������
kl − k + 1
kl − k + 2



χl,k− 1 −


kl

j�k χl,j

kl − k + 1
⎛⎝ ⎞⎠, j � 1, . . . , kl,

(47)

where χl,j is given by

χl,j(v) �
1, v � vl,j,

0, otherwise.
 (48)

,en, the resulting μl,k: l � 1, . . . , Nc, k � 1, . . . , kl  is
an orthonormal basis for L2(G) [6].

Next, we can give the Haar basis for the coarse-grained
chain on a graph by repeating the above process. Starting from
GJ0

, an orthonormal basis μJ0
l : l � 1, . . . , NJ0

  for L2(GJ0
) is

generated as the above definition. By the chain relation of GJ0
and GJ1

, we can obtain an orthonormal basis
μJ1

l : l � 1, . . . , NJ1
  for L2(GJ1

). Continuing carrying out this
process on each Gj, j � 1, . . . , J, for L2(Gj), we can obtain
orthonormal basis μ(j)

l 
Nj

l�1, j � 1, . . . , J. ,en, the resulting
orthonormal basis μl 

N

l�1 forms a Haar global orthonormal
basis for a coarse-grained chain GJ⟶J0

on the graph G [6].
In the following, we give a new orthogonal basis on the

graph G.

Theorem 8. Let G′ � (V′, E′,ω′) be a coarse-grained graph
of G � (V, E,ω) with N′ � |V′| . We sequence the vertices of
G′ by their degrees as

V′ � pj 
G′: j � 1, . . . , N′ , d pj 

G′ ≥d pj+1 
G′ .

(49)

N′ vectors μl
′ on G′ are defined by

μ1′ v′(  �
1
���
N′

√ 1, υ′ ∈ V′;

μl
′ � χl− 1′ −


N′
j�1 χ

c
j

N′ − l + 1
, l � 2, . . . , N′,

(50)

where χj
′ is the indicator function for the j th vertex [pj]G′

on G′, which is given by

χj
′([v]) �

1, [v] � pj 
G′,

0, otherwise.

⎧⎨

⎩ (51)

,en, the set of function μl
′ 

N′
l�1 forms an orthogonal

basis for L2(G′).

Proof 3. For l � 2, . . . , N′,

〈μ1′, μl
′〉 �

1
���
N′

√ 〈1, χl− 1′ −


N′
j�l χj
′

N′ − l + 1
〉. (52)

And for 2≤ k≤ l≤N′,

〈μl
′, μk
′〉 �〈χl− 1′ −


N′
j�l χj
′

N′ − l + 1
, χk− 1′ −


N′
j�k χj
′

N′ − k + 1
〉

� −


N′
j�k〈χl− 1′ , χj

′〉
N′ − k + 1

+
〈N′

j�l χj
′, 

N′
j�k χj
′〉

N′ − k + 1(  N′ − l + 1( 
⎛⎝ ⎞⎠

� −
1

N′ − k + 1
+

N′ − l + 1
N′ − k + 1(  N′ − l + 1( 

 

� 0.

(53)

,us, the set of function μl
′ 

N′
l�1 is an orthogonal basis for

L2(G′). □

Analogous to the above construction of the Haar basis
for a chain, we can obtain the resulting orthonormal
basis μl
′ 

N

l�1 that forms a global orthogonal basis for a coarse-
grained chainGJ⟶J0

on the graphG. Once we obtain the set
of function that forms an orthonormal basis for L2(GJ⟶J0

),
the decimated tight framelet on chain GJ⟶J0

can be con-
structed by Definition 1. In general, the weight function ωc

on Vc × Vc is defined as follows:

ωc([p], [v]) � 
p∈[p]


v∈[v]

ω(p, v)

vol(G)
, [p], [v] ∈ Vc. (54)

4. Conclusion

In this paper, we surveyed the construction methods of
decimated tight framelets on the graphs. ,e related theory
of the graph wavelet frame was analyzed, including wavelet
frame on L2(R), graph, and chain, orthonormal bases on
graphs, and the specific construction of decimated tight
framelets. Because the wavelet frames on L2(R) are the basis
for the construction of the graph wavelet frame, and the filter
bank of decimated tight framelets is closely related to the
classical wavelet framelets, then based on the second type of
pseudosplines, we presented a symmetric tight wavelet frame
with 3 generators in L2(R) using the oblique extension
principle. By considering the general fundamental function
Θ instead of the case Θ � 1, we obtained a tight wavelet
frame with good vanishing moments. Moreover, we ana-
lyzed the construction of the Haar basis for the coarse-
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grained chain on a graph G and obtained the new or-
thogonal basis on a graph G.

,e study of decimated tight framelets on a graph is only
limited to the Haar basis. ,e specific construction method
and practical application are only completed on the trans-
formation of the graph Haar wavelet frame. In the future, we
can consider more generalized graph wavelet frame research
with a non-Haar basis. In this paper, we mainly introduced
related theory of the graph wavelet frame and the detailed
construction methods of the graph Haar frame, and pro-
vided theoretical basis for the later non-Haar wavelet frame
construction on a graph.
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