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'e relationship between size and performance of collaborative human small groups has been studied broadly across man-
agement, psychology, economics, sociology, and engineering disciplines. However, empirical research findings on this question
remain equivocal. Many of the earlier studies centered on empirical human-subject experiments, which inevitably involved many
confounding factors. To obtain more theory-driven mechanistic explanations of the linkage between group size and performance,
we developed an agent-based simulation model that describes the complex process of collaborative group decision-making on
problem-solving tasks. To find better solutions to a problem with given complexity, these agents repeatedly explore and share
solution candidates, evaluate and respond to the solutions proposed by others, and update their understanding of the problem by
conducting individual local search and incorporating others’ proposals. Our results showed that under a condition of ineffective
information sharing, group size was negatively related to group performance at the beginning of discussion across each level of
problem complexity (i.e., low, medium, and high). However, in the long run, larger groups outperformed smaller groups for the
problem with medium complexity and equally well for the problem with low complexity because larger groups developed higher
solution diversity. For the problem with high complexity, the higher solution diversity led to more disagreements which in turn
hindered larger groups’ collaborative problem-solving ability. Our results also suggested that, in small collaborative team settings,
effective information sharing can significantly improve group performance for groups of any size, especially for larger groups.'is
model provides a unified, mechanistic explanation of the conflicting observations reported in the existing empirical literature.
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1. Introduction

Collective decision-making is ubiquitous in social systems,
such as juries in the court [1, 2], political parties [3], sports
teams [4], and committees of specialists [5]. Group com-
position is critical to collective decision-making processes
and outcomes [6–8]. Research on group composition has
demonstrated promising achievements in diverse topics,
from demographic diversity [9–11], personality [12–14] to
cognitive ability [15, 16], and social status [17, 18]. However,
research on group size, as an important field in group
composition, failed to establish a definitive conclusion re-
garding the ideal group size for the highest group perfor-
mance. Some empirical research suggested that group size
was negatively related to group performance, because of
social loafing [19–22], poor group communication [23–25],
and difficulty in coordination [26, 27]. Other studies re-
ported a positive relationship between group size and group
performance [28–30] as larger groups were able to get access
to more resources, perspectives, and expertise. Meanwhile,
some research concluded that group size had a curvilinear
relationship with group performance such that having too
few or too many members would reduce performance
[31–33] because small groups might lack the diversity of
perspectives, whereas larger groups tended to divide into
subgroups which would hinder group outcomes. Some
empirical studies even found the group size to be unrelated
to group performance [34, 35].

Most of the reported research linking group size to group
performance centered on human-subject experiments,
which were limited in experimental settings, quantifying
task complexity, measuring temporal dynamics of group
interactions, and monitoring information transmission (or
sharing) within a group. However, these factors are critical
to collective decision-making and may also impact the ex-
perimental observations regarding group size and group
performance. Task complexity has been demonstrated to be
negatively related to group performance [36, 37]; mean-
while, groups of different sizes differed in performance on
simple tasks and more complex tasks [38]. Most of those
experimental studies were mainly based on simplified tasks
(e.g., rope pulling [22], clapping and shouting [25], unde-
manding paperwork processing [29], or simple brain-
storming [34]) as testing specific theoretical hypotheses
necessitated the exclusion of unrelated confounding factors.
A few empirical studies considered more complex tasks
[28, 38], yet they did not quantify the exact complexity of the
given tasks. Time is also a critical factor that cannot be
neglected in collective decision-making because groups can
learn and evolve [39]. 'e group mental models and the
group performance can also change over time [40, 41].
Experiments related to group size and performance were
generally completed in a limited time, which ignored the
process from group formation to maturation [39, 42]. Fi-
nally, information transmission (or sharing) can reduce
group conflicts, enhance group understanding, and improve
consensus in groups [43, 44], which is crucial but difficult to
observe or control in experiments. 'erefore, these

experimental limitations may lead to a large bias in the
research regarding the relationship between group size and
group performance.

In an effort to address these issues in lab or online
experimental studies, researchers have developed many
computational models regarding group research, such as
group development [45–48], group effectiveness and en-
hancements [49–53], information transmission [54, 55], and
leadership [56–58]. However, little modeling and simulation
research has explored the relationship between group size
and group performance.

To address the aforementioned limitations in the em-
pirical studies, we developed a mechanistic agent-based
model to theoretically explore the relationship between
group size and group performance, aiming at providing a
unifying explanation that can connect those conflicting
empirical observations reported in human-subject experi-
ments. In our model, the agents act with bounded ratio-
nality: each agent always makes the most logical, rational
choices using its own knowledge about the problem, but it is
not omniscient about the whole problem due to limited
information and potential knowledge biases. Using this
model, we examine the impact of task complexity, discussion
time, and information sharing on the process of collabo-
rative group decision-making. Our simulation results
revealed that the relationship between group size and per-
formance varied depending on task complexity, discussion
time, and ways of information sharing. Most of the reported
experimental observations can be explained by our simu-
lation results.

Many types of modeling techniques have been suc-
cessfully used to model and analyze collaborative decision-
making problems, such as agent-based modeling and sim-
ulation (ABMs) [59], companion modeling (ComMod) [60],
and differential equation-basedmodels [61]. In this work, we
chose the ABMs because they are straightforward, powerful,
and flexible in describing complex interactions among
discrete individuals. Furthermore, ABMs can capture
emergent phenomena from a microscopic level to a mac-
roscopic level in complex systems (e.g., human groups) and
provide a natural, interpretable description of a social sys-
tem.Many applications of ABMs range frommodeling agent
behavior in the stock market, human groups, and consumer
markets to disease spread and the development of biowarfare
[62].

2. Model Description

'e model simulates real-world collaborative problem-
solving in human groups that can be characterized as a
sequential search process [63, 64]. In the search process,
group members are directed at finding solutions that are
superior to those currently known. Based on this type of
search process, the model considers a small group consisting
of a specific number of interacting agents attempting to
search for the optimal solution to a given problem space.
Each agent tries to navigate the group discussion according
to its own knowledge of the problem. 'e collaborative
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decision-making process is modeled as a sequence of iter-
ative group discussion actions on the problem space, which
consists of five phases: (1) individual local search, (2) se-
lection of a speaker, (3) proposal of a new solution by the
speaker, (4) evaluation and response to speaker’s proposal by
the listeners, and (5) the overall response to the proposal at
the group level. Group members are assumed to be equally
located in a complete social network (i.e., each member can
interact with any other members). Note that these as-
sumptions are not applicable to large-scale groups because
large-scale groups often tend to decompose into small
clusters [65] or be organized in a structured organization
[66].

'e details of the agent-based model are described be-
low, which follows the ODD (Overview, Design concepts,
Details) protocol [67]. 'e hardware and software used in
this work are shown in Table 1. 'e codes for this model are
available from https://github.com/shun-cao/Agent-based-
model-for-group-size-and-performance.

2.1. Purpose. 'e purpose of our model is to study the effects
of time and task complexity on the relationship between
group size and performance in small group settings. 'e
model does not realistically replicate any empirically real-
world collaborative group process but instead aims at re-
vealing how group size affects group performance in distinct
situations based on some simplified observations and rea-
sonable assumptions.

2.2. Entities, State Variable, and Scales. 'e entities of the
model include problem spaces and agents that represent the
tasks and the group members, respectively. 'e temporal
scale is set as hours because collective decision-making
duration is often counted in working hours. Every time step
(i.e., every iteration) in computer simulation represents a
discussion round of a group.'e state variables in this model
include agent current solution and the corresponding utility,
agent memory, agent individual utility function, group so-
lution and the corresponding utility, and the ratio of
agreement in each discussion round. 'e detailed descrip-
tion of entities and state variables is as follows. Table 2 lists
all the state variables in this work.

2.2.1. Problem Space (Entity). 'e problem space is defined
as a tunable rugged space with interdependencies among
distinct dimensions. Each possible combination of choices is
represented by one point on the problem space, while the
height of each point represents the utility value of that
combination. 'e problem space incorporates multiple
peaks and valleys characterized by higher and lower utilities,
respectively. Roughly speaking, the complexity of the
problem space can be characterized by the number of peaks
and valleys. Searching for better solutions in this type of
problem space may indicate the creation of strategies in
business, the development of new products, the design
thinking process, the seeking scientific truth in nature, etc.,
which require considering multiple interdependent aspects

of the problems/projects simultaneously. Correspondingly,
the utility value of a solution represents the quality of a
strategy, a developed product, a new design, or research
finding, etc.

Mathematically, the problem space is defined on a
discrete space, S � [0, 1/n, . . . , n − 1/n, 1]m, where m is a
positive integer representing the dimensions of the problem
space, while n determines the number of choices in each
dimension. Each point in the space denotes one solution for
the problem.'us, there are total (n + 1)m possible solutions
in the problem space. Each solution has a utility that rep-
resents its quality (the higher the better). 'e assignment of
utility values over the problem space is defined in the fol-
lowing way.

First, h representative solutionsH � vi | i � 1, . . . , h  are
randomly generated and assigned a utility value randomly
selected from Q � j/q | j � 1, . . . , q − 1  with selection
probability P(j/q) � 1 − (j/q− 1

1 j), where q is a constant.
'e quantity of representative solutions decides (not equals
to) the number of peaks and valleys in the problem space,
which is used as a tunable parameter for various complexity
of the problem space. 'is utility assignment assures that
solutions with higher utility are few, whereas solutions with
lower utility (including valleys) are many, which assures
there is only one optimal solution and the distance between
optimal and suboptimal solutions is large enough in the
problem space. 'is gives room for comparing the perfor-
mances of distinct groups in various situations. Second, to
make sure the range of the utility over the problem space is
[0, 1], we randomly choose one solution with minimum
utility and the other one with maximum utility from H and
replace their utilities with 0.0 and 1.0, respectively.'ird, the
true utility function of the problem space is defined over its
whole domain by interpolation using these H solutions and
the corresponding utility values:

UT(v) �


h
i�1 UT vi( D vi, v( 

− 2


h
i�1 D vi, v( 

− 2 , (1)

where v ∉ H is a solution for the problem, UT(vi) is the
utility value of the representative solution vi ∈ H, and
D(vi, v) is the Euclidean distance between vi and v. 'e
second and third steps of the definition of the problem space
are based on prior work [52, 56]. Formula (1) represents a
simple interpolating algorithm that computes a weighted
average of initially generated utility values (UT(vi)) using
normalized inverse square distances between initially gen-
erated solutions vi and a solution in question v. 'e designed
problem space in this work can be seen as a simple version of
the NK model that uses simulation methods to construct

Table 1: Configuration of the experimental platform.

Hardware
CPU: 2.3GHz Intel Core i5
Memory: 8GB 2133MHz LPDDR3
Software
OS: macOS Sierra version 10.12.6
Editor: PyCharm 2020.1.5 (community edition)
Python: Python 3.7
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performance landscapes and examine various aspects of the
effective search process [68]. 'is type of rugged landscape
has been widely used as a searching space in studies of
management, business, social science, biology, engineering,
etc. [69]. Note that the problem space is not directly ac-
cessible to any agent.

2.2.2. Agents (Entity). Each agent is assumed to have the
same participation rate and own the same social status.
Additionally, there are no assigned roles (e.g., leaders,
mediators, etc.) in a group. Each agent is designed to have a
memory capacity c, which means it can memorize c solu-
tions and corresponding utilities at most. Each agent also has
an individual utility function as a personal representation of
a problem space, which decides the agent’s independent
searching direction and its evaluation of others’ proposals.

2.2.3. Agent Memory (State Variable). Each agent has a
memory that can incorporate (memorize) as many as c

solutions and those corresponding utilities over the group
process. Solutions in agent i’s memory are denoted as
Mv

i � vij|j � 1, . . . , k|k≤ c , where vij and k are the agent
i’s jth solution and the number of solutions in its memory,
respectively. 'e corresponding utilities of Mv

i are denoted
as Mu

i � uij|j � 1, . . . , k|k≤ c , where uij is the utility of its
jth solution, vij. For an agent, when the number of mem-
orized solutions equals c, it must delete the oldest solution
along with the corresponding utility from its memory if it
wants to incorporate a new solution into its memory.

2.2.4. Agent Current Solution (State Variable). Each agent
has a current solution that is the solution in its memory with
the highest utility.

2.2.5. Utility of Agent Current Solution (State Variable).
'ere is the utility of an agent’s current solution.

2.2.6. Individual Utility Function (State Variable). 'e in-
dividual utility function is completely based on the agent’s
memorized knowledge (i.e., those memorized solutions
along with the utilities), which is typically biased because of
limited information. Its definition is similar to the true utility
function that is shown as follows:

Ui(v) �


k
j�1 uijD vij, v 

− 2


k
j�1 D vij, v 

− 2 , (2)

where v ∉Mv
i is a solution for the problem, uij is the utility

value of the memorized solution vij ∈Mv
i , and D(vij, v) is

the Euclidean distance between vij and v. When v ∈Mv
i ,

Ui(v) � uij. To display an individual agent’s bias in un-
derstanding a given problem space, Figure 1 gives a simple
example of comparing a true utility function with a specific
agent’s individual utility function. 'e differences between
them show this agent’s cognitive or information limitation
for comprehending this problem space. Moreover, each
agent’s individual utility function can be continuously
updated through individual local search and incorporating
others’ proposals, which are described is Section 2.3.

2.2.7. Group Solution (State Variable). At the group level,
there is a tentative group solution (one point on the problem
space) that is visible to every agent, which is assumed as none
before the group discussion starts. At each time step, the
group solution will be updated if there is one proposal
approved by the group.

2.2.8. Utility of Group Solution (State Variable). 'e utility
of the group solution is obtained by the true utility function
(i.e., formula (1)).

2.2.9. Ratio of Agreement (State Variable). 'e ratio of
agreement is a value obtained through the number of agents
who support the speaker’s proposal divided by the group
size. It measures group consensus on a proposal in each
group discussion round.

2.3. Process Overview and Scheduling. Figure 2 gives the
order of five the group phases in each discussion round,
which includes individual local search, selection of a speaker,
proposal of a new solution by the speaker, evaluation and
response to the speaker’s proposal by the listeners, and the
overall response to the proposal at the group level. Figure 3
schematically shows an example of the process of inde-
pendent searching and collaborative group searching on a
given problem space. 'e detailed description of each group
phase is as follows.

Table 2: Summary of state variables in our model.

State variable Variable type Description

Agent memory A set including multiple vectors Agent memorized solutions, each of them is a vector (i.e., a point
on a problem space)

Agent current solution A vector 'e best solution in the agent’s memory
Utility of agent current
solution A real number between 0.0 and 1.0 'e utility of the agent’s current solution

Agent individual utility
function

A formula based on given vectors and a
vector in question It gives an agent’s representation of a given problem space

Group solution A vector A group’s current solution
Utility of group solution A real number between 0.0 and 1.0 'e utility of a group’s current solution
Ratio of agreement A real number between 0.0 and 1.0 It represents group consensus on a proposed solution
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(a) (b)

Figure 1: An example of a true utility function and a specific agent’s individual utility function. (a) A given 2-dimension problem space (i.e.,
a true utility function). (b) An agent’s individual representation of (a) (i.e., an individual utility function).
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Figure 2: Overview of model process.
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2.3.1. Local Search (Individual Agents). Each agent seeks to
find better solutions by conducting a local search in the
problem space at the beginning of each round of group
discussion. 'is process is designed as a simple version of
hill-climbing [68]. Each agent performs a way of “trial and
error” in the process of local search, which can also be
seen as learning through experimentation. In this model,
each agent searches the neighbor solutions (e.g., four
neighbor solutions in a two-dimensional problem space)
of its current solution, randomly chooses one of the
neighbor solutions as a candidate solution, and incor-
porates it into the memory for the next step. If the
candidate solution is better than the agent’s current so-
lution, it updates its current solution by this candidate
solution; otherwise, it keeps its current solution un-
changed. If the quantity of the solutions in this agent’s
memory is reaching the memory capacity, c, then the
oldest one is forgotten (i.e., removed from its memory).
'e individual local search process can be understood as a
sequence of consideration of possible modifications of
known solutions, which often leads to local peaks (i.e.,
suboptimal solutions). Note that we assume every agent’s
local search is noiseless in this work.

2.3.2. Selection of Speaker. 'e speaker in each group dis-
cussion is randomly selected with uniform probability from
the entire group.

2.3.3. Proposal of a Solution by the Speaker. 'e speaker
proposes its current solution and suggests replacing the
group solution with its proposal.

2.3.4. Evaluation of Speaker’s Proposal by Listeners. After the
speaker proposes a solution, the other agents (listeners)
evaluate the proposal and respond to it with either agreement
(i.e., supporting) or disagreement (i.e., rejecting). If a listener
agrees with the proposal, it incorporates the proposal and the
corresponding utility (based on the listener’s individual utility
function) into its memory. If the number of solutions stored in
the listener’s memory exceeds the capacity c, then the oldest
solution is removed from the listener’s memory. Otherwise, it
neglects this proposal and expresses disagreement.

A listener’s evaluation of a proposal is based on a rational
choice theory [71]. In this work, given a speaker s, it pro-
poses a solution vs. A listener l’s evaluation of vs is Ul(vs),
which is calculated by its individual utility function. 'e
listener l, according to the rationality setting, agrees with the
proposal if Ul(vs) is higher than its current solution’s utility.
Meanwhile, we also assume that a listener may take a certain
risk to accept those proposals that are inferior to its current
solution because of either self-awareness of cognitive limi-
tations [72, 73] or social effects [74, 75]. 'e risk level is
represented as rth in this model, which indicates the rth
percentile of the listener’s best solutions (based on the
utility) inmemory.'e listener disagrees with the proposal if
Ul(vs) is lower than the utility of its rth percentile of its best

Agent 1Agent 2

Agent 3

Agent 4

Starting points After 5 iterations After 20 iterations After 50 iterations
(a)

Initial group solution

Starting points After 5 iterations After 20 iterations After 50 iterations
(b)

Figure 3: A schematic illustration of agents’ searching process on a two-dimensional problem space. (a) Four agents independently search
for the maximum solution using the “hill-climbing” strategy [70]. 'e starting and ending points are represented as a round dot and a
triangle dot, respectively.'e searching traces of agents 1, 2, 3, and 4 are displayed in thin brown, orange, green, and blue lines, respectively.
(b) A group of four agents collaboratively search for the maximum solution using the “hill-climbing” strategy. 'e large round and triangle
dots represent the starting and ending points of group searching. 'e group’s searching trace is displayed in thicker black lines. Note. Each
point in the problem space represents a solution, while the corresponding color denotes the value of the point. For example, dark red refers
to a high value, whereas dark blue refers to a low value.
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solutions, rth(Mu
l ). For a proposal whose utility is between

the rth(Mu
l ) and the utility of the listener’s current solution,

it stochastically agrees with the proposal according to a
probability given in the following formula:

p �
Ul vs(  − rth M

u
l( 

Max M
u
l(  − rth M

u
l( 

. (3)

2.3.5. Response to Speaker’s Proposal at Group Level.
After all the listeners have made their agreement or dis-
agreement decisions, the group as a whole responds to the
speaker’s proposal in a democratic manner. If more than half
of the group members agree with the proposal, it will be
accepted at the group level and the group solution will be
replaced by this new solution proposed by the speaker.
Otherwise, the group solution remains unchanged.

2.4. Design Concepts

2.4.1. Basic Principles. At the system level, this model ad-
dresses a management problem: what is the ideal group size
for high group performance in various situations (time
limitation, task complexity)? Such a question is especially
interesting and complex when we understand group per-
formance as an emergence from complex, dynamical in-
teractions among group members rather than a simple
summation or aggregation of properties of all group
members in a group.

2.4.2. Emergence. 'e key outcome of this model is group
performance (i.e., the utility of the group solution). It is
dynamically driven by multiple factors in the group process
including the agent’s local search, the proposals by speakers,
and the responses by the listeners. Moreover, group per-
formance is also affected by group size and task complexity.

2.4.3. Adaptation. At the individual agent level, the adaptive
behaviors of an agent are repositioning of their solutions on
the problem space: the decision of which neighboring so-
lutions move to (or remain where it was) or whether moving
to the proposed solutions by speakers, considering the
higher utilities of these alternatives. Moreover, each agent
updates its memory and individual utility function by adding
new solutions (local searching, shared solutions from others)
in its memory or deleting old solutions from it. At the group
level, the adaptive behavior of a group is updating the group
solution on the problem space based on agents’ proposals
and the corresponding responses.

2.4.4. Learning. Each individual agent’s learning process is
defined as the local search, which means that each agent is
directed at finding solutions that are superior to those
currently known. Every agent explores one of its four ad-
jacent neighboring (i.e., neighbor points located on the up,
down, left, and right of the point) solutions at each time
point and changes its solution to the one with higher utility

or remains where it was if the alternative is not better than its
current solution.

2.4.5. Interaction. Interaction occurs through information
sharing among the agents in a group, which includes
speakers’ proposing their new solutions and listeners’ re-
sponses to (i.e., support, reject) the proposals.

2.4.6. Stochasticity. Stochasticity is used in five ways. First,
each agent incorporates one solution at the beginning, which
is randomly chosen on a problem space. Second, the speaker
is randomly selected among the agents with a uniform
probability (e.g., 1/4 for a group of four agents) in a group.
'ird, each agent randomly chooses one of its four neigh-
boring alternative solutions to examine in the process of
local search. Fourth, the listeners (i.e., the agents who are not
the speaker at each time step) stochastically agree with the
speaker’s proposal according to a probability of p (see
formula (3)). Finally, the problem space is also stochastically
generated as the randomly given representative solutions. It
may generate different true utility functions under the same
parameter setting of the problem space.

2.4.7. Collectives. 'ere is one collective in this model, a
group of individual group members who share the same
group goal and interact with each other in the problem-
solving process.

2.4.8. Observation. 'e utility of group solution and the
ratio of the agreement are the two major observations of this
model. Additionally, the individual agent’s current solution
and memory are also observable but are not displayed in the
simulation results.

2.5. Initialization. 'e related parameters are initialized as
in Table 3. In this model, the problem space is a hypothetical
model task or environment without agents’ influence.
Specifically, we defined three problem spaces with distinct
complexity: 1-peak problem space (low complexity), 4-peak
problem space (medium complexity), and 15-peak problem
space (high complexity), as shown in Figure 4. 'ese three
problem spaces were selected as examples, in which the
number of peaks was counted mathematically. We imple-
mented these three typical problem spaces in all the com-
putations. Each agent’s initial solution was randomly
selected (i.e., one point) from the given problem space,
whereas the group solution is vacant at the beginning of the
group discussion.

2.6. Input Data. Our agent-based model in this work does
not include any input data describing the behaviors of
agents, environmental conditions, or various tasks. Future
model versions, however, might include data regarding
agents’ behaviors, such as participation rate, speaking turns,
and social networks of mutual interactions among group
members.
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2.7. Submodels. 'ere are two submodels in this work, the
effective information sharing model and the ineffective in-
formation sharing model, which are used to study the effects
of distinct ways of mutual information sharing on the re-
lationship between group size and performance. Real-world
information sharing among group members is related to
many factors, such as trustworthiness [76], communication
[77], cognitive ability [78], and leadership [79]. In our model,
agents in groups practice information sharing through the
speaker’s proposing solutions and listeners’ incorporating
those solutions with which they agree. However, our previous
definition of information sharing is superficial and ineffective
because each listener’s evaluation of the speaker’s proposal is
only based on its individual understanding of the problem
space (see Section 2.3.4), which helps fill gaps of its coarse
insights, yet it cannot reduce the understanding bias of the
problem. We call this type of information sharing “ineffective
information sharing.”

On the contrary, we refer to “effective information
sharing” as a process that can reshape the listener’s mental
model (individual utility function) and help bring the
speaker’s and listeners’ understanding of the problem closer.
To apply effective information sharing in our model, we
modify two assumptions: the speaker’s proposal and the
listeners’ evaluation of the proposal. Specifically, in each
iteration, rather than proposing only a solution, a speaker
needs to propose a solution and the corresponding utility
simultaneously, say vs and Us(vs). 'en, a listener, say l,
whose current solution is vl, evaluates this solution
according to both its individual utility function, say Ul(vs)

and the utility Us(vs) provided by the speaker. 'e formula
of listener l’s evaluation is shown as follows.

U
e
l vs(  � 1 −

D vs, vl( 
��
m2

√  × Us vs(  +
D vs, vl( 

��
m2

√ × Ul vs( ,

(4)

where (D(vs, vl)/
��
m2

√
) is the normalized distance between

vs and vl, in which D(vs, vl) and
��
m2

√
represent the Eu-

clidean distance between vs and vl and the largest distance
between any two points in a given m-dimensional problem
space, respectively. 'e defined distance is used to measure
the listener’s comprehensibility of a proposed solution.
According to this definition, the listener tends to consider
its individual understanding Ul(vs) more when the
speaker’s proposal is closer to the listener’s current solution
(i.e., more comprehensible); otherwise (i.e., more incom-
prehensible), it tends to adopt the speaker’s understanding
Us(vs) more. To some extent, it is an information inte-
gration process that will lead to a shared mental model in a
group [80]. All other settings of this submodel of effective
information sharing are the same as that of ineffective
information sharing.

3. Results

We conducted simulation experiments on two-dimensional
problem spaces at three distinct levels of complexity: 1-peak
problem space (low complexity), 4-peak problem space
(medium complexity), and 15-peak problem space (high
complexity), which are described in Section 2.5 and shown
in Figure 4. 'e group size was varied from 2 agents to 12
agents at intervals of 2 (6 different group sizes). Due to the
stochastic nature of our model, we implemented Monte

Table 3: Model parameter settings in the simulation experiments.

Parameter Value Description
m 2 Problem space dimensionality
n 50 Number of choices in each dimension
h 3, 7, 30 Number of representative solutions (for three problem spaces with distinct complexity)
q 5 A constant for generating a true utility function
c 20 Agent’s memory capacity
rth 50 rth percentile of an agent’s best solutions

1-peak problem space 4-peak problem space 15-peak problem space

0.0 0.5 1.0

Figure 4: 'ree typical two-dimension problem spaces of distinct complexity used in this work. Each point in the problem space represents
a solution, while the corresponding color denotes the value of the point. For example, dark red refers to a high value, whereas dark blue refers
to a low value. 'ose points on the corners or on the boundaries of the problem spaces can also be the peaks. Meanwhile, a few of the peaks
may not be observable in this figure.
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Carlo simulations (500 independent replications) to obtain
all the simulation results.

3.1. Task Complexity and Discussion Time. Figures 5–7 give
the changes of group solutions’ utility (i.e., group perfor-
mance) and the ratio of agreement over iteration (i.e.,
discussion time) under the condition of ineffective infor-
mation sharing. As seen in Figure 5(a), the group perfor-
mance increased monotonically over discussion time for all
group sizes on the 1-peak problem space (i.e., the task of low
complexity), which suggests all the groups were able to
continually search for new solutions and improve the group
performance. Figure 5(a) also shows smaller groups (e.g., 2-
agent or 4-agent group) outperformed larger groups (e.g.,
10-agent or 12-agent group) at the beginning of the dis-
cussion (e.g., before around 60 iterations), whereas they
eventually (i.e., after 150 iterations) performed equally well
in the long run in such a simple problem space. 'e group
performances at distinct terms of the group discussion were
also extracted and displayed in Figures 5(c)–5(h). To

demonstrate the statistical difference/similarity of these
Monte Carlo simulation results, t-tests were implemented,
which are shown in Figures 5(i)–5(n). 'ese detailed results
further bolster the trends in Figure 5(a). 'ough the 2-agent
group’s final solutions are significantly different from other
groups (see the p value in Figure 5(n)), the averaged dif-
ference is still neglectable according to the results in
Figure 5(a). As shown in Figure 5(b), all the ratios of
agreements increased over discussion time. At the beginning
of the discussion, smaller groups were more likely to reach
agreements and tended to have more chances of exploring
the problem space at the group level, which led to the
phenomenon of smaller groups outperforming larger
groups. Nevertheless, as the discussion progresses, larger
groups were also able to achieve a high ratio of agreement
that produced equally well solutions as smaller groups for
the problem of low complexity.

Figure 6 gives the results for the 4-peak problem space
(i.e., the task of medium complexity). As seen in Figures 6(a)
and 6(c)–6(n), smaller groups still outperformed larger
groups at the beginning of the group discussion (e.g., the first
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10 0.00 0.00 0.07 0.90 1.00

12 0.00 0.00 0.22 0.63 0.55 1.00

t-test (20 iterations)
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p 2 4 6 8 10 12

2 1.00

4 0.00 1.00

6 0.00 0.05 1.00

8 0.00 0.00 0.00 1.00

10 0.00 0.00 0.00 0.04 1.00

12 0.00 0.00 0.00 0.06 0.80 1.00

t-test (40 iterations)

(k)

p 2 4 6 8 10 12

2 1.00

4 0.12 1.00

6 0.04 0.60 1.00

8 0.00 0.18 0.41 1.00

10 0.00 0.01 0.04 0.20 1.00

12 0.00 0.00 0.02 0.13 0.87 1.00

t-test (60 iterations)

(l)

p 2 4 6 8 10 12

2 1.00

4 0.62 1.00

6 0.35 0.66 1.00

8 0.01 0.05 0.14 1.00
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t-test (80 iterations)
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Figure 5: Change of utility of group solution (500 independent Monte Carlo experiments) and the ratio of agreement (500 independent
Monte Carlo experiments) over iteration (discussion time) on 1-peak problem space. (a) Group performance over discussion time for
groups of sizes 2, 4, 6, 8, 10, and 12. (b) Ratio of agreement over discussion time for groups of sizes 2, 4, 6, 8, 10, and 12. Note. Each curve
shows the average result of 500 independent Monte Carlo experiments. (c) Utility of group solution after 20 iterations. (d) Utility of group
solution after 40 iterations. (e) Utility of group solution after 60 iterations. (f ) Utility of group solution after 80 iterations. (g) Utility of group
solution after 100 iterations. (h) Utility of group solution after 150 iterations.'ose boxplots in (c), (d), (e), (f ), (g), and (h) represent the 25th

and 75th percentiles of the group solution’s utility of distinct group sizes across 500 independent Monte Carlo experiments. 'e black
horizontal line and the red dot in each box indicate the median value and mean value, respectively. (i) t-test results of the utility of group
solution among groups of distinct sizes after 20 iterations. (j) t-test results of the utility of group solution among groups of distinct sizes after
40 iterations. (k) t-test results of the utility of group solution among groups of distinct sizes after 60 iterations. (l) t-test results of the utility of
group solution among groups of distinct sizes after 80 iterations. (m) t-test results of the utility of group solution among groups of distinct
sizes after 100 iterations. (n) t-test results of the utility of group solution among groups of distinct sizes after 150 iterations.
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Figure 6: Change of utility of group solution (500 independent Monte Carlo experiments) and the ratio of agreement (500 independent
Monte Carlo experiments) over iteration (discussion time) on 4-peak problem space.
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Figure 7: Change of utility of group solution (500 independent Monte Carlo experiments) and the ratio of agreement (500 independent
Monte Carlo experiments) over iteration (discussion time) on 15-peak problem space.
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60 iterations) due to the higher ratio of agreement (see
Figure 6(b)). However, the difference in solution utility
among groups of different sizes tended to lessen and then
eventually showed a reverse pattern after about the 70th
iteration, where larger groups surpassed smaller groups in
performance. 'is reverse pattern can be explained by the
fact that smaller groups lack solution diversity and thus they
are more likely to be stuck in suboptimal peaks, whereas
larger groups with greater solution diversity can achieve
better solutions as they are able to explore a broader range of
the problem space. Recall that every agent’s initial solution is
randomly selected in the problem space. 'is means that
larger groups have more starting points and are more in-
clined to explore a larger range in the problem space. At the
same time, larger groups can also reach fewer, but sufficient,
agreements, as seen in Figure 6(b).

Figure 7 provides the results for the 15-peak problem
space (i.e., the task of high complexity). As seen in
Figures 7(a) and 7(c)–7(n), smaller groups outperformed
larger groups throughout most of the group discussion time,
as smaller groups were able to reach relatively higher ratios
of agreement and had more chances to explore the problem
space at the group level. Meanwhile, the greater diversity of
solutions in larger groups hindered the groups’ ability to

reach consensus (Figure 7(b)), which led to very few chances
to explore the problem space.

'erefore, larger groups’ performances were very low,
some of which (e.g., 10-agent and 12-agent groups) were not
improved at all during the whole collaborative decision-
making process. Additionally, by comparing the results in
Figures 5–7, we can also observe that both group perfor-
mance and the ratio of agreement generally decreased as the
complexity of the problem space increased.

3.2. Effective and Ineffective Information Sharing. Finally, we
applied effective information sharing to the model to study
the impacts of the ways of information sharing in collab-
orative decision-making. Figures 8–10 show the results by
comparing the ineffective and effective information sharing
for different sized groups on the problem spaces of distinct
complexity.

As seen in Figures 8–10, all groups practicing effective
information sharing outperformed the groups of corre-
sponding sizes by performing ineffective information
sharing. Moreover, larger groups can achieve better (at least
equal good) solutions than smaller groups over the whole
group discussion process for all three tasks of distinct
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Figure 8: Bar plots regarding the effects of information sharing on group performance for the 1-peak problem space. Each dot represents the
mean value, while each vertical line indicates the corresponding variance. (a) Group performance vs. group size for ineffective and effective
sharing after 20 iterations. (b) Group performance vs. group size for ineffective and effective sharing after 40 iterations. (c) Group
performance vs. group size for ineffective and effective sharing after 60 iterations. (d) Group performance vs. group size for ineffective and
effective sharing after 80 iterations. (e) Group performance vs. group size for ineffective and effective sharing after 100 iterations. (f ) Group
performance vs. group size for ineffective and effective sharing after 150 iterations.
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complexity. 'is suggests effective information sharing es-
pecially benefits larger groups, which is particularly visible at
the beginning of the group discussion (Figures 8(a), 9(a),
and 10(a)(a)), and for the task of high complexity both at the
beginning and at the end of the discussion (Figure 10). 'e
effective information sharing condition appears to operate
by weakening or eliminating the negative side effects of the
solution diversity in larger groups [76, 77].

3.3. Steady State. 'e steady state of our model depends on
the utility of the group solution (i.e., group performance) as
it is the major output of our model. Here, the steady state
does not mean that all the utilities of group solutions will all
take on the same value in a particular simulation run; rather,
it means that they will all have approximately the same
distribution [81]. According to the simulation results in
Figures 5(a), 6(a), and 7(a), the performance of each group of
distinct size achieves a steady state after about 150 iterations
for the task of low complexity, 85 iterations for the task of
medium complexity, and 100 iterations for the task of high
complexity, respectively. For comparison reasons, we
stopped running our model after 150 iterations, when the
utility of the group solution entered a steady state for all the
studied groups in various situations.

3.4. Sensitivity Analysis. Our model outputs were most
sensitive to agent memory capacity c and the percentile of an

agent’s best solutions rth in a listener’s evaluation of a
proposal (see Section 2.3.4). We tested minor variations of
these two parameters and confirmed that the main results
and conclusions were not significantly changed. For ex-
ample, when we varied 25% of c or 20% of rth, the simulation
results regarding the relationship between group size and
performance kept unchanged.

4. Discussion

In this study, we developed an agent-based model and
examined the relationship between size and performance
of collaborative small human groups. Our simulation
results revealed that when the complexity of the problem
was low and information sharing was limited, smaller
groups outperformed larger groups at the beginning of the
collective decision-making process, but all the groups
performed equally well in the long run. With increased
problem complexity, however, finding global optimum
solutions became more difficult as groups need more
diverse candidate solutions to achieve a better group-level
solution. 'us, although smaller groups outperformed
larger groups initially, larger groups ultimately found
better solutions because of their higher solution diversity.
When the problem complexity is very high, larger groups
suffered from frequent within-group disagreements,
which lead to lower group performance. Meanwhile, our
results also suggested that enhancing the effectiveness of
information sharing (by making participants pay more
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Figure 9: Bar plots regarding the effects of information sharing on group performance for the 4-peak problem space.
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respect to others’ opinions in the problem areas in which
they are not so familiar) could improve group perfor-
mance for groups of any size in the context of small
collaborative team settings. 'is effect was most signifi-
cant for larger groups. It also helped achieve a consistent,
monotonic relationship between group size and group
performance in all conditions. 'ese findings collectively
paint a whole picture of various nontrivial relationships
between group size and group performance, in which
most of the previously reported empirical findings can be
mapped.'erefore, our model helps bridge the gap among
the conflicting observations on this topic from a mech-
anistic modeling viewpoint. Our model also provides a
baseline for further theoretical and experimental studies
concerning group size and group performance in small
human groups. It allows researchers to explore trade-offs
when adding other factors into this model, such as roles,
learning methods, ways of mutual interactions, and dy-
namics of tasks.

Our study has several practical implications. First, our
findings underscore the importance of the amount of given
time and task complexity in group size selection for real-
world collaborative group building. For example, if a rapid
and tolerable decision is expected, a smaller team is often a
good choice; whereas if an optimum group decision is ex-
pected for completing relatively simple or medium complex
tasks and will provide enough time for group discussion, a
larger group will be superior to smaller groups. Second,

highly complex tasks often require more diverse expertise
and perspectives, yet using a large group to solve problems of
high complexity may lead to less than optimum group
decisions. 'ird, our model suggested specific features of
information sharing that may improve group performance,
particularly in larger groups, such as fostering mutual
learning across expertise areas through coordinated com-
munication. A real-world example could be a business
company trying to form a committee to handle an emergent
risk regarding supply chains. Potential committee members
could be specialists or managers with distinct perspectives
(e.g., marketing, research and development, production,
finance). 'e issue for the company is what the best com-
mittee size will be to minimize the cost of the supply chain
problem immediately. Our work then can serve as a valuable
reference for building an effective committee of appropriate
size.

Besides, our model also has several limitations. First, the
validation of our simulation results is missing in our work.
'ough the reported empirical observations, in turn, can
serve as partial validation for the results in distinct situa-
tions, systematic human-subject experimental studies are
still needed to validate this work. In the future, we plan to
organize a series of human-subject experiments to justify our
simulations, which will include participants with diverse
perspectives and backgrounds, tasks with tunable com-
plexity, measurements of group performance over the group
discussion time, etc. Second, the agent’s roles (e.g., leader,
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Figure 10: Bar plots regarding the effects of information sharing on group performance for the 15-peak problem space.
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meditator) and abilities (e.g., intelligence, expertise) were
not considered, which may affect the selection of speaker,
the accuracy of individual local search, and the mutual
interactions among group members, etc. 'ose members
with high social status or leadership may also help a group
reach agreement and thus reduce the negative effects of
high solution diversity. 'erefore, a promising direction
for future research is to incorporate more relevant
properties of the agents to extend this model’s application
scenarios. 'ird, information sharing within a group may
also depend on members’ roles, personalities, and back-
grounds, as well as on communication platforms or en-
vironments. Studying the impact of various information-
sharing strategies in both computational and experi-
mental means can deepen our understanding of collab-
orative decision-making. Fourth, the assumption of the
agent’s incrementally “hill-climbing” searching method
may be too stringent as the creative searching may also
enable agents to broaden the search in each iteration
(comparing with searching neighbors) through randomly
changing more values in its current solution or integrating
distinct solutions (e.g., individual’s current solution and a
proposed solution by a speaker). 'is type of search
process includes “long jump” [68], “radical innovation”
[82], and “Lévy flight” [83], which may produce different
simulation results. In the future, we plan to adopt and
compare distinct search strategies in this model to ex-
amine how they impact the relationship between group
size and performance. Fifth, we assumed that every group
member’s local search and evaluation of others’ proposals
are errorless, which is difficult to achieve in the real world.
Sixth, our definition of task complexity was also limited as
it is mainly based on the rugged level of the two-di-
mension problem spaces. We plan to investigate the di-
mension complexity of problem space and study the
sensibility of group performance over dimensions in our
future modeling work. Finally, we plan to conduct more
systematic model calibration and fitting so that this model
will be more valuable in predicting and guiding practical
collaborative decision-making.
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