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Supplementary information

A. A baseline model of policy processes

A.1. Formalization of model

The following describes the algorithmic implementation of our model as well as specifications for the
parameters. We implemented the model in python using the mesa package.

Algorithm 1 PolicyModel

1: procedure Progress Model
2: network← previous step
3: opinion, capability, strategy← previous step or initialization
4: hyper-parameters← from initialization (see below)
5: order← new random activation order for all agents
6: for i in order do
7: PolicyAgent(i)

8: compute political capital (PC)
9: collect all agent data;

10: time← +1

Algorithm 2 PolicyAgent

1: procedure Progress Agent
2: if activation-rate modulo time then
3: if success(PC) then
4: weighted random choice between strategy (1,2,3)
5: if strategy 1 then
6: replicator equation (PC = fitness function) updating opinion with random neighbor

7: if strategy 2 then
8: Maximize support-function by new edge with i ∈ n(2) more/less opinion distance.

9: if strategy 3 then
10: Maximize centrality by connecting to i ∈ n(2) with P(PCi).

11: if number of connections ¿ capability*Dunbar then
12: delete random edge

All computations were done with N = 150 agents. The activation frequencies of each agent
were drawn from a discrete Poisson distribution with expected value of 3. The strategy distribution
for each agent is uniformly distributed, while capability follow a truncated normal distribution in
the interval [0.1, 1], mean of 0.5 and standard deviation of 0.1. The convergence parameter of the
bounded confidence sub-model was set to 0.1. This leaves the two function β(x) = B(p = 2, q = 3)(x)
and γ(x) = α · e−αx with α = 3 as described earlier. Weighted random choices were computed for
example by calculating the proportion of agent i PC w.r.t. the total PC summed over all neighboring
agents.
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A.2. Sensitivity Analysis

Here we show an example of the insights that a sensitivity analysis can provide for the understanding
of the baseline model. We only elaborate on the free parameters in the ”fitness-function” (PC) here.
We vary the parameters α = λ of the exponential distribution and the parameter q in the beta-
distribution. As we can see in figure 1a, the mean opinion does not exhibit clear effects for any
variation of these parameters. However, we do observe that large differences in distribution of
accumulated political capital (see Figure 1b). This indicates a certain robustness of the system
opinion forming with respect to the distribution of influence.

(a) Effects of varying λ = α and q on mean opinion
of entire population.

(b) Effects of varying α and q on Gini-coefficient of
cumulative PC

Figure 1: Sensitivity analysis

B. Computational models to understand policy processes

The advent of computers was essential for the study of complex systems. They enable the formal
and algorithmic study of systems in a way that can be anchored in and validated by empirical
data. Computers are a powerful tool to study systems whose behaviors are too complex for human
intuition to grasp and cannot be reduced to linear relationships. Computational methods include
any computational tool that serves to collect and model data as well as model systems (Lazer
et al., 2020).In this section, we briefly discuss current methodological frontiers in policy process
studies, present what computational models are and why they are useful, before outlining a process
of evidence-driven computational modeling for policy processes. We conclude with a case-study of
opinion dynamics.
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B.1. Methodological frontiers in examining complexity in policy process studies

While applying complexity theory – even if implicitly – to understand policy processes is increasingly
accepted, commonly employed methods fall short of providing systemic explanations that are in line
with complexity science. Here, we present the main methodological approaches used in the current
policy process literature, discuss their limitations, and outline recent methodological progress that
suggests a promising but rocky path for a computational turn of policy process studies.

The works that explicitly use complexity theory to describe policy processes are primarily theo-
retical. They focus on refuting or validating the use of complexity theory in policy process studies
and make recommendations for future research, such as the unification of theories, moving away
from simplistic approaches, or recognizing unpredictability (Geyer & Cairney, 2015). In contrast,
studies that discuss theories are purely theoretical, qualitative, or quantitative.

The different theories are subject to debate. Scholars unpack criticisms and refine theoretical
mechanisms, often based on empirical insights and following events that shed light on policy processes
(e.g., 2008 economic crisis, Fukushima’s tsunami, or Brexit (Giger & Klüver, 2012)).

When used as lenses to understand specific cases, those theories are usually accompanied by
qualitative methods, ranging from ethnographic research to interviews and social network analyses
(Keman & Woldendorp, 2016). Those approaches often remedy the lack of granular data on the
micro-level dynamics of policy processes. Therefore, scholars need to conduct (semi)structured
interviews with policy actors to access information about beliefs, behaviors, network structures, and
power dynamics. These research results are often used for thematic analyses or critical analyses that
deconstruct social realities (Levy, 2007).

Scholars also employ quantitative methods to validate or refute theories. Surveys, Open Govern-
ment Data, media data, or the Comparative Agendas Project (Baumgartner, Breunig, & Grossman,
2019) provide sources of micro-level and macro-level data on policy processes. These sources allow
the examination of the micro-macro relationships in a quantitative manner. The methods employed
are descriptive statistics or statistical models such as linear regressions (Curini & Franzese, 2020).

The current theoretical, qualitative, or quantitative methods constrain the potential of policy
process studies unless complemented. First, the literature that applies complexity theory to policy
processes primarily focuses on the meaning of complexity as a concept applied to policymaking. It is
about building a narrative and a set of mental models to understand complex policymaking systems.
While we think building this narrative is essential to change paradigms in social science, it often
falls short of identifying empirical facts and laws of policymaking systems (Pollitt, 2009).

Second, building a complexity-infused narrative of policy processes also opens the door to rel-
ativism. When associated with concepts from chaos theory, this narrative attracts proponents of
postmodernism, interpretivism, and more (Morçöl, 2001). While these critical schools of thought
have led to important reflections about the social sciences and the role of the limitations and power
of researchers in attempting to understand social phenomena, they tend to suggest that knowledge
exists only if highly nuanced (Healy, 2017). This assumption, often implicit, has fostered doubts
about the value of abstraction, formalization, quantitative and computational methods (Drucker,
2016), which has slowed down the adoption of computational methods in policy process studies.

Third, from a methodological point of view, policy process studies are divided into roughly two
clusters of scholars. On the one hand, scholars push very reductionist approaches and focus on, for
instance, linear relationships between micro-level and macro-level data through black-box statistical
models (Workman, Jones, & Jochim, 2009). On the other hand, scholars embrace all-encompassing
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approaches and resort to long essays or textbooks to describe complexity (Geyer & Rihani, 2010).
These two groups seem to position themselves differently concerning modeling social phenomena.
The first group focuses on models that do not account for the characteristics of complex systems,
while the second group does not seem to engage with any form of formal modeling. A computational
turn is a way to reconcile these clusters by putting together scientists who formalize policymaking
systems and others who have developed detailed theories. By facilitating this turn, we want to
motivate the search for more complex but humble models that do not try to hide their assumptions
and simplifications but try to test specific theoretical propositions as best as possible.

However, it is important to highlight relevant quantitative advances in policy process studies.
First, statistical analyses applied to punctuated equilibrium theory using leptokurtic distributions
have been widely tested and demonstrated empirical regularities across countries (Chan & Zhao,
2016; Sebok & Berki, 2018; Sharp, 2019). They notably show a power-law distribution of changes in
public budgets. These robust findings are one of the first results that look like the ones complexity
science has generated for other systems: macro-level patterns found across systems, which suggest
that systems behave the same way and thus lead to the formulation of hypotheses for micro-level
dynamics. Scholars have found similar findings in conflict dynamics, where the frequency and severity
of conflict also follow a robust power law (Clauset, 2018; Richardson, 1960).

The second advancement – described in the main text – refers to developing network or agent-
based models to formalize the micro-level dynamics of policy processes and generate macro-level
phenomena (references 27-41 in Table ??, and especially 37-41 for models that are in line with
theories of policy processes). The next sections explain in more detail what computational models
are and how to develop them.

B.2. What are computational models?

Before the advent of personal computers in the 1990s, the formalization of social systems fell short of
replicating complex dynamics. They were able to generate either deterministic dynamics (Richard-
son, 1960) or chaotic dynamics (Saperstein, 1984). Later on in the 1990s, networks of computers
could facilitate purely theoretical computational research in e.g. international relations and the val-
idation or refutation of traditional theories (Duffy, 1992). As of the 2000s, computational models
became more precise and increasingly empirically validated (Clauset & Gleditsch, 2012; Weidmann
& Salehyan, 2013). In sixty years, the field of social system formalization moved from systems of
equations to computational toy models and on to empirically-validated computational models. It is
this latter, empirically-validated computational type we want to encourage in policy process studies.

Computational models can be referred to as dynamic formalism because they combine two core
components. First, models are implemented as systems of equations, computer code or a mix of both
(Thurner, Hanel, & Klimek, 2018). This process of formalization aims to reduce the description of
system parts and mechanisms to a minimum of components in a way that is theoretically and/or
empirically valid. To model complex systems, formalizations often include update rules or feedback
loops, which are iterative mechanisms that lead to adaptation, absorption or amplification. Second,
computational power is used to run the formalization and activate models’ iterative processes. The
iterations then generate system dynamics.

To examine social systems, a prominent class of computational models are agent-based models
(Page, 2008). These models formalize the characteristics and adaptive behaviors of agents (e.g.
policy actors), their mode of interactions and network structures (e.g. topology of policy networks)
and the macro-level properties (coalitions, attention dynamics, collective decisions, ...) that result
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from iterative processes of agent-level adaptation (e.g. opinion changes, decisions, etc.). Agent-
based models are increasingly popular in political science, especially in the study of intra-state
armed conflict (Neumann & Lorenz, 2019).

“Is it possible to model human behavior?” is a question that is repeatedly raised in political
science departments and conferences. This paper builds on the insight that, in fact, all descriptions
of human behavior are models. Verbal descriptions may seem more faithful because of their fuzziness
and room for interpretation, allowing people to project their own models on what is meant. Yet,
current verbal descriptions of policy processes based on complexity theory are difficult to test em-
pirically because they are often too general. Therefore, a minimum level of formalization is needed.
Similarly, mathematical models without implementation fall short of eliciting complex dynamics.
It is the coupling of mathematical formalization and computational power that can usefully model
human behavior and explain social dynamics (Helbing et al., 2015). In short, all models are wrong,
some models are useful (Box, 1976). Any modeling effort needs to state its limitations clearly, but
models do not need to be perfect. They need to fit the theory and the data and be tested against
reality.

B.3. The value of computational models

Computational models are particularly useful because they formalize and generate dynamics of it-
erative, stateful, path-dependent processes. This is important because social systems feature plenty
of iterative processes. Armed conflicts, opinion dynamics or economic supply and demand relation-
ships, for example, are all iterative processes that boil down to how agents update as a function
of the behavior of other agents. Modeling such iterative processes enabled the study of emergent
cooperation among heterogeneous agents, for instance (Axelrod, 1997).

Computational models also enable the study of the dynamics of systems of equations that are
not analytically solvable. Differential equations of complex systems rapidly become too complex to
be solved by hand and most are non-deterministic (Thurner et al., 2018). Therefore, implementing
those equations as computational models enables researchers to generate dynamics and then analyze
them statistically. Relatedly, while it is extremely difficult to make point-predictions about complex
systems, computational models can make accurate predictions of outcome distributions by running
thousands of simulations (Lazer et al., 2020; Thurner et al., 2018).

Computational models enable to generate data on either micro-level or macro-level dynamics
when no real data is available (Epstein, 2012). Therefore, models may be built on theory and then
used to generate data with which statistical analyses are possible. This is particularly useful to
examine complex systems for which data collection is very difficult (secret processes, or dangerous
locations) and to analyze counterfactuals in possible future outcomes, assuming the model has been
sufficiently validated (Page, 2018).

Computational models also allow researchers to reconcile the study of micro-level and macro-level
dynamics. As the mainstream literature tends to dissociate both (e.g. micro- versus macroeconomics,
or policy analysis versus behavioral public policy), the use of computational models can link macro
level dynamics to the behavior of their constituent parts. They directly integrate the concept of
emergence and can produce the nonlinear dynamics associated with emergent phenomena.

In social systems, there is often one history that cannot be repeated, which prevents the rigorous
understanding of what-if scenarios. Computational models allow researchers to repeat artificial
scenarios and compare them to each other as statistical equivalents (Thurner et al., 2018). The
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explicitness and transparency of computational modeling also allow to design models and interpret
results in a participatory manner (Bommel et al., 2014).

It is, however, very challenging to reliably attain the added-value we proposed. The next section
presents a guide to maximize the success of computational modeling efforts.

B.4. From model conceptualization to the identification of signatures in policy processes

Recent literature on computational social science has aggregated pieces of advice for creating valuable
models. Bhavnani and colleagues (2020) summarize this advice in a process to develop robust
evidence-driven computational models. We adapt their method to policy process studies. The
advantage of this method is that it places computational modeling within a larger scientific process,
thus linking different stages of research design.

Figure 2 illustrates the resulting five step process: (1) model conceptualization; (2) model im-
plementation; (3) data construction; (4) model validation and refinement; and (5) counterfactual
analysis. As such, it guides researchers in the identification of the signatures of complex policymak-
ing systems. While the figure depicts a linear process, it is inherently iterative. In the rest of this
section, we describe each step and link it to the policy process literature.

Model 

conceptualization

Model 

implementation
Data construction

Model validation 

and refinement

Counterfactual 

analyses
Process

Aim Theoretical and

empirical anchorage

Formal model of 

decision dynamics

Collect data on micro

and macro dynamics

Validate and improve 

model empirically

Explore system 

configurations

Figure 2: A process for computational modeling in policy process studies (adapted from Bhavnani
et al. (2020))

Model conceptualization: the first step of computational modeling is the definition of parts, mech-
anisms and outcomes. Model conceptualization is, in a way, a synthesis of many different information
sources. To conceptualize a model of policymaking, it is possible to draw from existing theories of
policy processes (Weible & Sabatier, 2018), existing case-studies, expert opinion, interviews and sur-
veys. Altogether, these sources of information enable the specification of system parts, the selection
of specific mechanisms and link micro-level with macro-level dynamics. A crude, conceptual model
of policymaking, for instance, can be deduced from punctuated equilibrium theory as shown in Box
1.

Box 1. A simple verbal model of policy processes based on punctuated equilib-
rium theory
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Policy actors have two adaptive characteristics which is their current attention and opinion,
they interact within a decentralized network structure, and update their attention and opinion
as a function of their neighbors’ characteristics. Actors pursue two strategies: trying to reach
better positions in the network and forming coalitions with value-aligned actors. Iteratively,
this process leads to aggregate patterns of attention such as periods of inertia and periods of
change, and contagion of opinion (Jones & Baumgartner, 2005a, 2005b).

Model implementation: once the model is conceptualized and matches descriptions and data
from available sources of information, one can implement it. Implementation includes formalization
of the model as systems of equations and computer code. The formalization specifies the relation-
ship between variables and their associated probabilities, how the model aggregates observables (like
patterns of attention), and how it reports results. Formalization often is a crucial step to test the ro-
bustness of the conceptual model because it forces researchers to spell out modeling assumptions and
will thus challenge fuzzy definitions. Relevant mathematical and software programming tools must
be employed and their use justified (see next section). Model implementation also involves many
checks to test whether the implementation produces the intended dynamics. Sensitivity analyses
are useful to check whether the model behaves in a realistic manner. In policy process studies, the
implementation of the conceptual model could draw from differential equations that help formalize
co-evolving networks (Thurner et al., 2018).

Data construction: once the model is implemented, it is called a toy model, as its results will
not be empirically valid and can only serve exploratory purposes. To produce empirically valid
results, the third step is to identify, collect and prepare data to seed and validate the model (see
next paragraph). Data is required to specify the initial conditions of the model, such as the number
of policy actors, their initial focus, the network topology and the frequency and size of exogenous
signals, such as media coverage. To validate the simulated results - such as aggregate patterns of
attention, the rate of new decisions, and the evolution of network topologies - more data is required.

Finding useful data is a challenge. Data on micro-level processes is scarce and often qualitative.
There is some progress in collecting such data under the label ‘big data’ by relying on email data to
identify network topology and social media data to identify attention patterns and political behavior
(Donnay, 2017). Surveys and behavioral experiments can also provide complementary information,
especially on behavioral profiles (Moser & Kalton, 2017). Data on macro-level processes, such as
agendas, attention or decisions, is easier to find in a quantitative format. The Comparative Agendas
Project centralizes data on public budgets (Baumgartner et al., 2019) and the Open Government
Data group reports decisions and bills issued by national governments (Ubaldi, 2013). In most
cases, the identified data will not be directly usable to seed and validate the model. It will require
“construction” of datasets that can be imported into the model by, for instance, matching dataset
variables with model parameters. Or by drawing probability distributions from datasets to define
update rules, frequency of exogenous signals, etc.

Model validation and refinement : once data is prepared, researchers can use it to seed a model’s
initial conditions and validate simulated outcomes. Multiple methods can be used to measure the
fit of simulated results with empirical data, including the root-mean-square-deviation, but also
precision, recall and F1 scores. F1 scores are particularly useful as they provide information on how
many observations the model gets right or wrong, instead of a simple overall correlation or deviation
(Goutte & Gaussier, 2005). Data can be used to test internal validity (using in-sample data from a
specific case) and then external validity (using out-of-sample data from other cases). Here again, the
insights from punctuated equilibrium theory are useful. The power-law of public budgets has been
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empirically validated across contexts. It would be interesting to build a model of the micro-level
dynamics that lead to its emergence and then explore whether its mechanisms are valid in various
contexts.

Counterfactual analysis: once models are empirically validated, at least internally, it is possible
to use them as artificial laboratories to explore their signatures. Conducting counterfactual analyses
allows to understand how the system behaves when different initial conditions are chosen. For
instance, one can explore different levels of network centrality, different attention probability updates,
different frequencies and sizes of exogenous signals, and explore how the system behaves as a function
of those changes. In complexity science, it is essential to explore critical points - the equivalent of
the 99 to 100 degree shift in water temperature that leads to a phase transition. For instance,
does increasing network density from one specific value to the next lead to radical changes at the
macro-level? Those analyses could allow the robust identification of the drivers of policymaking. As
such, they can then be used to generate recommendations on how to design policy processes.

This five-step process allows researchers to move from the conceptual models, often described in
policy process studies, to the exploration of common signatures of complex policymaking systems.
It is important to iterate on these five steps, instead of trying to perfect each of them only once. The
questions in the following two sections relate to modeling particular phenomena in policy process
studies and avenues to be explored with this process.

Applying this five-step process to policy process studies highlight at least five areas of progress.
First, it is important to carefully select which concept of policy process studies deserve formalization
and then identify promising tools. Second, once the approach provides isolated formal components
of policy processes, one can select and assemble them to design models. Models will be used to
elicit dynamics that can be validated theoretically. The idea is to check whether results come close
to the expectations in the literature. Third, more effort must be put into collecting data on the
characteristics, behavior and network connection of policy actors. Building datasets of micro-level
determinants is crucial to advance empirical research and examine how micro-level dynamics lead
to macro-level outcomes. Fourth, models can be expanded and seeded and validated with empirical
data. Fifth, empirically-validated models can then be used to explore counterfactual scenarios and
identify critical points of policymaking systems. These five steps can apply to single projects but
also to the entire field of computational policy process studies. As computational projects multiply,
they can feed into each other and contribute to a better understanding of how to model policy
processes, increased data validity, and the identification of key critical points.

B.5. A case study in opinion dynamics

Using the above five-step process, we illustrate the crucial step that policy process studies should
take more often – model formalization. We retrace what makes for a successful formal model of
social dynamics. We aim to highlight advantages and challenges on the path to attain a causal
model and with it a mechanistic explanation of policy processes. It is in principle hard to make
a precise verbal explanation such that it uniquely defines a system in its micro- and macro-states.
Or even to prove a causal relationship between them. The immediate payoff of any formal model
of the policy process is a proof-of-concept for the internal consistency of stated axioms, enabling
us to explore scenarios and generate hypotheses. A prominent example being Axelrod’s computer
tournaments to find optimal strategies for the iterated prisoner’s dilemma (Axelrod & Hamilton,
1981). After finding the winning strategy (“tit-for-tat”), Axelrod et al. could provide an explanation
of why such behavior is common in any species with similar selection pressure. However, the process
of policymaking constitutes an open system, meaning that it is highly interconnected on many
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different levels of abstraction with some larger system, outside the scope of any modeling attempt.
Consequently, models of such systems will most likely be unsuitable for forecasting and restricted to
improving the qualitative understanding of each constituent’s contribution to the overall dynamics.

For example, R. Hegselman and U. Krause followed these considerations when developing their
model of opinion dynamics (Hegselmann, Krause, et al., 2002). The goal of their model was specified
as providing mechanistic explanations for the process of opinion fragmentation. What are the con-
ditions for consensus or polarization to emerge? The first step was to formulate axiomatic rules that
they believed to be the essential rules of the process. The second step was to define a correspond-
ing formal mathematical framework that, besides allowing for further extensions, most importantly
answered the following question: To what extent do the system dynamics follow from stated as-
sumptions? In what follows, we retrace their approach and formalization and, thus, illustrate the
process of formalizing social phenomena:

With n as the number of agents contained in the considered population, some discrete-time
T = 1, 2, ... and some continuous opinion dynamics model are defined. We then want to define
the most basic updating mechanism for each actor, namely taking the average over the opinion of
neighboring agents and the agent’s own opinion. However, actors do not weigh everyone’s opinion
equally. Therefore we define weights for all connections in the undirected network, resulting in the
adjacency matrix A := (aij) for the network. As such, the updating mechanism can be compactly
written as:

x(t+ 1) = A(t,x(t)) · x(t) for t ∈ T

We are now able to translate the initial more general research question into a more formal
language: How does a given initial opinion profile of the entire network influence the final opinion
distribution? Equipped with this formalization we can now investigate the most basic case with A
as a stochastic matrix. This allows estimating convergence time to the steady-state depending on
the structure of A. We identify the network structure and opinion updating rule of each actor as
the key elements that dictate the dynamics. Hence, making them the focus of further analytical and
empirical analysis (Hegselmann et al., 2002).

Building on this minimal model, Hegselman and Krause introduced many interesting extensions,
such as the property of susceptibility for each actor or “hardening of positions” where actors weigh
their own opinion more strongly over time. Moreover, they analyzed non-linear extensions, which
were introduced by defining conditions under which weights can become zero - meaning actors are
ignoring each other. One possible implementation is to define a confidence level ϵi to each agent
similar to the Deffuant-Weisbuch model (Deffuant, Neau, Amblard, & Weisbuch, 2000). Such models
are called bounded confidence models, where the confidence level acts as a threshold parameter
that defines the level of discrepancy of opinions beyond which actors ignore each other. Further
research investigated the implications of asymmetric confidence intervals between the agents and of
the underlying network structure. From this we learn that choosing the right level of abstraction
(i.e. minimal model) is essential and allows for useful extensions at a later point. Ideally, we do not
arrive at a single, large and specific self-consistent model, but rather at a cluster of different models
exploring implications of different assumptions.
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