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-is article constitutes the new fixed point results of dynamic process D(Υ, μ0) through FIC-integral contractions of the Ciric kind
and investigates the said contraction to iterate a fixed point of set-valued mappings in the module of metric space. To do so, we use
the dynamic process instead of the conventional Picard sequence. -e main results are examined by tangible nontrivial examples
which display the motivation for such investigation.-e work is completed by giving an application to Liouville-Caputo fractional
differential equations.

1. Introduction and Preliminaries

In the recent past, the study of metric fixed point theory
untied a portal to a new area of pure and appliedmathematics,
the fixed point theory and its application. -is concept was
prolonged by either extendingmetric space into its extensions
or by modifying the structure of the contractions (see [1–7]).
-e most classical structure known as Banach contraction
principle (or contraction) theoremwas introduced by a Polish
mathematician Banach in 1922 [8]. -e applications of fixed
points of Banach contraction mappings defined for different
kinds of spaces is the guarantee of the existence and
uniqueness of solutions of differential and integral type
equations. -e variety of these nonlinear problems imposes
the search for more and better tools, which are recently very
remarkable in the literature. One of such tools was recently
conveyed by Wardowski [9], where the author originated a
new class of contractive mapping called F-contraction.

Nadler [10] using the idea of Pompeiu–Hausdorff metric
discussed the Banach contraction mappings for set-valued
functions rather than single-valued functions. Let (Δ, δ) be a
metric space. For μ1, μ2 ∈ Δ and A, B⊆Δ, define the Pom-
peiu–Hausdorff metric 􏽢H induced by δ on CB(Δ) as follows:

􏽢H(A, B) � max supμ1∈A �D μ1, B( 􏼁, supμ2∈B �D μ2, A( 􏼁􏽮 􏽯, (1)

for each A, B ∈ CB(Δ), where CB(Δ) denotes the set of all
nonempty closed bounded subsets of Δ and
�D(μ1, B) � infμ2∈Bδ(μ1, μ2). An element μ ∈ Δ is called a
fixed point of a set-valued mapping, i.e., Υ: Δ⟶ CB(Δ),
then μ ∈ Υ(μ). Also, denote the family of nonempty compact
subsets of Δ by K(Δ).

Some well-known results are related to this section and
hereafter.

Lemma 1. Let A and B be nonempty proximal subsets of a
metric space (Δ, δ). If α ∈ A, then

δ(α, B)≤H(A, B). (2)

Lemma 2 (see [11]). Let (Δ, δ) be a metric space and a
sequence (μi)i∈N in (Δ, δ) such that

lim
i⟶∞

δ μi, μi+1( 􏼁 � 0 (3)

is not a Cauchy sequence. 3en, there exists ε> 0 and subse-
quences of positive integers (μij

) and (μlj
), μij
> μlj
> j such that
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δ μij
, μlj

􏼒 􏼓, δ μij+1, μij
􏼒 􏼓, δ μij

, μlj − 1􏼒 􏼓, δ μij+1, μlj− 1􏼒 􏼓, δ μij+1, μlj+1􏼒 􏼓􏼔 􏼕⟶ ε+
, as j⟶ +∞. (4)

Definition 1 (see [12]). Let Υ: Δ⟶ N(Δ) be a multivalued
mapping and μ0 ∈ Δ be arbitrary and fixed. Define

�D Υ, μ0( 􏼁 � μj􏼐 􏼑
j∈N∪ 0{ }

: μj ∈ Υ μj− 1􏼐 􏼑, for all j ∈ N􏼚 􏼛. (5)

Each element of �D(Υ, μ0) is called a dynamic process of
Υ starting point μ0. -e dynamic process (μj)j∈N∪ 0{ } onward
be written as (μj).

Example 1 (see [12]). Let Δ � C([0, 1]) be a Banach space
with a norm ‖μ‖ � supr∈[0,1]|μ(r)|, μ ∈ Δ. Let Υ: Δ⟶ 2Δ be
such that, for every μ ∈ Δ, Υ(μ) is a collection of the functions

r↦k 􏽚
r

0
μ(t)dt, k ∈ [0, 1], (6)

that is,

(Υ(μ))(r) � k 􏽚
r

0
μ(t)dt: k ∈ [0, 1]􏼚 􏼛, μ ∈ Δ, (7)

and let μ0(r) � r, r ∈ [0, 1], then the sequence (1/(j!(j +

1)!)rj+1) is a dynamic process of Υ with starting point μ0.

A mapping Υ: Δ⟶ R is said to be �D(Υ, μ0)-dynamic
lower semicontinuous at μ ∈ Δ, if for every dynamic process
(μj) ∈ �D(Υ, μ0) and for every subsequence (μj(i)) of (μj)

convergent to μ, we get Υ(μ)≤ liminf i⟶∞Υ((μj(i))). If Υ is
�D(Υ, μ0)-dynamic lower semicontinuous at each μ ∈ Δ, then
Υ is said to be �D(Υ, μ0)-dynamic lower semicontinuous. If
for every sequence (μj) ⊂ Δ and μ ∈ Δ such that μj⟶ μ,
we have Υ(μ)≤ liminf j⟶∞Υ(μj), then Υ is known as lower
semicontinuous.

As of now, Branciari [5] generalized the second well-
known contraction of Banach contraction mappings is de-
termined, i.e., let (Δ, δ) be a metric space and a mapping
Υ: Δ⟶ Δ such that

􏽚
δ Υμ1 ,Υμ2( )

0
φ(s)ds ≤ β􏽚

δ μ1 ,μ2( )

0
φ(s)ds (8)

for all μ1, μ2 ∈ Δ, where β ∈ (0, 1), φ ∈ Φ, and Φ is the class
of all functions φ: [0, +∞)⟶ [0, +∞) which is Lebesgue
integrable, summable on each compact subset of [0, +∞)

and 􏽒
ε
0 φ(s)ds> 0 for all ε> 0. -en, Υ has a fixed point.

-e following lemmas are helpful for our main results.
We shall also suppose that φ ∈ Φ.

Lemma 3 (see [6]). Let (μi)i∈N be a nonnegative sequence in
such a way that limi⟶+∞μi � μ. 3en,

lim
i⟶+∞

􏽚
μi

0
φ(s)ds � 􏽚

μ

0
φ(s)ds. (9)

Lemma 4 (see [6]). Let (μi)i∈N be a nonnegative sequence.
3en,

lim
i⟶+∞

􏽚
μi

0
φ(s)ds � 0⇔ lim

i⟶+∞
μi � 0. (10)

In 2012, Wardowski [9] initiated the term of F-con-
traction and implemented on fixed point theorem related
with F-contraction. So, with the intent that, he generalizes
contraction theorem which is a purely altered from many
past results in the literature frame.

Definition 2 (see [9]). Let Υ: Δ⟶ Δ is called an F-con-
traction on a metric space (Δ, δ), if there exist F ∈ ∇5 and
τ ∈ R+ in such a way that, δ(Υμ1,Υμ2)> 0 implies

τ + F δ Υμ1,Υμ2( 􏼁( 􏼁≤F δ μ1, μ2( 􏼁( 􏼁. (11)

For each μ1, μ2 ∈ Δ, where ∇5 is the class of all functions
F: R+⟶ R such that

(Fi) μ1 < μ2 implies F(μ1)<F(μ2) for all μ1, μ2 ∈ R+.
(Fii) For each sequence μj􏽮 􏽯 of positive real numbers,

lim
j⟶∞

μj � 0 iff lim
j⟶∞

F μj􏼐 􏼑 � − ∞. (12)

(Fiii) -ere is k ∈ (0, 1) in such a way that
limc⟶0+ ckF(c) � 0.

From now, we present some well-defined examples of
F-contraction that are listed as follows:

(Fa): F(μ) � lnμ
(Fb): F(μ) � lnμ + μ
(Fc): F(μ) � − 1/ ��μ√

(F d): F(μ) � ln(μ2 + μ)

Owing to (Fi) and (11), clearly, we conclude that every
F-contraction Υ is a contractive mapping. Consequently,
every F-contraction is a continuous mapping (see more
[13]).

-e main purpose of this manuscript is to introduce the
new concept of dynamic iterative process �D(Υ, μ0) based on
FC

I -integral contractions and prove some related multi-
valued fixed point results in the class of metric space. To
approximate our main results by tangible examples are also
determined. At the end, the work is completed by giving an
application to Liouville–Caputo fractional differential
equations.

2. Main Result

First, we give our main definition.

Definition 3. Let (Δ, δ) be a metric space, μ0 ∈ Δ, F ∈ ∇5

and φ ∈ Φ. A set-valued map Υ: Δ⟶ CB(Δ) is said to be
FC

I -integral contraction with respect to a dynamic process
(μi) ∈ �D(Υ, μ0), if there exists τ: R+⟶ R+ such that
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􏽢H Υμi,Υμi+1( 􏼁> 0⇒ τ U μi− 1, μi( 􏼁( 􏼁

+ F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠≤F

· 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡,

(13)

for all i ∈ N, where

U μi− 1, μi( 􏼁 � max
⎧⎨

⎩δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,

·
�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩.

(14)

Remark 1. For the act of continuing our results, we consider
only the dynamic processes (μi) ∈ �D(Υ, μ0) satisfying the
following structure:

δ μi, μi+1( 􏼁> 0⇒δ μi− 1, μi( 􏼁> 0 for each i ∈ N. (15)

If the investigated process does not satisfy (15), then
there is i0 ∈ N such that

δ μi0
, μi0+1

􏼐 􏼑> 0 (16)

and

δ μi0− 1
, μi0

􏼐 􏼑 � 0. (17)

-en, we get μi0− 1
� μi0
∈ Υμi0− 1

which implies the exis-
tence of fixed point due to this consideration of dynamic
process that satisfying (15) does not depreciate a generality
of our approach.

Example 2. Let F: R+⟶ R be defined by F(μ) � lnμ.
Each set-valued FC

I -integral contraction Υ on a metric
space (Δ, δ) with respect to dynamic process �D(Υ, μ0)
assures that

τ U μi− 1, μi( 􏼁( 􏼁 + F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡.

(18)

Upon setting, we have

􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds≤ e

− τ U μi− 1 ,μi( )( ) 􏽚
U μi− 1 ,μi( )

0
φ(s)ds, (19)

for all i ∈ N, (μi) ∈ �D(Υ, μ0), and Υμi− 1 ≠Υμi. In view of the
above observations, clearly, for (μi0− 1), (μi0

) ∈ �D(Υ, μ0) such
that Υμi0− 1

� Υμi0
, the following inequality also holds

through �D(Υ, μ0)

􏽚

􏽢H Υμi0 − 1,Υμi0􏼐 􏼑

0
φ(s)ds≤ e

− τ U μi0 − 1,μi0􏼐 􏼑􏼐 􏼑
􏽚

U μi0 − 1,μi0􏼐 􏼑

0
φ(s)ds,

(20)

that is, Υ is a contraction.

Theorem 1. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ
and Υ: Δ⟶ K(Δ) be a set-valued FC

I -integral contraction
with respect to the dynamic process (μi) ∈ �D(Υ , μ0). Assume
that

Proof. In view of (μi) ∈ �D(Υ, μ0), if there exists i0 ∈ N such
that μi0

� μi0+1, then the existence of a fixed point is obvious.
-erefore, if we let μi ∉ Υμi, then �D(μi,Υμi)> 0 for every
i ∈ N. Using (15) and by Lemma 1, one writes

F 􏽚

�D μi ,Υμi( )

0
φ(s)ds􏼠 􏼡 ≤ F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠ , (21)

≤F 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡 − τ U μi− 1, μi( 􏼁( 􏼁

� F 􏽚
max

0

δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,

�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(22)

Moreover, since Υμi is compact, we obtain μi+1 ∈ Υμi

such that δ(μi, μi+1) � �D(μi,Υμi). Using (21), we have

F 􏽚
δ μi ,μi+1( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

􏽢H Υμi− 1 ,Υμi( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
δ μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡 − τ δ μi− 1, μi( 􏼁( 􏼁<F 􏽚

δ μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡.

(23)
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In view of the above observations, δ(μi, μi+1)􏼈 􏼉 is de-
creasing and hence convergent. We now show that
limi⟶∞δ(μi, μi+1) � 0. In the light of (D1), there exist σ > 0

and i0 ∈ N such that τ(δ(μi− 1, μi))> σ for all i> i0. So, we
have

F 􏽚
δ μi ,μi+1( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

δ μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡 − τ δ μi− 1, μi( 􏼁( 􏼁

≤F 􏽚
δ μi− 2 ,μi− 1( )

0
φ(s)ds􏼠 􏼡 − τ δ μi− 2, μi− 1( 􏼁( 􏼁 − τ δ μi− 1, μi( 􏼁( 􏼁

⋮

≤F 􏽚
δ μ0 ,μ1( )

0
φ(s)ds􏼠 􏼡 − τ δ μ0, μ1( 􏼁( 􏼁 − · · · − τ δ μi− 1, μi( 􏼁( 􏼁

� F 􏽚
δ μ0 ,μ1( )

0
φ(s)ds􏼠 􏼡 − τ δ μ0, μ1( 􏼁( 􏼁 + · · · + τ δ μi0− 1

, μi0
􏼐 􏼑􏼐 􏼑􏼐 􏼑

− τ δ μi0
, μi0+1

􏼐 􏼑􏼐 􏼑􏼑 + · · · + τ δ μi− 1, μi( 􏼁( 􏼁

≤F 􏽚
δ μ0 ,μ1( )

0
φ(s)ds􏼠 􏼡 − i − i0( 􏼁σ.

(24)

Let us set λi � 􏽒
δ(μi ,μi+1)

0 φ(s)ds> 0 for i � 0, 1, 2, . . . and
from (24), we see that limi⟶∞F(λi) � − ∞. By means of
(Fii), we have

lim
i⟶∞

λi � 0. (25)

Also, in the light of (Fiii), there is α ∈ (0, 1) such that

lim
i⟶∞

λi􏼂 􏼃
α
F λi􏼂 􏼃 � 0. (26)

Furthermore, from (24), we can write for all i> i0

λi􏼂 􏼃
α
F λi􏼂 􏼃 − λi􏼂 􏼃

α
F λ0􏼂 􏼃≤ λi􏼂 􏼃

α
F λ0( 􏼁 − i − i0( 􏼁σ( 􏼁

− λi􏼂 􏼃
α
F λ0􏼂 􏼃

� − λi􏼂 􏼃
α

i − i0( 􏼁σ ≤ 0.

(27)

Taking limit as i⟶∞ in (27) and using (26), we have

lim
i⟶∞

i λi􏼂 􏼃
α

� 0. (28)

Let us perceive that, from (28), there is i1 ∈ N such that
i[λi]

α ≤ 1 for all i≥ i1. We have

λi ≤
1

i
1/α. (29)

Now, in order to show that μi􏼈 􏼉 is a Cauchy sequence, we
consider j1, j2 ∈ N such that j1 > j2 ≥ i1. From (29) and by
virtue of metric condition, we have

􏽚
δ μj1 ,μj2􏼐 􏼑

0
φ(s)ds

≤ 􏽚
δ μj1 ,μj1+1􏼐 􏼑

0
φ(s)ds

+ 􏽚
δ μj1+1,μj1+2􏼐 􏼑

0
φ(s)ds + · · · + 􏽚

δ μj2 − 1,μj2􏼐 􏼑

0
φ(s)ds

� λj1
+ λj1+1 + · · · + λj2− 1

� 􏽘

j2− 1

l�j1

λl ≤ 􏽘
∞

l�j1

λl ≤ 􏽘
∞

l�j1

1
l
1/α.

(30)

In the light of (30) and view of convergence of series
􏽐
∞
l�j1

1/l1/α, we see that 􏽒
δ(μj1 ,μj2)

0 φ(s)ds⟶ 0. Hence, μi􏼈 􏼉 is
Cauchy sequence in (Δ, δ). Furthermore, for the com-
pleteness of Δ, there is μ∗ ∈ Δ such that limi⟶∞μi � μ∗.
Since Υ is compact, then we have Υμi⟶Υμ∗. By Lemma 1,
one writes

�D μi,Υμ
∗

( 􏼁≤ 􏽢H Υμi− 1,Υμ
∗

( 􏼁. (31)

So, �D(μ∗,Υμ∗) � 0 and μ∗ ∈ Υμ∗. Suppose, on the
contrary, μ∗ ∉ Υμ∗.-en, there exist i0 ∈ N and subsequence
μik

􏽮 􏽯 of μi􏼈 􏼉 such that �D(μik+1,Υμ∗)> 0 for each ik ≥ i0
(otherwise, there is i1 ∈ N such that μi ∈ Υμ∗ for every i≥ i1,
which yields that μ∗ ∈ Υμ∗). By contractive condition, one
writes
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F 􏽚

�D μik+1,Υμ∗􏼐 􏼑

0
φ(s)ds⎛⎝ ⎞⎠≤F 􏽚

􏽢H Υμik
,Υμ∗􏼐 􏼑

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U μik

,μ∗􏼐 􏼑

0
φ(s)ds⎛⎝ ⎞⎠ − τ U μik

, μ∗􏼐 􏼑􏼐 􏼑.

(32)

Upon letting k⟶∞ in (32),

F 􏽚

�D μ∗,Υμ∗( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

�D μ∗ ,Υμ∗( )

0
φ(s)ds􏼠 􏼡

− τ �D μ∗, μ∗( 􏼁( 􏼁

<F 􏽚

�D μ∗ ,Υμ∗( )

0
φ(s)ds􏼠 􏼡.

(33)

which is a contradiction. On the other hand, we see that the
mapping Δ ∋ μi↦δ(μi,Υμi) is �D(Υ, μ0)-dynamic lower
semicontinuous, we have

􏽚

�D μ∗,Υμ∗( )

0
φ(s)ds≤ liminf

n⟶∞
􏽚

�D μik
,Υμik

􏼐 􏼑

0
φ(s)ds

≤ liminf
n⟶∞

􏽚

�D μi ,Υμi( )

0
φ(s)ds

� 0

(34)

and by virtue of closedness of Υμ∗ implies that μ∗ ∈ Υμ∗
which means that μ∗ is a fixed point of Υ. □

Remark 2. If in -eorem 1, instead of the contractive
condition (13), we assume the following condition

􏽢H Υμi,Υμi+1( 􏼁> 0⇒τ Uj μi− 1, μi( 􏼁􏼐 􏼑

+ F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
Uj μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡,

(35)

where j ∈ 1, 2, 3{ } and

U1 μi− 1, μi( 􏼁 � δ μi− 1, μi( 􏼁,

U2 μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁􏼈 􏼉,

U3 μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁,
�D μi− 1,Υμi− 1( 􏼁 + �D μi,Υμi( 􏼁

2
,􏼨

·
�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩,

(36)

for all i ∈ N, (μi) ∈ �D(Υ, μ0), then there exists a fixed point
of the mapping Υ with the assumptions (D1) and (D2) on
-eorem 1.

Corollary 1. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ,
F ∈ ∇5, φ ∈ Φ, and Υ: Δ⟶ K(Δ). Assume that there exists
τ: R+⟶ R+ such that

􏽢H Υμi,Υμi+1( 􏼁> 0⇒ τ U μi− 1, μi( 􏼁( 􏼁 −
1

􏽒
􏽢H Υμi ,Υμi+1( )
0 φ(s)ds

≤ −
1

􏽒
U μi− 1 ,μi( )
0 φ(s)ds

,

(37)

for all i ∈ N, μi ∈ �D(Υ, μ0), where

U μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,􏼈

·
�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩.

(38)

-en, there exists a fixed point of the mappingΥwith the
assumptions (D1) and (D2) on -eorem 1.

Proof. If we choose F(μ) � − 1/μ, the proof follows from
-eorem 1. □

Corollary 2. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ,
F ∈ ∇5, φ ∈ Φ, and Υ: Δ⟶ K(Δ). Assume that there exists
τ: R+⟶ R+ such that

􏽢H Υμi,Υμi+1( 􏼁> 0⇒ τ U μi− 1, μi( 􏼁( 􏼁

+
1

1 − exp􏽒
􏽢H Υμi ,Υμi+1( )
0 φ(s)ds

≤
1

1 − exp􏽒
U μi− 1 ,μi( )
0 φ(s)ds

,

(39)

for all i ∈ N, μi ∈ �D(Υ , μ0), where

U μi− 1, μi( 􏼁 � max δ μi− 1, μi( 􏼁, �D μi− 1,Υμi− 1( 􏼁, �D μi,Υμi( 􏼁,􏼈

�D μi− 1,Υμi( 􏼁 + �D μi,Υμi− 1( 􏼁

2
􏼩.

(40)

-en, there exists a fixed point of the mappingΥwith the
assumptions (D1) and (D2) on -eorem 1.

Proof. If we choose F(μ) � 1/(1 − exp(μ)), the proof fol-
lows from -eorem 1.

-e direct consequence of -eorem 1 for single-valued
maps is the following. □

Corollary 3. Let (Δ, δ) be a complete metric space, μ0 ∈ Δ,
F ∈ ∇5, φ ∈ Φ, and Υ : Δ⟶ Δ. Assume that there exists
τ: R+⟶ R+ such that δ(Υ iμ0,Υ

i+1μ0)> 0 implies

Complexity 5



τ δ Υi− 1μ0,Υ
iμ0􏼐 􏼑􏼐 􏼑 + F 􏽚

δ Υiμ0 ,Υi+1μ0( )

0
φ(s)ds􏼠 􏼡

≤F 􏽚
δ Υi− 1μ0 ,Υiμ0( )

0
φ(s)ds􏼠 􏼡,

(41)

for all i ∈ N and liminfk⟶l+τ(k)> 0 for each l≥ 0. Suppose
also that a mapping Δ ∋ μ↦δ(μ,Υμ) is �D(Υ , μ0)-dynamic
lower semicontinuous. 3en, Υ has a fixed point.

Corollary 4. Let (Δ, δ) be a complete metric space, F ∈ ∇5,
φ ∈ Φ, and Υ: Δ⟶ Δ. Assume that there exists
τ: R+⟶ R+ such that δ(Υμ,Υ2μ)> 0 implies

τ(δ(μ,Υμ)) + F 􏽚
δ Υμ,Υ2μ( )

0
φ(s)ds􏼠 􏼡≤F 􏽚

δ(μ,Υμ)

0
φ(s)ds􏼠 􏼡,

(42)

for all μ ∈ Δ and liminfk⟶l+τ(k)> 0 for each l≥ 0. Suppose
also that a mapping Δ ∋ μ↦δ(μ,Υμ) is lower semi-
continuous. 3en, Υ has a fixed point.

Example 3. Let Δ � [0, +∞) with the usual metric, Δ
constitutes a complete metric space. Consider a mapping
Υ: Δ⟶ K(Δ) by Υ(μ) � [0, μ/2], μ> 0 and τ: R+⟶ R+

by

τ(μ) �

− lnμ, μ ∈ 0,
1
2

􏼒 􏼓

ln2, μ ∈
1
2
,∞􏼔 􏼓

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

Define dynamic iterative process �D(Υ, μ0): a sequence
μi􏼈 􏼉 is given by μi � μ0gi− 1 for all i ∈ N with initial point
μ0 � 2 and g � 1/2 such that

i ≥ 2 µi = i0g i−1 Υµi−1 = [0, µ/2]

Υµi=1 = [0, 1]

Υµi=2 = [0, 1/2]

Υµi=3 = [0, 1/4]

Υµi=4 = [0,1/8]

1 −

−

−

−

1/2

1/4

1/8

µi=2

µi=3

µi=4

µi=5

Continuing the above iterative process, we see that

�D Υ, μ0( 􏼁 � 1,
1
2
,
1
4
,
1
8
, . . .􏼚 􏼛 (44)

is a dynamic iterative process of Υ starting from the point
μ0 � 2. Setting φ(s) � 1 for all s ∈ R and F(s) � ln(s). For
μi ∈ �D(Υ, μ0) and 􏽢H(Υμi,Υμi+1)> 0, we have

e

τ μi− 1− μi| |( )+F 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ e
F 􏽚

μi− 1− μi| |

0
φ(s)ds􏼠 􏼡

e

τ μi− 1− μi| |( )+ln 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ e
ln 􏽚

μi− 1− μi| |

0
φ(s)ds􏼠 􏼡

e
τ μi− 1− μi| |( )e

ln 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ e
ln 􏽚

μi− 1− μi| |

0
φ(s)ds􏼠 􏼡

e
τ μi− 1− μi| |( ) 􏽚

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
0

φ(s)ds≤ 􏽚
μi− 1− μi| |

0
φ(s)ds

μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
≤ e

− τ μi− 1− μi| |( ) μi− 1 − μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (45)
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and so

τ U μi− 1, μi( 􏼁( 􏼁 + F 􏽚

􏽢H Υμi ,Υμi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U μi− 1 ,μi( )

0
φ(s)ds􏼠 􏼡.

(46)

Hence, all the required hypotheses of -eorem 1 are
satisfied and hence 0 is a fixed point of Υ.

3. An Application

In this frame of study, we deal with some new aspects of
Liouville–Caputo fractional differential equations in module
of complete metric space. Several earlier developments on
fixed point theory and its applications involving fractional
calculus can be found in [14].

Define the Liouville–Caputo fractional differential
equations based on order κ ( �D(c,κ)) by

�D(c,κ)(α(g)) �
1
Γ(i − κ)

􏽚
g

0
(g − t)

i− κ− 1α(i)
(t)dt, (47)

where i − 1< κ< i, i � [κ] + 1, α ∈ Ci([0, +∞]), and the
collection [κ] represents positive real number and Γ rep-
resents the Gamma function. Let Δ: � C(I, R) be the space
of all continuous real-valued functions on I. And, complete
metric space δς: Δ × Δ⟶ [0, +∞) be given by

δς ε1, ε2( 􏼁 � supa∈I ε1(a) − ε2(a)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (48)

Now, consider the following fractional differential
equations and its integral boundary valued problem:

�D(c,κ)(β(g)) � L(g, β(g)), (49)

where g ∈ (0, 1), κ ∈ (1, 2] and

β(0) � 0,

β(1) � 􏽚
ϑ

0
β(g)dg, ϑ ∈ (0, 1),

⎧⎪⎪⎨

⎪⎪⎩
(50)

where I � [0, 1], β ∈ C(I, R) and L: I × R⟶ R be a con-
tinuous function. Let P: Δ⟶ Δ be defined by

Pv(r) �

1
Γ(κ)

􏽚
g

0
(g − t)

κ− 1
L(t, v(t))dt

−
2g

2 − ϑ2􏼐 􏼑Γ(κ)
􏽚
1

0
(1 − t)

κ− 1
L(t, v(t))dt

+
2g

2 − ϑ2􏼐 􏼑Γ(κ)
􏽚
ϑ

0
􏽚

g1

0
g1 − t1( 􏼁

κ− 1
L t1, v t1( 􏼁( 􏼁dt1􏼒 􏼓dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(51)

for v ∈ Δ and g ∈ [0, 1]. Now, we start the main result of this
section.

Theorem 2. Let L: I × R⟶ R be a continuous function,
nondecreasing on second variable and there is a nonconstant
function τ such that εi ∈ �Dς(Υ , ε0) and g ∈ [0, 1] implies

Pεi− 1(r) − Pεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ω
U εi− 1, εi( 􏼁(r)

1 + τ
�����������������
maxg∈IU εi− 1, εi( 􏼁(r)

􏽱
􏼒 􏼓

2,

(52)

where Ω � (2κ − 1)(Γ(κ + 1))/2(5κ + 2) and

U εi− 1, εi( 􏼁(r) � max

εi− 1(r) − εi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, εi− 1(r) − Υεi− 1(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, εi(r) − Υεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

εi− 1(r) − Υεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + εi(r) − Υεi− 1(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (53)

-en, equations (49) and (50) has at least one solution on
Δ.

Proof. For every g ∈ I and owing to operator P: Δ⟶ Δ,
one writes

Upon setting, we see that
In the light of above observation, we have
which implies that

Pεi− 1(r) − Pεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
U εi− 1, εi( 􏼁(r)

1 + τ
�����������������
maxg∈IU εi− 1, εi( 􏼁(r)

􏽱
􏼒 􏼓

2. (54)

By above virtue, we have

δς Pεi− 1(r) − Pεi(r)( 􏼁 � supa∈I Pεi− 1(r) − Pεi(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
U εi− 1, εi( 􏼁(r)

1 + τ
�����������������
maxg∈IU εi− 1, εi( 􏼁(r)

􏽱
􏼒 􏼓

2.
(55)

Furthermore, by contractive condition (13) upon setting
of φ(s) � 1 for all s ∈ R and F(s) � − 1/

�
s

√
, we have

􏽢H Υεi,Υεi+1( 􏼁> 0⇒ τ U εi− 1, εi( 􏼁( 􏼁 + F 􏽚

􏽢H Υεi ,Υεi+1( )

0
φ(s)ds⎛⎝ ⎞⎠

≤F 􏽚
U εi− 1 ,εi( )

0
φ(s)ds􏼠 􏼡,

(56)
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for all i ∈ N, εi ∈ �Dς(Υ, ε0) and for each given ϵ> 0 such that
􏽒
ϵ
0 φ(s)ds> 0. -us, all the required hypotheses of -eorem

1 are satisfied, and hence equations (49) and (50) has at least
one solution on Δ. □

Example 4. Based upon the Liouville–Caputo fractional
differential equations based on order κ( �D(c,κ)). Let us
consider the following integral boundary-value problem:

�D
c,
3
2

􏼒 􏼓
(β(g)) �

1
(g + 3)

2
|β(g)|

1 +|β(g)| (57)

and

β(0) � 0,

β(1) � 􏽚
3/4

0
β(g)dg, ϑ ∈ (0, 1),

⎧⎪⎪⎨

⎪⎪⎩
(58)

where κ � 3/2, ϑ � 34, and
L(t, v(t)) � 1/(g + 3)2|α(g)|/1 + |α(g)|. So, the above set-
ting is an example of equations (49) and (50). Hence, here is
clearly the pair of equations (57) and (58) has at least one
solution.

4. Conclusions

In this paper, we have investigated the preexisting results of
fixed point for set-valued mappings rather than the con-
ventional mappings. Based upon a Wardowski integral and
with a nonnegative Lebesque integrable mapping, we have
transformed the conventional theorems of fixed point into
the module of FC

I . Instead of the traditional Picard sequence,
the dynamic process �D(Υ, μ0) is adopted to iterate the fixed
point. Afterwards, the results have been explained by ren-
dering concrete examples, and some foremost corollaries
have been deduced from the prime results. Also, we provide
illustrative applications to Liouville–Caputo fractional dif-
ferential equations.
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