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Assessment of climate change impacts on wind characteristics is crucial for the design, operation, and maintenance of coastal and
offshore infrastructures. In the present study, the Model Output Statistics (MOS) method was used to downscale a Coupled Model
Intercomparison Project Phase 5 (CMIP5) with General Circulation Model (GCM) results for a case study in the North Atlantic
Ocean, and a supervised machine learning method (M5’ Decision Tree model) was developed for the first time to establish a
statistical relationship between predicator and predicant. To do so, the GCM simulation results and altimeter remote sensing data
were employed to examine the capabilities of the M5’'DT model in predicting future wind speed and identifying spatiotemporal
trends in wind characteristics. For this purpose, three classes of M5’ models were developed to study the annual, seasonal, and
monthly variations of wind characteristics. The developed decision tree (DT) models were employed to statistically downscale the
Beijing Normal University Earth System Model (BNU-ESM) global climate model output. The M5’ models are calibrated and
successfully validated against the GCM simulation results and altimeter remote sensing data. All the proposed models showed firm
outputs in the training section. Predictions from the monthly model with a 70/30 training to test ratio demonstrated the best
model performance. The monthly prediction model highlighted the decreasing trend in wind speed relative to the control period
in 2030 to 2040 for the case study location and across all three future climate change scenarios tested within this study. This
reduction in wind speed reduces wind energy by 13% to 19%.

1. Introduction

Over the past decades, excessive greenhouse gas emissions
have resulted in an accelerated rate of global warming and
intensified the effects of climate change. The increase in
intensity and frequency of extreme climatic events is ex-
acerbated by climate change, leading to natural hazards such
as severe floods and erosion in coastal regions [1-11]. The
large-scale effects of climate change are beginning to in-
fluence several parts of the world by increasing extreme

climatic events. A study by Wei et al. [12] showed that the
negative impacts of climate change occur at both global and
local scales with detrimental consequences on coastal
communities, which are at the forefront of battling against
the climate change impacts. Given that climate change will
also impact major socioeconomic activities and biodiversity
in the coastal region, it is vital to have robust predicting
frameworks capable of approximating the key climatic pa-
rameters in the future considering different climate pro-
jection models. Within the context of climate change, wind
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climate in offshore and coastal regions is one of the key
parameters that influence wave behaviour and hydroclimate
[13]. Turki et al. [7] examined the multiscale components of
the monthly extreme surges by considering the climatic
parameters, e.g., zonal wind, sea surface temperature, and
sea-level pressure along the English Channel coasts. Despite
the current availability of vast amount of sensing data, high-
resolution downscaled models are still needed to investigate
the effects of climate variables based on the future climate
change projections [14].

Global climate models (GCMs, aka General Circulation
Models) have been developed to generate future projections
through large-scale spatiotemporal data of climate variables
[15]. At present, GCMs are widely used to predict and
simulate the large-scale global climate response to increasing
temperature at the surface of oceans. Many studies have been
carried out using different GCMs to predict the impact of
climate change on the variations of wind characteristics in
various regions [16-20]. For instance, Segal et al. [21]
employed HadCM2 (Hadley Centre coupled model) with
coupling local wind data and showed that the availability of
daily average wind power reduces within the range of 0-30%
by 2050 over most areas of the United States. Later, Breslow
and Sailor [22] also used outputs of global coupled global
climate models (CGCMs) with a resolution of 3.75° (both
latitude and longitude) and HadCM3 with a resolution of
3.75% at 2.5° (longitude and latitude, respectively). The results
of the case study in the United States show that climate
change reduces the average wind speed by 10% to 15%. This
reduction in wind speed resulted in a 30% to 40% reduction
in wind power.

Lionello et al. [23] studied the Adriatic Sea region using
ECHAM-4 model data, which were downscaled using sta-
tistical methods. A comparison between the present and
future climate simulations from Lionello et al. [23] study
showed that extreme wave height will decrease in the future.
In the UK, the 40 yearly records of data show an increase in
winter wind speed by 15% to 20%, which can be linked to
climate change consequences [24]. For two scenarios of A2
(1961-1990) and B2 (2071-2100), Lionello et al. [17] studied
the seasonal mean of significant wave height (SWH) for the
Mediterranean and predicted a reduction in SWH for the B2
period. For a case study of the Bay of Biscay, France, the
results of the ARPEGE-Climate model show a reduction in
the wind speed and, consequently, the wave height for the
summers during the period of 2061 to 2100 [25]. Kamranzad
[19] and Kamranzad et al. [26] investigated the capabilities
of CGCM3.1 (Canadian Global Coupled Model Version 3.1)
in the prediction of wind characteristics in Persian Gulf,
which, considering its semienclosed shape, is vastly different
from oceans. Kamranzad et al. [26] predicated that by the
year 2100, wind speeds and wind energy will decrease across
Persian Gulf according to three different emission scenarios
(A2, B1, and A1B). Recently, Goharnejad et al. [27] evaluated
both the wave characteristics and wave energy extraction
potential in Persian Gulf for greenhouse gas concentration
trajectory (representative concentration pathway: RCP)-
based GCM simulation outputs of RCP4.5 and RCP8.5
future climate change scenarios and showed that the
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potential wave energy level will be higher in the southern
regions.

Given the importance of the North Atlantic in ocean
renewable energy and the heavy investment plans for
extending the onshore and offshore renewable energy farms,
understanding and quantifying the impacts of climate
change on wind and wave characteristics across the North
Atlantic are of exceptional importance. However, a limited
number of studies have focused on the impacts of climate
change on wind characteristics across the North Atlantic
Ocean. Wang et al. [16] investigated mean and maximum
seasonal variations of SWH based on three emission sce-
narios and showed that for fall and winter seasons during the
twenty-first century, at the middle latitudes of the North
Atlantic Ocean, the SWH will decrease, while at the
southwest regions of the Atlantic the SWH will increase.
Using the ECHAMS5 model, Hemer et al. [28] predicted up to
a 15% decline in SWH across the midlatitudes of the Atlantic
and a 10% SWH reduction in the Southern regions of the
Atlantic Ocean. The existing studies and modelling data
indicate a decreasing trend in the future wind speed across
vast regions of the North Atlantic.

Although GCMs are powerful in predicting the main
features of the global atmospheric currents, they are often
not capable of vigorously approximating local climate details
[29]. Hence, there is a need to develop appropriate tools to
downscale GCM climate change forecasts to local and re-
gional scales [30]. Previous studies have adopted three
downscaling approaches: empirical, semiempirical, and
nesting methods (i.e., dynamical downscaling). In the em-
pirical approach, historical climatic conditions are used to
present local analogue scenarios. Such studies are attrib-
utable to a qualitative conceptual survey, and results from
empirical approaches do not generate a climate forecasting
model. Semiempirical (statistical) and nested (dynamical)
downscaling approaches use large-scale GCM predictions to
develop local climate change scenarios [31]. In the dy-
namical downscaling approach, a regional climate model
(RCM) with the target mesh resolution uses large-scale
GCM outputs as the boundary condition for the RCM to
produce higher resolution outputs [32]. The major draw-
backs of dynamical downscaling methods, which limit their
applications in climate change impact assessments, are
method complexity, high computational cost, and case-
sensitive performance [33].

Statistical downscaling methods are divided into three
categories [34, 35]: In the Perfect Prognosis (PP) method-
ology, a relationship is established between large-scale ob-
servational data and locally recorded data [36, 37]. The
Model Output Statistics (MOS) method is similar to the PP,
except that in this approach, a relationship is created be-
tween GCM outputs (predictor) and local climate variables
(predictands) [38], and in the Stochastic Weather Generator
(SWG) category, this relationship is developed by perturbing
probably distribution parameters [39]. Considering the
many parameters that are involved in the simulations of
GCMs and the scenarios that are intended for the future and
simulate trends, the use of the MOS method can be proper
for downscaling where only limited observational data are
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available in the application of the PP approach. For more
information on statistical downscaling methods: [35, 40-44].

The statistical downscaling methods are designed based
on two assumptions: (i) the empirical relationships between
historical large-scale atmospheric predictors modelled by
GCMs, and local climate characteristics can be established,
and (ii) the obtained empirical relationships are valid under
climate change scenarios [18, 45]. The most popular sta-
tistical downscaling approach is transfer functions based on
fitting a quantitative relationship between large-scale climate
variables and local-scale climate variables. In recent years,
machine learning techniques have been adopted to deter-
mine the required transfer function in statistical down-
scaling [46, 47].

Due to the nonlinear time-series nature of climatic
processes involved in the predication process, the artificial
neural network (ANN), as a self-organizing estimator
function, is widely adopted in modelling and forecasting
wind characteristics (among others, [31, 48-51]). For ex-
ample, Sailor et al. [31] adopted ANN technique to down-
scale and forecast surface wind speeds at three locations
across the United States with a high potential for future wind
power generation over the next 100 years. Under the future
climate change scenarios, they estimated that wind power
will decrease between 0.9% and 8%. Nourani et al. [49]
employed ANN method to downscale climate variables,
including temperature and precipitation, at two study lo-
cations (Ardabil and Tabriz, Iran) for single and multi-GCM
outputs. Nourani et al. [49] showed that the downscaling
method using ANN-based multi-GCM outputs leads to
more accurate results.

Despite the advantages of ANN in downscaling and
predictions of climatic processes, there are several defi-
ciencies, including the probability of error and mismatch,
due to not removing irrelevant data and noneffective pa-
rameters and the challenges associated with the training
process by increasing the size of input time series. Given the
generally nonstationary and large temporal scale (from a few
minutes to several decades) of climatic data, the increased
computational time required to train ANN models limits
their applications [50]. Therefore, in recent years clustering
methods were proposed as an alternative to robustly predict
climatic variables and overcome the difficulties associated
with the ANN downscaling approach. The decision tree
(DT) is one of the most popular and efficient data mining
techniques for clustering and generating regression models
[52]. Decision tree (DT) models are clustering-type models
with the advantages of setting out the variable choices
logically, simultaneously considering potential options and
choices, with tangible and easy-to-understand results [53].

Robustness of the DT models in identifying the effective
parameters and understanding interdependencies of com-
plex nonlinear climate variables [29, 50, 53-55] makes them
a powerful tool for downscaling of GCM outputs and wind
speed prediction. In this study, an M5 DT model too was
developed to predict the spatiotemporal variations and
trends in wind speed across a case study located in North
Atlantic Ocean. The capability of M5” DT was examined for
the first time for the prediction of wind speed variations in

the coming decades, considering a range of climate change
scenarios. The variations in the projected wind speed sim-
ulated by GCM (i.e., BNU-ESM model by Ji et al. [56]) were
investigated as the case study region of the midlatitudes of
the North Atlantic Ocean. The study region was chosen
based on its importance and potential for current and future
oftfshore wave and wind renewable energy farms. This study
investigates the changes in wind speed over North Atlantic
for the years 2030, 2035, and 2040, considering three future
climate change scenarios outlined by the Intergovernmental
Panel on Climate Change (IPCC: www.ipcc-data.org).

2. Materials and Methods

In this study, two sets of GCM and altimeter data were used
to develop and verify a DT model to downscale the GCM
outputs and predict the wind speed during 2030-2040. The
case study location and details of the methodological ap-
proach adopted are described in the following section.

2.1. Study Area. Figure 1 shows the geographical extent and
location of the case study area. The case study is an area with
high wind speed, and the potential for efficient operations of
offshore renewable energy projects was selected as the case
study location. The boundaries of the study area were se-
lected based on the GCM grids, covering 340.31°E to
357.19°E in longitude and 57.21°N to 62.79°N in latitude. The
downscaling and machine learning model developed was
applied to the data for the case study area to predict the wind
speed variations under future climate scenarios and evaluate
the performance of the proposed method in comparison to
the measured data.

2.2. General Circulation Models (GCMs) Dataset. The Earth
System Model (Beijing Normal University (BNU)-ESM)
developed by Ji et al. [56] is based on climate projection
models and is widely used to study climate change impacts,
ocean-atmosphere interaction mechanisms, and climate-
carbon interactions on temporal scales spanning from a
month up to a century. The ESM benefits from several
submodels, including atmospheric, ocean, sea ice, and land
models. The ESM coupling framework is developed based on
the Community Climate System Model version 4 (CCSM4)
together with the Community Climate System Model and
Community Earth System Model (CCSM/CESM) [56]. In
the present study, the GCM historical data of 15 years
(between 1991 and 2005) were employed as the control
period, and the forecast data under three future climate
scenarios, including RCP2.6, RCP4.5, and RCP8.5, were
used to predict the climate variables for 2030, 2035, and
2040.

2.3. Altimeter Dataset. Historically, wind characteristics
have been studied by analysing time-series records of
weather stations that provide reliable measurements of
temporal variations of wind characteristics in a fixed posi-
tion. In recent years, remote sensing techniques such as
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FIGURE 1: Geographical extent and location of the case study area.

radar measurements and satellite imagery have been widely
used as tools to analyse key atmospheric parameters and sea
conditions. The spatial distribution of wind characteristics
has been analysed and evaluated from remote sensing im-
ageries [57, 58].

Altimeter data are one of the most valuable data sources
available that have been employed in previous investigations
to verify the performance of a range of climate prediction
models (see among others, [59-63]). The altimeter data are
recorded along the paths of satellites using remote sensing
equipment and provide a firm remote sensing dataset to
validate and evaluate the performance of the climate pro-
jection models. Altimeter data records are entered in ir-
regular tracks and at different time intervals, which
demonstrates the importance of applying appropriate filters
to these data to ensure the consistency of the data records.
For this purpose, we adopted a 20-minute filter in the time
domain and a 1.5-degree filter in the spatial domain to tackle
the spatiotemporal nonlinearity of data. The wind speed
obtained from altimeter data was used for the downscaling
process and validation of the developed DT models. Con-
sidering the available period of GCM simulation outputs, the
altimeter dataset belonging to the period of 1991-2005 was
selected as the control period.

2.4. M5' Model Tree. Recently, the use of decision tree (DT)
algorithms as a robust machine learning technique for
prediction of hydroclimatic parameters in coastal and off-
shore engineering problems has found a growing interest
(among others, [51, 54, 55]). In general, the structure of a
decision tree is composed of four parts including root,
branch, node, and leaves. The root (or first node) is at the top

of the tree; also, at the end of the chain of branches and
nodes are the leaves (or the last node). Figure 2 shows a
schematic of the DT logical structure used as a predictive
model. Given that DTs can be classed as a graphical method,
interpretations of DT’s model outputs are easier compared
to other machine learning methods [50].

Nourani et al. [64] investigations on the application of
machine learning techniques for predicting climate variables
show that as the prediction horizon increases, the accuracy
of predictive models is reduced. The reason is due to the
nonlinear growth of error propagations in those nonlinear
predictive models. However, the issues associated with the
error growth are not the case for linear models such as M5’
DTs, as the error in such models will remain constant by
increasing the prediction horizon. Thus, the multilinear
regression models such as M5’ model can provide more
reliable results in predicting climate variables, compared to
nonlinear models. Furthermore, the M5'DT models have
superior performance in identifying and selecting the most
effective parameters for persistent prediction [50].

2.5. Model Development. Prior to M5’ model development,
the control period dataset (historical data) was divided into
train and test partitions. The train data were employed for
development of the M5'DT models, whereas the test data
were utilized for verification and evaluations of the gener-
ated M5’ models. Following the data partitioning, the train
data were employed to develop three predictive models with
M5’ technique. These models were designed with different
ratios of test/train data length and three different train/test
size ratios of 35/65, 30/70, and 25/75 to evaluate the best
predictive model.
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In the first step, the M5’ models were trained; the process
of data selection for training the M5’ models involved
specifying the coordinates of each data instance and de-
termining its corresponding cell from the GCM mesh grid to
obtain the wind speed and direction for the specific cell.
Based on the instance’s time, a time interpolation is per-
formed on the GCM data output. Then, the interpolated
wind speeds and direction for a given location and time
instance were determined from the GCM cell’s corners and
introduced to the M5’ models as an input. In the second step,
the trained M5’ models were verified using the test data from
the historical dataset. Then the performance of each model
was evaluated using statistical error measures to identify and
select the best model for spatial and temporal prediction of
wind characteristics across the case study. The final step of
the modelling involves prediction of wind speed for the time
intervals of 2030 to 2040 based on the three emission sce-
narios employing the GCM simulation data.

2.6. Performance Evaluation of Predictive Models. Given the
nonlinear nature of climatic events and influence of complex
marine processes varying at both temporal and spatial scales,
predicting the wind characteristics in marine environment is
a very difficult and challenging task [65]. Having a strong
approach to evaluate and overcome the systematic and
random errors of the developed DT models is also crucial. To
do so, several statistical assessment criteria, namely corre-
lation coefficient (CC), root mean square error (RMSE), and
mean absolute error (MAE), were investigated to evaluate
and compare the predictive robustness of the proposed
models under future climatic conditions. The correlation
coefficient (CC) (1) is adopted to determine the relationship
between the predicted wind speed and measured values as:

24 ((0:-P)(0,-0))
- =2
(=2 - P) (52, 0, - O)
where P; and O;, respectively, denote the predicted and

measured data (observations), P is the average of the pre-
dicted data, O is the average of the measured data, and N is

CC =

1

the number of data points. CC only determines the corre-
lation between measured and predicted values and therefore
it is not a sufficient measure to provide a comprehensive
understanding of the model’s performance. Thus, it is critical
issue to employ benchmarks that rigorously determine the
model’s prediction errors. To this end, the present study
employed MAE and RMSE statistical measures in equations
(2) and (3).

1 N
MAE = — Y|P, - O], (2)
N i=1

RMSE = (3)

3. Results and Discussion

To obtain each downscaled wind speed, eight parameters
from GCM data were inputted to the M5' models, including
four wind speeds and four wind directions. The purpose of
wind directions participating in the wind speed downscaling
was to help the projection model to predict wind speeds
more accurately at locations such as the shoreline, where
wind directions change rapidly. In the following, the results
are presented in two parts: results of the control case and
results of the prediction case.

3.1. Control Period. In the control case, three types of
prediction models were developed and named as: Annual
(A), Seasonal (S), and Monthly (M) models. In the A-type
model, all control period data were used to develop every
single M5' model. Where the results showed that in the A-
type model, although the correlation coefficient between the
observational data and the outputs of the DT model in the
training period was high, in the test period, the correlation
coefficient between the measured and predicted data was
low, and the prediction error raised considerably. Since the
results of the A-type model were not accurate enough, and
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TaBLE 1: Developed models in the present study and their description.

Model type Description

A (Annual) One DT model was developed using the Train data, validated by the Test data, and adopted for
prediction in the forecast section.

The entire data were categorized into seasons, and four decision tree (DT) models were generated alongside together. Each
model is developed and validated with the data of the relevant season and used for forecasting in the season for the
S (Seasonal) L .
projection period. The names of these models based on the seasons are as follows:
Swinter: winter’s model, Sspring: spring’s model, Ssummer: summer’s model, and Sfall: fall’s model.

The entire data were divided into months, and 12 DT models were extended beside together. Each model is developed and

M (Monthly) verified with the data of the relevant month and used for forecasting in the relevant month for the projection period. The
names of these models based on the months are MJan to MDec models for January to December, respectively.

Data separation Models generation Models assessment
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FIGURE 3: Schematic of the downscaling methodology and predictive modelling processes.

TaBLE 2: Comparison of statistical predictive measures across all the tested scenarios.

Training (70/30) Verification
Model Correlation coeflicient Root mean square error
CC RMSE

65/35 70/30 75/25 65/35 70/30 75/25
A 0.9028 2.0117 0.3642 0.1237 0.2136 5.7777 17.4996 4.1732
Swinter 0.8944 2.0585 0.0514 0.2003 0.1699 32.723 10.9887 12.8441
Sspring 0.0896 1.8625 0.1296 0.1679 0.6327 15.2014 10.8614 3.0635
Ssummer 0.8934 1.8063 0.0744 0.2707 0.1093 30.627 6.2338 15.2301
Stall 0.888 2.0465 0.075 0.5276 0.5049 3.9912 3.6316 3.8453
Mean 0.6914 1.9434 0.0826 0.2916 0.3542 20.6356 7.9289 8.7458
MJan 0.8983 2.0922 0.56 0.8054 0.7704 3.7827 2.6749 2.8072
MFeb 0.9046 1.9672 0.5936 0.7791 0.0881 3.6361 2.6831 41.9419
MMar 0.9026 1.9325 0.7804 0.7974 0.6843 2.6535 2.5707 3.0753
MApr 0.8988 1.8653 0.1763 0.7333 0.4716 12.1353 2.6809 4.2891
MMay 0.897 1.7869 0.2977 0.6998 0.0389 5.8888 2.6363 47.1423
MJun 0.8892 1.7279 0.558 0.6979 0.3844 3.0569 2.4745 4.5731
MJul 0.8822 1.6457 0.5116 0.6576 0.6059 2.9252 2.6373 2.6362
MAug 0.8903 1.6815 0.7566 0.7566 0.7392 2.2544 2.2544 2.2925
MSep 0.902 1.9198 0.3506 0.7627 0.0679 5.77 2.6672 40.5325
MOct 0.8815 1.9988 0.0362 0.7565 0.4504 3.86 2.5783 4.0723
MNov 0.889 1.9712 0.0423 0.7174 0.0614 73.324 2.7225 22.6081
MDec 0.8984 2.0211 0.3008 0.7511 0.0912 7.0636 2.7503 24.5093

Mean 0.8945 1.8842 0.4137 0.7429 0.3711 10.5292 2.6109 16.7067
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the M5’ model acts based on data categories theory, S and M
types of the models were developed. Thus, all the data are
divided into seasons and months, and the progress of the
M5’ model development is conducted for each of the cat-
egories separately (a summarized description of each model

presented in Table 1). Figure 3 presents schematically the
downscaling procedure and models’ deployment.

Table 1 presents the differences between the models, and
as can be seen, the main difference is in the number of
models created to downscale GCM’s outcomes and predict
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FIGURE 6: Spatial distribution of mean absolute error (MAE) across the case study region.

the trend of wind changes. The principal idea of the model’s
development is how the DT model works, which was
attempted to prepare more homogeneous input data for each
model by dividing the data so that the results reach ac-
ceptable accuracy.

Table 2 summarizes the results of the models generated
during the training and validation steps. The correlation
coefficient (CC) and the root mean square error (RMSE),
and the mean of the seasonal and monthly models are re-
ported in this table to compare the generated models’
performance. As seen in the training section, the CC for all
models is close to 0.9, except for model Sspring, in which CC
is less than 0.1. All the models’ RMSE:s are in the range of 1.6
to 2.0. On the basis of the results, the best model in terms of
CCis the A-type model with CC = 0.9. Considering the mean

of CC, the A-type model has also shown to be more efficient.
However, considering the RMSE, the annual model per-
forms weakly, and the monthly models often have better
performance. In terms of mean values, the M-type model
with an RMSE of 1.88 has the lowest error, whereas the
RMSE of the seasonal and annual models are 1.94 and 2.01,
respectively. The annual models have the weakest output
among the models. This may be attributed to the high
volume of input data leading to the A- and S-type models,
which causes misunderstanding in both classifying the data
and establishing a reliable correlation between the input data
(wind speed and direction data) and the output data (wind
speed data). In contrast, the monthly models were able to
detect the trend and establish a proper relationship between
the input and output data.
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FIGURE 7: Monthly averaged wind speed predicted based on future climate scenarios (RCP2.6, RCP4.5, RCP8.5) for the year. (a) 2030. (b)

2035. (c) 2040.

In addition, with a close look at Table 2, it can be un-
derstood that adopting different historical data for the train
and test periods affects the developed model performance
and the results. Three modes of data division—65/30, 70/30,
and 75/25—and the outcomes of these models’ imple-
mentation are presented in this paper. As it comes from
Table 2, the A-type model failed to make accurate predic-
tions in the test section as the best model of A-type in 75/25
mode had a CC of 0.21 and RMSE of 4.17. Despite the
relative increase of the mean correlation coeflicient in the 30/
70 and 25/75 modes, S-type models have not yet reached an
acceptable level, and the errors are still high. The best results
belong to the 70/30 mode of M-type models with a mean CC
of 0.74 and mean RMSE of 2.61 in the test section.

The lack of a persuasive link between the input and
output values in the other modes of M-type models can be
mainly due to the high sensitivity of M5’ models to the input
data and shows the importance of examining various modes
of models before adopting them as a prediction model. A
detailed appraisal of the selected model (70/30 mode of M-
type models) is presented in the following. The scatter plots
of the measured data versus the models’ results are shown to
check the projection models’ output quality and the cor-
relation between the predicted and observed data (Figure 4).
As shown in Figure 4, the M-type model outputs had a
perfect correlation with the recorded data. It proves the high
efficiency of trend recognition and prediction by M-type
models.
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TaBLE 3: Predicted monthly mean (PMM) of wind speed changes compared to the year 2005.
Monthly prediction based on Scenarios and Years
Month 2005 2030 2035 2040 2030 2035 2040 2030 2035 2040
Jan 13.2741 11.93 11.61 11.16 11.84 11.77 11.57 11.76 11.61 11.80
Feb 11.8188 12.63 12.45 12.89 12.75 12.72 12.35 12.32 12.46 13.14
Mar 10.1221 11.22 11.47 11.59 11.10 10.77 10.83 11.04 11.03 11.62
Apr 10.0947 9.590 9.483 9.593 9.763 9.500 9.598 9.416 9.816 9.419
May 9.0151 7.441 7.463 7.694 7.726 7.840 7.480 7.539 7.411 7.422
Jun 7.7712 6.922 7.636 7.530 7.156 7.178 7.268 6.899 7.385 7.797
Jul 7.0615 6.315 6.836 6.414 6.682 6.572 6.464 6.401 6.309 6.447
Aug 8.5289 6.329 7.085 6.555 6.648 6.873 6.550 6.721 6.218 7.160
Sep 9.6920 8.455 8.222 8.503 8.498 8.390 8.884 8.220 8.208 9.083
Oct 11.5291 10.10 10.35 9.839 10.02 10.00 9.741 9.650 10.15 9.788
Nov 11.8781 10.83 10.85 10.51 11.11 11.18 11.50 10.93 11.16 10.81
Dec 11.1440 11.14 11.57 11.15 11.06 10.99 11.24 11.49 11.26 11.05
Mean 10.1608 9.409 9.586 9.452 9.529 9.481 9.457 9.365 9.418 9.628

For a better understanding of the monthly model per-
formance, the average error of wind speed across the entire
study area for the predicted values is depicted in Figure 5. As
seen from Figures 4 and 5, although the most part of wind
speed data vary from around 3 to 15m/s, the monthly av-
erage of predicted values entirely meets the measured values
in the test section. In addition to the total relative error
(overall error), to get a better picture of the model per-
formance, two relative error curves for day and night periods
are also portrayed in Figure 5. As seen, from the Figure,
during the daytime, the model prediction is slightly better
than during the night time; while, the overall monthly
predication of the wind speed was hindcasted precisely.
Therefore, it is evident that the monthly model not only
shows the proper distribution of wind speed, but it also
accurately predicts the wind speed values in the time
domain.

In addition to the time domain investigation, it is
necessary to evaluate the spatial distribution of prediction
errors over the study area. Figure 6 depicts the mean ab-
solute error (MAE) over the entire region as averaged over
the validation period. Notably, a filter was applied in por-
traying the map to be more reliable, and just cells with more
than two data were shown in colour. As seen, Figure 6
contains four zones: zone I remained white because there are
no observational data in this zone, and therefore no error
was calculated. For zones II and III, MAE was also not
figured since the relevant cells fully contain land and no
observational data are available in these zones. The fourth
zone is the coloured area and represents the MAE in the cells
with dimensions of 0.4 by 0.4".

As seen in Figure 6, the MAE in most parts of the study
area is less than 2.0 m/s and remains in the acceptable range.
It is only near zones II and III that the MAE reaches about
3.0m/s; the reason for this phenomenon is also the prox-
imity of this part of the region to the land, where the di-
rection and speed of the wind change rapidly. These rapid
changes in wind direction disrupt the performance of
projection equation and most probably caused significant
errors near the coasts.

3.2. Future Projection. In the prediction case, the wind speed
is predicted for years of 2030, 2035, and 2040 by imple-
menting the validated monthly model (M-type model in the
70/30 mode) and the GCM prediction data under three
future climate change scenarios RCP2.6, RCP4.5, and
RCP8.5. Similar to the control stage, the prediction model
input was four wind speeds and in four wind directions. In
order to simulate as closely as possible to the control period,
the time and location of the selected points to anticipate
wind speeds in the prediction case are the same as the time
and position of the 2004 records, having the highest number
of records per year. Thus, the measurement specifications of
the 2004 records were used to predict with changing only the
components of the “Year” and fixing the other terms (e.g.,
month, day, hours, minutes, and seconds) and maintaining
the longitudes and latitudes.

Figure 7 shows the monthly average wind speed pre-
dictions for different future climate change scenarios across
the study area. As seen, during 2030 to 2040, the monthly
variations of mean wind speed were at a constant range of 6
to 13 m/s, then after reaching its peak in the second month,
the decreasing trend began to reach 11 m/s in August. The
wind speed trends under the three future climatic scenarios
are rather close to each other for those three years. However,
the monthly mean wind speed fluctuations increased from
2030 to 2040, and most fluctuations were related to the
RCP8.5 scenario.

For further investigation, the predicted monthly mean
(PMM) wind speed values are compared with the corre-
sponding wind speed in 2005 (the last year of the GCM
historical simulation outputs). Table 3 lists the changes in
PMM values. As shown in Table 3, it is only in February and
March that the PMM wind speed is higher; in December, on
the other hand, there are no significant changes compared to
2005. For the rest of the years, the projected PMM wind
speed was declining. Also, the annual mean values of wind
speed (the bottom row of Table 3) were reduced comparing
to 2005. The reduction ratio of the annual mean wind speed
is approximately 7% to 8%, which is in line with the reported
results of previous studies (e.g., [16, 28]). Reduction in wind
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speed substantially impacts the wind energy due to climate
change. Considering the Segal et al. [21] equation for wind
power related to the third order of wind speed, the 7% to 8%
reduction in annual mean wind speed indicates a 13% to 19%
decrease in wind energy.

4. Conclusion

The intensity and frequency of extreme climatic events are
exacerbated due to the impacts of climate change in different
parts of the world. Predicting the wind characteristics under
future climate change scenarios is very vital for evaluating
the performance of existing and future marine engineering
projects. This study adopts M5’ DT technique for the first
time as a MOS multilinear downscaling method for pre-
dicting wind speed trends across a case study region in
North Atlantic Ocean. The GCM simulation outputs and
altimeter remote sensing data were used to train and validate
the developed M5’ models. Three climate change scenarios
of RCP2.6, RCP4.5, and RCP8.5 were adopted for deriving
the predictions from M5’ models. Three downscaling
models, including annual model (A), seasonal models (S),
and monthly models (M), were tested for predicting wind
speed from DT models. The performance of three M5’
models with train-test data ratios of 75/25, 70/30, and 65/35
was investigated to determine the best performing M5’
model. Data from the control case were used to choose the
best model for predicting wind speed under future climate
scenarios. The following conclusion can be drawn:

(i) The detailed analysis of the prediction results from
the M5’ technique indicates the robustness and
appropriateness of the proposed models for
assessing wind characteristics under future climatic
scenarios. The proposed approach for downscaling
has successfully predicted the trend of monthly
averaged wind changes in the study area.

(ii) Model performance evaluations were conducted
employing appropriate statistical measures. As a
result, a detailed analysis of M5 models shows
appropriate performance in the training section;
whereas, the monthly models provided more reli-
able predictions in the test section. Moreover, the
developed models performed in several modes, and
the monthly model in the mode of 70/30 presented
the best performance. This diversity in the models’
performances in different modes indicated the
sensitivity of the M5’ DT model to the input data.

(iii) Based on the monthly model predictions, in 2030,
2035, and 2040, the average monthly wind speed
values for all the three future climate change sce-
narios were close. However, from 2030 to 2040, the
range of monthly mean wind speed oscillations
increased, which in the RCP8.5 scenario was more
evident than in the other two scenarios.

(iv) A comparison between the PMM wind speeds and
the year 2005 shows that the PMM wind speeds
decreased remarkably. Hence, wind energy has also
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been experimented with a reduction that could be of
interest in renewable energy studies and projects in
the study area and would challenge the economic
exploitation of these resources.
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