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Spatial predator-prey models have been studied by researchers for many years, because the exact distributions of the population
can be well illustrated via pattern formation. In this paper, amplitude equations of a spatial Holling–Tanner predator-prey model
are studied via multiple scale analysis. First, by amplitude equations, we obtain the corresponding intervals in which different
kinds of patterns will be onset. Additionally, we get the conclusion that pattern transitions of the predator are induced by the
increasing rate of conversion into predator biomass. Specifically, pattern transitions of the predator between distinct Turing
pattern structures vary in an orderly manner: from spotted patterns to stripe patterns, and finally to black-eye patterns. Moreover,
it is discovered that pattern transitions of prey can be induced by cross-diffusion; that is, patterns of prey transmit from spotted
patterns to stripe patterns and finally to a mixture of spot and stripe patterns. Meanwhile, it is found that both effects of cross-
diffusion and interaction between the prey and predator can lead to the complicated phenomenon of dynamics in the system
of biology.

1. Introduction

Analysis of the dynamics of the predator-prey model is one
of the most interesting topics in mathematics as well as in
ecology. A variety of predator-prey models [1–7] that
provide deep insight into the dynamical behaviors among
interacting multiple species have already been investigated
by many scholars in the past several decades. Pattern for-
mation has already been analyzed in ecosystems [8–11] and
epidemics for many years [12, 13]. In particular, pattern
formation of the spatiotemporal predator-prey model has
been avidly studied in recent decades [14–20] due to the
following importance of the spatial patterns. First, the exact
distributions of the population in both the spatial scale and
time dimension can be well depicted by pattern formation.
Second, further information on the evolution rules of in-
dividuals can be provided by spatial patterns. Finally, the
influence of individual mobilities of one species on the other,

such as stability and oscillatory dynamics, can be illustrated
by spatial patterns.

One of the predator-prey models is Leslie predator-prey
model which was first introduced by Leslie [21] and takes the
form

dN

dτ
� ϕ(N)N − ψ(N)P,

dP

dτ
� θP 1 −

hP

N
 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where N and P stand for the population of prey and
predator, respectively, at time τ. θ is the intrinsic growth rate
of predator. h is the conversion factor of prey into predators.
ϕ(N) describes the specific rate of the prey if there is no
predator. ψ(N) is the predator function response to prey.
-e predator’s grow obeys logistic law, where the term N/h
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means the carrying capacity of predator’s environment
which is proportional to the prey density. Robert May de-
veloped the Leslie predator-prey model by incorporating
Holling type functional response [22, 23] to depict the
predation rate. -is model is known as Holling–Tanner
model. Holling–Tanner model is suitable for ecological
systems such as mite/spider mite, lynx/hare, sparrow/
sparrow hawk, and so on [24–26]. In addition, it is assumed
that the functional response is expressed by Holling type III
response function [27, 28], i.e., ψ(N) � mN2P/aN2 + 1,
which is more suitable for the population of vertebrates.
When the prey grows logistically with growth rate r and
carrying capacity K in the absence of predator, i.e.,
ϕ(N) � r(1 − N/K), we obtain the following Hol-
ling–Tanner model with Holling type III functional
response:

dN

dτ
� rN 1 −

N

K
  −

mN
2
P

aN
2

+ 1
,

dP

dτ
� θP 1 −

hP

N
 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where a is the half-saturation constant. m is the maximum
number of the prey that predator can capture per unit time.

It is well known that spatial motion in predator–prey
models includes both self-diffusion and cross-diffusion. Self-
diffusion denotes the random individual mobility and in-
dicates themovement of individuals from a higher- to lower-
concentration region [29]. -e concept of cross-diffusion
was first proposed by Kerner [30] and was then introduced
into the competitive species system [31, 32]. Taking the

prey–predator model as an example, cross-diffusion terms
explain the following biological meaning: predator species
will move towards various directions and affect the density
of different prey species at distinct places, and vice versa [33].
-e mutual migration among species is typical cross-dif-
fusion. Several phenomena cannot be well explained by only
incorporating the self-diffusion term [34]; for example, there
is no Turing instability in the Lotka–Volterra competitive
model when only self-diffusion has been incorporated. Once
the cross-diffusion term is taken into account, the above
model can induce Turing instability under certain condi-
tions. Numerous works are relevant to spatial motion
[35–40]. Peng R demonstrated that cross-diffusion can in-
duce stationary effects [41]. Oeda studied a predator-prey
model with cross-diffusion and proposed a protection zone
for the prey and concluded that the prey will survive because
of the benefits of effects of cross-diffusion on the prey when
several conditions are satisfied [42]. An attempt is made in
this paper to understand the effect of cross-diffusion on the
prey-predator model as well.

It is clear that both intrinsic interaction between the prey
and predator and the cross-diffusion affect the dynamics of
the population in the predator-prey model with cross-dif-
fusion. Our aim is to explore such effects. Moreover, most
predator-prey models are nonlinear systems in order to
reflect the real world [43, 44]. -e nonlinear system should
be approximated more accurately than in linear stability
analysis. Based on Q. Ouyang’s work [45], multiple scale
analysis is used to study a ratio-dependent predator-prey
model with spatial motion in the present paper. Let N and P

stand for the density of the prey and predator, respectively.
-e model is expressed as

zN

zτ
� rN 1 −

N

K
  −

mN
2
P

aN
2

+ 1
+ D11∇

2
N + D12∇

2
P, (y, τ) ∈ Ω ×(0,∞),

zP

zτ
� θP 1 −

hP

N
  + D21∇

2
N + D22∇

2
P, (y, τ) ∈ Ω ×(0,∞),

zN(y, τ)

zn
�

zP(y, τ)

zn
� 0, (y, τ) ∈ zΩ ×(0,∞),

N(y, 0) � N0 > 0, y ∈ Ω,

P(y, 0) � P0 > 0, y ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where Ω represents the bounded domain in R2, and zΩ is the
smooth bound ofΩwith n being its external unit normal vector.
-emeanings and values of the parameters are given in Table 1.

Introducing the dimensionless variables
u � N/K, v � mKP/r, and t � rτ, then system (3) can be
transformed into
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zu

zt
� u(1 − u) −

u
2
v

eu
2

+ v
+ d11∇

2
u + d12∇

2
v, (y, t) ∈ Ω ×(0,∞),

zv

zt
� vη 1 −

cv

u
  + d21∇

2
u + d22∇

2
v, (y, t) ∈ Ω ×(0,∞),

zu(y, t)

zn
�

zv(y, t)

zn
� 0, (y, t) ∈ zΩ ×(0,∞),

u(y, 0) � u0 > 0, y ∈ Ω,

v(y, 0) � v0 > 0, y ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where η � θ/r, e � aK2, c � hr/mK2, d11 � KD11/r, d12 �

rD12/m2K3, d21 � mK3D21/r2, and d22 � D22/mK.
-e rest of this paper is organized as follows. In Section

2, several conditions for the onset of the Turing instability
are derived by bifurcation analysis. To show the results, an
example is also provided. In Section 3, the amplitude
equations near the Turing bifurcation point are obtained by
virtue of weakly nonlinear analysis. To illustrate the theo-
retical analysis, a numerical simulation is conducted in
Section 4. Moreover, pattern transitions of both the predator
induced by parameter c and prey induced by parameter d12
are obtained by simulations. Pattern transitions are obtained
both by the biomass from prey to predator and by the cross-
diffusion of the prey. -e results reveal the complicated
mutual effects of cross-diffusion and the intrinsic mecha-
nism, e.g., biomass on the predator-prey system.

2. Bifurcation Analysis

We will show the Turing domain through bifurcation
analysis in this section; for details of linear stability analysis
of the existence, local stability, and the types of the positive
equilibrium of model (4), the reader is referred to [46], while
in the following, a concrete example is given to show the
existence and stability of positive equilibrium. For conve-
nience, let

u(1 − u) −
u
2
v

eu
2

+ 1
≜f(u, v), vη 1 −

cv

u
 ≜g(u, v) . (5)

Without loss of generality, let E∗(u∗, v∗) be the positive
equilibrium of model (4). System (4) can be linearized at
E∗(u∗, v∗),

zA

zt
� JA + DLA, (6)

where

A �
u − u
∗

v − v
∗ ,

J �
fu fv

gu gv

 ,

D �
d11 d12

d21 d22
 ,

L �
∇2 ∇2

∇2 ∇2
⎛⎝ ⎞⎠,

(7)

where

fu �
−2e u

∗
( 

3
+ e u

∗
( 

2
− 1

e u
∗

( 
2

+ 1
,

fv �
− u
∗

( 
2

e u
∗

( 
2

+ 1
,

gu �
η
c

, gv � −η,

(8)

and obviously,

tr(J) � fu + gv, det(J) � fugv − fvgu. (9)

We will give a concrete value of the equilibrium
E∗(u∗, v∗) as an example of the existence and stability of the
equilibrium with the other values of parameters shown in
Table 2.

Next, expand Â in Fourier space, that is, substituting

A �
c
1
k

c
2
k

⎛⎝ ⎞⎠e
λkt+ik·r

, (10)

into (6), where k � (kx, ky), r � (x, y). Following charac-
teristic equation is obtained:

λ2k − trkλk + Δk � 0, (11)

where

trk � fu + gv(  − k
2

d11 + d22( ,

Δk � fugv − fvgu − k
2

d22fu + d11gv − d12gu + d21fv(  

+ d11d22 − d12d21( k
4
,

(12)

and the eigenvalue of (11) is given as

λk �
trk ±

��������

tr
2
k − 4Δk



2
. (13)

Table 1: -e meaning of parameters in model (3).

Parameter Value Meaning
r Positive Prey’s intrinsic growth rate
m Positive Capturing rate
a Positive Half-saturation constant
θ Positive Predator’s intrinsic growth rate
K Positive Carrying capacity

h Positive Conversion rate of biomass from prey to
predator

D11 Positive Diffusion coefficient of prey
D22 Positive Diffusion coefficient predator
D12 Negative Cross-diffusion coefficient of prey
D21 Positive Cross-diffusion coefficient of predator
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Hopf bifurcation occurs when the conditions
Re(λk) � 0, Im(λk)≠ 0, tr(J) � 0, and det(J)> 0, at k � 0,
are satisfied. When conditions such as Re(λk) � 0 and
Im(λk) � 0, which require Δk � 0 at k � kT, are satisfied,
Turing bifurcation appears, and

k
2
T �

�������������
fugv − fvgu

d11d22 − d12d21



. (14)

Substituting (14) into ΔK � 0, the expression of cT, the
value of which is the critical value for the appearance of
Turing bifurcation, is obtained:

cT �

−d11d12ηu
2
e − 2d12d22u

3
e + d12d22u

2
e + 2d11d22u

2
− d12d21u

2
− d11d12η − d12d22+

2

2d11d
2
12e

2ηu5d22 − 2d3
12e

2ηu5d21 − d11d
2
12e

2ηu4d22 + d3
12e

2ηu4d21 − d2
11d12eηu4d22

+d11d
2
12eηu4d21 − 2d11d12eu5d2

22 + 2d11d
2
12eηu3d22 + d11d12eu4d2

22 − 2d3
12eηu3d21−

d2
12eu4d21d22 + 2d12eu5d21d22 + d2

11u
4d2

22 − d11d12u
4d21d22 − d2

11d12ηu2d22 + d11d
2
12ηu2d21−

d11d12u
2d2

22 + d2
12u

2d21d22 + d11d
2
12ηd22 − d3

12ηd21

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η eu
2

+ 1 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d
2
11e

2
u
4η2 − 4d11e

2ηu
5
d22 + 8d12ηu

5ε2d21 + 4e
2
u
6
d
2
22+

2d11e
2ηu

4
d22 − 4d12e

2ηu
4
d21 − 4e

2
u
5
d
2
22 − 2d11eηu

4
d21 + e

2
u
4
d
2
22 − 4eu

5
d21d22+

2d
2
11eη

2
u
2

− 4d11eηu
3
d22 + 8d12eηu

3
d21 + 2eu

4
d21d22 + 4eu

3
d
2
22 + u

4
d
2
21−

2d11ηu
2
d21 − 2eu

2
d
2
22 + d

2
11η

2
− 2u

2
d21d22 − 2d11ηd22 + 4d12ηd21 + d

2
22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(15)

When the values of the parameters are set as
η � 0.8, e � 130, d11 � 0.1, d22 � 8.5, d12 � 0.008, and
d21 � −0.08, let Turing domain denote the area where Turing

patterns will be observed. Turing domain and the real part of
λk of model (4) can be plotted as shown in Figure 1 and
Figure 2, respectively.

Table 2: A concrete example to illustrate the existence and stability of the equilibrium E∗(u∗, v∗).

η c e u∗ v∗ tr(J) det(J)

0.5 0.001455604076 900 0.25 171.75 −0.026008734 0.1381004367

Turing domain

0.3 0.4 0.5 0.6 0.7 0.80.2 1.00.9
η

0

0.002

0.004

0.006

0.008

0.010

γT

Hopf curve
Turing curve

Figure 1: Turing domain of model (4).
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3. Multiple Scale Analysis

To obtain the intervals of the control parameter for different
types of patterns, the amplitude equations for Turing pat-
terns of system (4) are analyzed via multiple scale analysis
[45, 47] near the branch point in this section, with c and cT

being the control parameter and bifurcation threshold, re-
spectively. Near c � cT, the solution of system (4) is

u

v
  � 

3

j�1

A
u
j

A
v
j

 e
ikj ·r

+ c.c . . . , (16)

where |kj| � kT, Au
j , Av

j stand for the amplitude of the
pattern, and c.cstands for the conjugate item.



3

j�1

A
u

j

A
v

j

⎛⎝ ⎞⎠e
− ikj ·r

. (17)

System (4) can be written at E∗(u∗, v∗) as

zX

zt
� LX + N, (18)

where

L �
fu + d11∇

2
fv + d12∇

2

gu + d21∇
2

gv + d22∇
2

⎛⎜⎝ ⎞⎟⎠,

N �

1
6
f111u

3
+
1
6
f222v

3
+
1
6

f112 + f121 + f211( u
2
v +

1
6

f122 + f212 + f221( uv
2

+
1
2

f12 + f21( uv +
1
2
f11u

2
+
1
2
f22v

2

1
6
g111u

3
+
1
6
g222v

3
+
1
6

g112 + g121 + g211( u
2
v +

1
6

g122 + g212 + g221( uv
2

+
1
2

g12 + g21( uv +
1
2
g11u

2
+
1
2
g22v

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(19)

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

Re
 (λ

k)

1 1.5 20.5
k

γ= 0.007201696437

γ= 0.009
γ= 0.005

Figure 2: Dispersion relation of system (4), which shows the real part of eigenvalues λk of model (4).
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c, X, t, and N then can be expanded around the
threshold cT as follows. -e specific expressions of h2 and h3
are

cT − c � εc1 + ε2c2 + . . . ,

X �
u

v
  � ε

u1

v1
  + ε2

u2

v2
  + ε3

u3

v3
  + o ε4 ,

t � T0 + εT1 + ε2T2,

N � ε2h2 + ε3h3 + o ε4 ,

(20)

where the specific expressions of h2 and h3 are

h2 �

1
2
f11u

2
1 +

1
2

f12 + f21( u1v1 +
1
2
f22v

2
1

1
2
g11u

2
1 +

1
2

g12 + g21( u1v1 +
1
2
g22v

2
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

h3 �

1
6
f111u

3
1 +

1
6
f222v

3
1 +

1
6

f112 + f121 + f211( u
2
1v1 +

1
6

f122 + f212 + f221( u1v
2
1 + f11u2u1 + f22v2v1 +

1
2

f12 + f21(  u2v1 + u1v2( 

1
6
g111u

3
1 +

1
6
g222v

3
1 +

1
6

g112 + g121 + g211( u
2
1v1 +

1
6

g122 + g212 + g221( u1v
2
1+g11u2u1 + g22v2v1 +

1
2
g12 + g21 u2v1 + u1v2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(21)

Meanwhile, the operator L can be expanded by Taylor
expansion and can be written as

L � LT + cT − c( M, (22)

where

LT �
fu + d11∇

2
fv + d12∇

2

g
∗
u + d21∇

2
gv + d22∇

2
⎛⎜⎜⎝ ⎞⎟⎟⎠,

g
∗
u �

η
cT

,

M �

0 0

η
c
2
T

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(23)

Let

A
j

�
A

u
j

A
v
j

⎛⎝ ⎞⎠. (24)

zAj/zT0 � 0 is satisfied, because the amplitude is a slow
variable. For the derivation of the amplitude, one has

zA
j

zt
� ε

zA
j

zT1
+ ε2

zA
j

zT2
+ . . . . (25)

Substituting (20)–(25) into (18) and collecting ε, ε2, and
ε3, one has the linear systems ε:

LT

u1

v1
  � 0. (26)

ε2:

LT

u2

v2

⎛⎝ ⎞⎠ �
z

zT1

u1

v1

⎛⎝ ⎞⎠ − d11M
u1

v1

⎛⎝ ⎞⎠ − h2 ≜
Fu

Fv

⎛⎝ ⎞⎠.

(27)

ε3:

LT

u3

v3

⎛⎝ ⎞⎠ �
z

zT1

u2

v2

⎛⎝ ⎞⎠ +
z

zT2

u1

v1

⎛⎝ ⎞⎠ − d11M

u2

v2

⎛⎝ ⎞⎠

− d22M
u1

v1

⎛⎝ ⎞⎠ − h3 ≜
Hu

Hv

⎛⎝ ⎞⎠,

(28)

where

Fu

Fv

  � 
3

j�1

F
j
u

F
j
v

 e
ikj ·r

+ c.c.. (29)

Hu

Hv

  � 
3

j�1

H
j
u

H
j
v

⎛⎝ ⎞⎠e
ikj ·r

+ c.c.. (30)

Solving equation (26) in the light of [36] one obtains the
solution of equation (26):
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u1

v1
  �

l

1
  W1e

ik1·r
+ W2e

ik2·r
+ W3e

ik3 ·r
  + c.c., (31)

where l � d12k
2
T − fv/fu − d11k

2
T, c.cdenotes complex con-

jugate, and Wi(i � 1, 2, 3) is the amplitude of the pattern for
the first-order perturbation with mode eikj ·r, the form of
which is determined by higher-order terms.

On the basis of the Fredholm solvability condition, (31)
is substituted into equation (27) to obtain the eigenvector of
the operator of L+

T,

1

l2
 e

−ikj ·r
+ c.c., (j � 1, 2, 3), (32)

where L+
T is the eigenvector of the zero eigenvalue of the

adjoint operator of LT, and

l2 �
k
2
Td12 − fv

gv − d22k
2
T

. (33)

-e orthogonality condition is given by

1, l2( 
F

i
u

F
i
v

⎛⎝ ⎞⎠ � 0(i � 1, 2, 3), (34)

and from (34), the following equalities are given:

l + l2( 
zW1

zT1
� c1l2l

η
c
2
T

W1 + f11l
2

+ f12 + f21( l + f22 + l2 g
∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22  W2W3,

l + l2( 
zW2

zT1
� c1l2l

η
c
2
T

W2 + f11l
2

+ f12 + f21( l + f22 + l2 g
∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22  W1W3,

l + l2( 
zW3

zT1
� c1l2l

η
c
2
T

W3 + f11l
2

+ f12 + f21( l + f22 + l2 g
∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22  W1W2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

where g∗ij denotes the outcome of c in gij replaced by cT .
Assume that the following expression is the solution of

equation (27),

u2

v2
  �

U0

V0
  + 

3

j�1

Uj

Vj

⎛⎝ ⎞⎠e
ikj ·r

+ 
3

j�1

Ujj

Vjj

⎛⎝ ⎞⎠e
i2kj ·r

+
U12

V12
 e

i k1− k2( )·r

+
U23

V23
 e

i k2− k3( )·r
+

U31

V31
 e

i k1− k1( )·r
+ c.c., .

(36)

Substituting (36) into (27) and collecting the coefficients
of exp(0), exp(ikj · r), exp(i2kj · r), and exp(i(kj − ki) · r),
the following expressions are obtained:

U0

V0
  �

u0

v0
  W1



2

+ W2



2

+ W3



2

 ,

Uj � lVj,

Ujj

Vij

⎛⎝ ⎞⎠ ��
u11

v11
 W

2
j ,

Umn

Vmn

  �
umn

vmn

 WmWn,

(37)

where

u0

v0

⎛⎝ ⎞⎠ �
1

fugv − fvg
∗
u

·

−gv f11l
2

+ f12 + f21( l + f22  + fv g
∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22 

−fu g
∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22  + g

∗
u f11l

2
+ f12 + f21( l + f22 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

u11

v11

⎛⎝ ⎞⎠ �
1
2

·
1

fu − 4k
2
Td11  gv − 4k

2
Td22  − fv − 4k

2
Td12  g

∗
u − 4k

2
Td21 

·

− gv − 4K
2
Td22  f11l

2
+ f12 + f21( l + f22  + fv − 4k

2
Td12  g

∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22 

− fu − 4k
2
Td11  g

∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22  + g

∗
u − 4k

2
Td21  f11l

2
+ f12 + f21( l + f22 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

um

vmn

⎛⎝ ⎞⎠ �
1

fu − 4k
2
Td11  gv − 4k

2
Td22  − fv − 4k

2
Td12  g

∗
u − 4k

2
Td21 

·

− gv − 4K
2
Td22  f11l

2
+ f12 + f21( l + f22  + fv − 4k

2
Td12  g

∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22 

− fu − 4k
2
Td11  g

∗
11l

2
+ g
∗
12 + g

∗
21( l + g

∗
22  + g

∗
u − 4k

2
Td21  f11l

2
+ f12 + f21( l + f22 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

(38)
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Using the Fredholm solvability condition, one obtains

1, l2( 
H

j
u

H
j
v

⎛⎝ ⎞⎠ � 0(j � 1, 2, 3). (39)

Equation (39) yields

l + l2( 
zV1

zT1
+

zW1

zT2
  � ll2

η
c
2
T

c1V1 + c2W1(  + A V2W3 + V3W2(  + B1 W1



2

+ B2 W2



2

+ W3



2

  W1,

l + l2( 
zV2

zT1
+

zW2

zT2
  � ll2

η
c
2
T

c1V2 + c2W2(  + A V1W3 + V3W1(  + B1 W2



2

+ B2 W1



2

+ W3



2

  W2,

l + l2( 
zV3

zT1
+

zW3

zT2
  � ll2

η
c
2
T

c1V3 + c2W3(  + A V1W2 + V2W1(  + B1 W3



2

+ B2 W1



2

+ W2



2

  W3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

where
A � lm1 + n1(  + l2 lm2 + n2( ,

B1 � am1 + a1n1 +
P1

2
  + l2 am2 + a1n2 +

P2

2
 ,

B2 � bm1 + b1n1 + P1(  + l2 bm2 + b1n2 + P2( ,

a � u0 + u11, b � u0 + umn,

a1 � v0 + v11, b1 � v0 + vmn,

m1 � f11l +
1
2

f12 + f21( , n1 � f22 +
1
2

f12 + f21( l,

m2 � g
∗
11l +

1
2

g
∗
12 + g

∗
21( , n2 � g

∗
22 +

1
2

g
∗
12 + g

∗
21( l,

P1 � f111l
3

+ f112 + f121 + f211( l
2

+ f122 + f212 + f221( l + f222,

P2 � g
∗
111l

3
+ g
∗
112 + g

∗
121 + g

∗
211( l

2
+ g
∗
122 + g

∗
212 + g

∗
221( l + g222,

(41)

where g∗ijk denotes the outcome of c in gijk replaced by cT.
-rough the above expression, together with (13) and the

following formula

Ai � A
u
i � LAv

i , (i � 1, 2, 3), (42)

one has the amplitude equations for patterns of system (4):

τ0
zA1

zt
� μA1 + hA2A3 − g1 A1



2

+ g2 A2



2

+ A3



2

  A1,

τ0
zA2

zt
� μA2 + hA1A3 − g1 A2



2

+ g2 A1



2

+ A3



2

  A2,

τ0
zA3

zt
� μA3 + hA1A2 − g1 A3



2

+ g2 A1



2

+ A2



2

  A3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

where

τ0 �
l + l2( cT

ll2η
,

μ �
c

T
1 − c1

cT

,

h �
AcT

l
2
l2η

,

g1 � −
B1cT

l
3
l2η

,

g2 � −
B2cT

l
3
l2η

.

(44)

Based on [45] and the above analysis, we get the intervals
for the pattern selection, i.e., the corresponding intervals for
different kinds of pattern being observed. -e results pre-
sented in Table 3 are obtained.

4. Numerical Simulations of Patterns

In this section, the value of c is chosen and numerical sim-
ulations are performed to verify the theoretical results. Model
(4) is simulated via a finite difference approximation for spatial
derivatives and the Euler method is employed. -e zero-flux
boundary condition with 200 × 200 lattice sites is employed,
and the space step Δh � 1 and time step Δt � 0.01 are set. -e
simulation is run until the pattern features no longer vary. For
the similar distributions on prey and predator, the predator’s
pattern is chosen to illustrate details of the investigation.

4.1. Selection of the Predator’s Pattern. -e aim here is to
verify the theoretical analysis presented in Section 3 and
determine whether the patterns arise in their corresponding
Turing domains as given in the preceding section. First, the
other parameters in system (4), shown in Table 4, are fixed
and the value of c is varied. -e values of parameters in
amplitude equation (43) are then calculated in Table 5.
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For c � 0.0134, one has μ2 < μ � 0.0068256080< μ3. On
the basis of the results obtained in Section 3, the unstable
spot pattern Hπ of the predator is obtained as shown in
Figure 3(a). To show the instability of the Hπ spot pattern,
by changing the value of c slightly, namely, c � 0.0131
and c � 0.0121, where μ2 < μ � 0.0290608556< μ3 and
μ2 < μ � 0.1031783475< μ3, it can be seen from Figure 3 that
spot pattern Hπ turns into an unstable mixture of cold spots
and stripe patterns in Figure 3(b) and stripe pattern in
Figure 3(c). -is mathematical analysis is consistent with
numerical simulation.

For c � 0.0118, μ3 < μ � 0.1254135951< μ4, in light of
the results presented in Table 3, a stable mixture of a hot
spots and stripes pattern is obtained. Figure 4 shows the
evolution of the mixture of hot spots and stripes of the
predator. -e numerical simulation verifies the theoretical
analysis. Moreover, when c � 0.0105 is chosen, corresponding
to μ3 < μ � 0.2217663346< μ4, the H0 spot pattern is obtained.
Figure 5 shows the iterations of the hot spot pattern.

4.2. Pattern Transitions of the Predator Induced by Parameter
c. In this subsection, how the spatial distribution of the
predator transforms as the conversion rate of the prey into
predator biomass changes is investigated. -e values of the

other parameters are set in Table 6, and the value of c is
increased gradually. Specifically, when c is set as
c � 0.007041633659, the hot spot pattern will dominate the
entire spatial region in Figure 6(a). In Figure 6(b), when c �

0.008509501103 is chosen, then the mixture of hot spots and
stripes arises. When c increases to 0.009 332 994 621, only a
stripe pattern can be simulated in Figure 6(c). When c grows
further to c � 0.01032204568, the mixture of cold spots and
stripes occurs as shown in Figure 6(d). Finally, when c

becomes even larger, i.e., c � 0.01092704597, the cold spot
pattern shown in Figure 6(e) manifests. Figure 6 shows not
only the regular changes of the pattern transition, but also
that the density of the predator increases from 31 to 31.5
gradually as the c value increases. Since c is the amount of
the prey captured by every predator, the larger the value of
parameter c, the more food the predator will eat. From the
biological perspective, the more food the predator eats, the
larger the predator population will be. In other words, our
results are consistent with the real case in the ecosystem.

4.3. Pattern Transitions of Prey Induced by Parameter d12.
-e influence of cross-diffusion on system (4) is studied
here. Several values of the parameters are given in Table 7.
-e value of the cross-diffusion parameter d12 is

Table 3: Pattern selection of model (4).

μ Pattern Stability
μ2 < μ � 0.0068256080< μ3 Hπ spot pattern Unstable
μ2 < μ � 0.0290608556< μ3 Mixture of cold spots and stripe patterns Unstable
μ2 < μ � 0.1031783475< μ3 Stripe pattern Unstable
μ3 < μ � 0.1254135951< μ4 Mixture of hot spots and stripe patterns Bistable
μ3 < μ � 0.2217663346< μ4 H0 spot pattern Unstable

Table 4: Parameters set in system (4).

η e d11 d22 d12 d21

1.4 100 0.123 12 0.006 −0.07

Table 5: Parameters calculated in system (4).

cT g1 g2 h μ1 μ2 μ3 μ4
0.013492091 73 11.852514 87 71.487989 95 5.892541 152 −0.05606532777 0 0.115719457 9 0.929 39

24.5

24

23.5

23

22.5

(a)

24.5

24

23.5

23

22.5

22

(b)

24.5
24
23.5
23
22.5
22
21.5
21

(c)

Figure 3: Unstable spot pattern, mixture of spots and stripes patterns, and stripe pattern of the predator. Other parameters are set as in
Table 4, and (a) c � 0.0134, (b) c � 0.0131, and (c) c � 0.0121.
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21.902

21.9

21.898

21.896

21.894

21.892

(a)

23.5

24

23

22.5

22

21.5
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(b)

24.5

24

23.5

23

22.5

22

21.5

21

20.5

(c)

24.5

25

24

23.5

23

22.5

22

21.5

21

20.5

(d)

Figure 4: Iterations of the mixture of hot spots and stripes of the predator with c � 0.0118; the other parameters are set as in Table 4.
Iterations: (a) 0, (b) 15,000, (c) 50,000, and (d) 100,000.
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20.05

20.048
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20.044
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23.5
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22.5

22

21.5

21

(b)

Figure 5: Continued.
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decreased. When fixing d12 as 0.01, the spot pattern shown
in Figure 7(a) can be simulated. When d12 decreases to
0.006, the mixture of hot spots and stripes emerges, as
shown in Figure 7(b). In Figure 7(c), a stripe pattern arises
as d12 further decreases to 0.004. Finally, the entire spatial
domain is filled in with cold spots and stripes when d12 is
chosen only as 0.001. Figure 7 shows the regular changes
of the pattern transition with the density of the prey

increasing from 0.5 to 0.6 gradually as the value of d12
decreases. 12 is the cross-diffusion rate of the prey when
the prey species encounters the predator. In other words,
the larger the value of 12, the greater the chance that the
prey will encounter the predator; that is, the prey will be at
greater risk of being eaten by the predator as the prey’s
population decreases. -is result has a clear biological
meaning.

24.5

24

23.5

23

22.5

22

21.5

21

20.5

20

19.5

(c)

24.5

24

23.5

23

22.5

22

21.5

21

20.5

20

19.5

(d)

Figure 5: Iterations of hot spot pattern of the predator with c � 0.0105; other parameters are set as in Table 4. Iterations: (a) 0, (b) 20,000,
(c) 30,000, and (d) 100,000.

Table 6: Parameters set in system (4).

η e d11 d22 d12 d21

0.8 130 0.1 8.5 0.008 −0.08

31
30
29
28
27
26
25
24

(a)

31

30

29

28

27

26

25

(b)

32

31

30

29

28

27

26

(c)

32

31

30

29

28

27

(d)

32.5
32
31.5
31
30.5
30
29.5
29
28.5
28

(e)

Figure 6: Spatial patterns of the predator induced by conversion rate of prey into predator biomass; other parameters are set as in Table 5.
(a) c � 0.007041633659, (b) c � 0.008509501103, (c) c � 0.009332994621, (d) c � 0.01032204568, and (e) c � 0.01092704597.
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5. Conclusion and Discussion

A prey-predator model of Holling–Tanner type with cross-
diffusion was studied. Pattern selection and formation of the
model were analyzed via weakly multiple scale analysis. First,
the condition for the Turing instability of the model was
obtained.-en, by choosing c as a bifurcation parameter, the
amplitude equations were deduced and the Turing pattern
selection of model (4) presented.-e theoretical analysis was
verified by numerical results, as follows: An unstableHπ spot
pattern, unstable mixture of cold spots and stripes, and
unstable stripe pattern appear, when μ satisfies
μ2 < μ � 0.0068256080< μ3, μ2 < μ � 0.0290608556< μ3 and
μ2 < μ � 0.1031783475< μ3, respectively. -e stable mixture
of spots and stripes arises when μ3 < μ � 0.1254135951< μ4
holds. Finally, it was found that the conversion of biomass
from prey to predator, as well as cross-diffusion, can also
result in the transition of the patterns. Compared with [9],
we not only computed the interval of pattern selection
mathematically, but also obtained the Turing pattern

corresponding with the interval. Moreover, we studied the
prey-predator model of Holling–Tanner type with cross-
diffusion explosively, from aspects of pattern selection and
the influence of the cross-diffusion and the intrinsic factor of
conversion rate of biomass from prey to predator with rich
numerical simulations.

Cross-diffusion terms explain the influence of the
population density of one species on the movement of other
species apart from random diffusion (i.e., self-diffusion) of
both species. Our numerical results about pattern transitions
of prey induced by parameter d12 reveal that the more
frequent the prey moves, the greater chance the prey will be
at greater risk of population decreasing.-is helps us further
understand the cross-diffusion induced change of dynamics.
Besides, together with our results about pattern transitions
of the predator induced by parameter conversion rate of
biomass from prey to predator, which is an intrinsic factor of
prey-predator model, our study indicates that the real in-
trinsic mutual influence between prey and predator, along
with the inherent mechanism of cross-diffusion, dominates

Table 7: Parameters set in system (4).

η e c d11 d22 d21

0.8 530 0.00204801456 0.2 12 −0.074

0.5
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0.1

(a)
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0.5
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0.3
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0.1
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Figure 7: Spatial patterns of prey induced by cross-diffusion. (a) d12 � 0.01, (b) d12 � 0.006, (c) d12 � 0.004, and (d) d12 � 0.001.
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the persistence or extinction of the entire biological system
[48]. Our results are general in nature and can be used to
study the effect of cross-diffusion on other prey-predator
models both analytically and numerically. However, we
mainly consider pattern transitions of prey induced by
parameter d12. Similarly, we can study pattern transitions of
prey induced by the other cross-diffusion parameter d21 and
compare the differences between pattern transitions induced
by d12 and d21 in our future study. Besides, we chose c as the
control parameter because c is the parameter that stands for
apparent relationship between the predator and prey. We
can also choose another parameter as the control parameter
to investigate the pattern transition in our future work.

Multiple scale analysis around the Turing bifurcation is
used to analyze the stability of different Turing patterns via
the amplitude equations. Our study gets the intervals for the
pattern selection. -ese results have been validated nu-
merically and they matched the theoretical analysis to a large
extent. Linear analysis is to analyze Turing bifurcation and
Turing domain. Compared with the linear analysis, multiple
scale analysis is to analyze the dynamical behavior of our
model in detail (i.e., pattern selection). However, one should
be aware that pattern selection is only meaningful when the
value of the controlled parameter is selected to be close to the
threshold of cT. Moreover, the method of the multiple scale
analysis may be applied in spatial epidemic models in the
future to gain further insight into the extinction and per-
sistence of a disease [49, 50]. Furthermore, we can take into
account the imprecise value of the parameter and study the
Turing patterns of an imprecise prey-predator model in
future study.
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