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Accurate solar irradiance prediction plays an important role in ensuring the security and stability of renewable energy systems.
Solar irradiance modeling is usually a time-dependent dynamic model. As a new kind of recurrent neural network, echo state
network (ESN) shows excellent performance in the field of time series prediction. However, the memory length of classical ESN is
fixed and finite, which makes it hard to map sufficient features of solar irradiance with long-range dependency. /erefore, a novel
deep echo state network with variable memory pattern (VMP-DESN) is proposed in this brief. VMP-DESN consists of multiple
connected reservoirs in series, and there exist different types of memory modes in VMP-DESN. To remember more input history
information in the states, the time delay links are added in each reservoir and between every two reservoirs. /e VMP-DESN is
more flexible to deal with different input signals due to its variable memorymodes in the reservoir states. Additionally, the effect of
different memory patterns on the VMP-DESN performance is discussed in detail, including the antidisturbance ability, memory
capacity, and prediction accuracy. Finally, the effectiveness of VMP-DESN is evaluated by predicting the real solar irradiance task.

1. Introduction

In recent years, accurate solar irradiance prediction has
played an increasingly important role in the management,
dispatch, and security of renewable energy systems [1]. To
predict the solar irradiance series, various techniques have
been proposed, such as statistical models [2, 3], artificial
neural network (ANN) [4, 5], hybrid methods [6, 7], and so
forth. Among those approaches, ANN has become the most
popular method for solar irradiance prediction due to its
strong nonlinear approximation ability [8].

Among ANN, one powerful algorithm is the recurrent
neural network (RNN) [9]. Compared with feed-forward
neural network (FNN), the RNN has dynamic characteristics
and memory performance, by introducing connection loops
in the hidden layer. /us, it is more appropriate for RNN to
model the time-dependent solar irradiance series than FNN.
Echo state network, a simple yet improved variant of RNN
[10], adopts a dynamic reservoir as the hidden layer. /e
dynamic reservoir contains a large number of randomly

sparsely connected neurons, which can encode the input
signal from the low-dimensional input space to the high-
dimensional state space. In addition, only the output con-
nection weights in ESN need to be trained by linear re-
gression algorithms [11], while the input-reservoir and
reservoir-reservoir weights are usually initialized randomly
and remain unchanged in the training process. /erefore,
ESN avoids the drawbacks of high computational com-
plexity and gradient disappearance in traditional RNN. Due
to those advantages, ESN has been widely applied to time
series prediction [12–14], pattern recognition [15, 16], and
control fields [17–19].

For those time series modeling with long-term depen-
dency, the traditional ESN still shows limitations. On the one
hand, the reservoir state update equation of ESN is fixed,
which can only express the relation between partial input
history and the current state. However, the input features far
away from the current time cannot be preserved in the
current states of ESN. If the states cannot contain enough
input history, then the expected value will not be accurately
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fitted in output layer. On the other hand, the traditional ESN
only contains one reservoir layer, which makes it difficult to
fully extract input features. /us, different variants of ESN
have been developed for the performance improvement, for
instance, expanding single-reservoir to multiple reservoirs
[20–23], changing the state update rules of the reservoir
[24–26], and so on. /e authors in [20, 21, 23] propose deep
ESN (DESN) with multiple reservoirs in series array, which
can process the input signal layer by layer. /e experimental
results show that the DESN has better prediction accuracy
than traditional ESN due to the strong feature extraction
ability of its deep topology. In [24, 25], some improved ESNs
with variable state update equation are proposed, by adding
the leaky integrator units in the reservoir. For these ESNs,
more input and state history are preserved in the current
state. /erefore, they have higher memory capacity than
ESN, which also has been illustrated in some experiments. In
addition, some other variants of ESN have been established
and have been successfully applied to solar irradiance
prediction, such as the chain-structure ESN (CESN) with
multiple independent ESNmodules [27, 28], multi-timescale
ESN (MTS-ESN) with multiple reservoirs in parallel array
[29], and so forth. /ese ESNs mainly focus on the topology
changes for performance improvement, whose memory
patterns are single and fixed.

It can be noticed that the aforementioned ESNs modify
the topology or neuron model to improve the performance.
Although some effective results have been achieved, they still
face some challenges in practical complex application.
Firstly, the memory capacity of DESN is finite and con-
tinuous in spite of the strong deep learning ability./e single
memory pattern will affect the flexibility of DESN to process
different kinds of input signals. Furthermore, the leaky ESNs
mainly focus on single-reservoir topology although they
have larger and variable memory capacity. /e single-res-
ervoir ESN has limited feature extraction capability, which
will influence the modeling accuracy.

/erefore, a novel deep echo state network with variable
memory pattern (VMP-DESN) is proposed in this paper in
order to handle aforementioned challenges. To encode the
input feature into a richer state space, VMP-DESN adopts
multiple subreservoirs in series as the hidden layer. To re-
member more input history information, the time delay
links are added in each reservoir and every two reservoirs.
/e VMP-DESN can be regarded as an extension of the
DESN. Unlike the DESN, the memory capacity of VMP-
DESN is variable due to the selective memory mode.
Compared with single-reservoir leaky ESNs, the hidden
layer of VMP-DESN consists of multiple subreservoirs,
which can hierarchically process the input information.
/erefore, it is more flexible and advantageous for VMP-
DESN to deal with different input signals.

In summary, the main contributions of this paper are
summarized as follows:

(i) A novel VMP-DESN model is proposed for solar
irradiance prediction, which has multiple reservoirs
topology and selective memory patterns. /e VMP-

DESN is studied in terms of mathematical model,
pattern classifications, and stability analysis,
respectively.

(ii) /e time delay links are added in each reservoir and
between every two reservoirs in order to preserve
more input history in the states. It is more flexible
for VMP-DESN to process different input signals.

(iii) /e effect of different memory patterns on VMP-
DESN is quantitatively and qualitatively analyzed,
including the prediction accuracy, antidisturbance
ability, and memory capacity.

/e remainder of this paper is organized as follows.
Section 2 introduces the proposed VMP-DESN methodol-
ogy in detail. In Section 3, the performance of VMP-DESN is
comprehensively evaluated in terms of prediction accuracy,
antidisturbance ability, and memory capacity. Finally, some
conclusions are summarized in Section 4.

2. Methodology of a Novel VMP-DESN

/e memory length of traditional ESN is usually finite and
fixed, which cannot extract sufficient features of input sig-
nals with long-term dependency. /erefore, a novel deep
echo state network with variable memory pattern (VMP-
DESN) is proposed in this study to preserve more input
history features. /e developed VMP-DESN is more flexible
to deal with different kinds of input signals, as a result of
variable memory capacity. /is section will describe the
principle of the proposed VMP-DESN methodology.

2.1. VMP-DESNModel. As shown in Figure 1, VMP-DESN
is composed of an input layer, a hidden layer with multiple
subreservoirs in series and time delay links, and an output
layer. On the one hand, the input signals can be encoded into
a richer state space as a result of the hierarchical topology in
VMP-DESN. On the other hand, it is more flexible to deal
with various input signals as different types of memory
patterns are included in VMP-DESN. To remember more
input history features from the states, the time delay links are
added in both each reservoir and between every two res-
ervoirs. /erefore, VMP-DESN has selectively variable
memory modes, which will be helpful for the reservoirs to
map more characteristics of input signals with long-term
dependency.

Assume VMP-DESN has M subreservoirs with the same
neurons N for simplification, K and L are the number of
input and output neurons, respectively. Denote the input
and output signals at time step t as u(t) � [u1(t),

u2(t), . . . , uK(t)]T and y(t) � [y1(t), y2(t), . . . , yL(t)]T.
/e global reservoir states are given as X(t) � [x1
(t), x2(t), . . . , xM(t)]T, where xl(t) � (xl1, xl2, . . . xlN) rep-
resents the states of reservoir layer l, l � 1, 2, 3, . . . M. /e
input signal and reservoir states satisfy the compact sets
through this paper. Win ∈ RN×K is the input connection
weights matrix, Wres

l ∈ RN×N denotes the internal connec-
tion weights matrix for reservoir l, and Wext/l{ }

M
l�2 ∈ RN×N
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is the external connection weights matrix between every two
adjacent subreservoirs. τ1 denotes the delayed time between
every two adjacent reservoirs, while τ2 is the delayed time in
each reservoir.

/e reservoir states of VMP-DESN are updated
according to

x1(t) � tanh Winu(t) + Wres
1 x1 t − τ2(  ,

x2(t) � tanh Wext
2 x1 t − τ1(  + Wres

2 x2 t − τ2(  ,

x3(t) � tanh Wext
3 x2 t − τ1(  + Wres

3 x3 t − τ2(  ,

⋮

xM(t) � tanh Wext
M xM−1 t − τ1(  + Wres

M xM t − τ2(  .

(1)

It can be noticed that the input signal of layer l (l> 1) is
the delayed state value of reservoir layer l − 1. /e above
equations can be generalized as follows:

xl(t) �
tanh Winu(t) + Wres

1 x1 t − τ2(  , if l � 1,

tanh Wext
l xl−1 t − τ1(  + Wres

l xl t − τ2(   if1< l≤M.

⎧⎪⎨

⎪⎩
(2)

/e network outputs of VMP-DESN are expressed as
follows:

y(t) � WoutX(t), (3)

where Wout ∈ RL×MN is the output connection weights
matrix.

/e method of training VMP-DESN is similar to
classical ESN. /at is to say, only the output connection
matrix Wout needs to be learned in VMP-DESN, while
other connection matrices remain fixed after proper
initialization. /e ridge regression training mechanism
[30] is adopted to compute Wout by minimizing the cost
function as follows:

Wout
� argmin

W
‖MW − D‖

2
2 + c‖W‖

2
2. (4)

/e solution of equation (4) is given by

Wout
 

T
� MTM + cE 

−1
MTD , (5)

whereM is a Ltr-by-MN reservoir state matrix,D is a Ltr-by-
L teacher signal vector matrix, and Ltr is the training length.
E denotes a MN-by-MN identity matrix, and c is the reg-
ulation parameter. During the training stage, M and D are
collected as follows:
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Figure 1: Structure of VMP-DESN.
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M �

x1(1) x2(1) . . . xM(1)

x1(2) x2(2) . . . xM(2)

⋮ ⋮ ⋮ ⋮

x1 Ltr(  x2 Ltr(  . . . xM Ltr( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ltr×MN

, (6)

D �

d1(1) d2(1) . . . dL(1)

d1(2) d2(2) . . . dL(2)

⋮ ⋮ ⋮ ⋮
d1 Ltr(  d2 Ltr(  . . . dL Ltr( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ltr×L

, (7)

where the t-th column of M includes the state signal of all
reservoir layers at time t and the t-th column of D denotes
the corresponding expected output signal.

/e training procedure of VMP-DESN is given in
Algorithm 1. According to Algorithm 1, the model pa-
rameters are firstly initialized by trial and error. /en, the
states are updated according to equation (1), when the
system is driven by input signal. At the same time, the
reservoir states matrix and corresponding expected signal
are collected according to equations (6)-(7), respectively.
/e output connection weights are finally computed as
equation (5).

Remark 1. When the delayed time are set to τ1 � 0 and τ2 �

1, the DESN can be obtained. On this basis, if the number of
reservoir is further set to 1 (i.e.,M� 1), the DESNmodel will
degrade to the standard ESN. In addition, the variable
memory pattern ESN (VMP-ESN) can be obtained when
τ1 � 0, τ2 > 1, and M � 1. DESN, ESN, and VMP-ESN are
special cases of VMP-DESN, which will be taken as
benchmarks to verify the effectiveness of VMP-DESN in
later comparative simulation.

Remark 2. /e proposed VMP-DESN includes multiple
reservoirs in series array and different types of time delay
links. On the one hand, the input signals can be encoded into
a richer state space representation due to the hierarchical
structure of VMP-DESN. On the other hand, the reservoir
state update equation of VMP-DESN is variable and
designable, which can deal with different input signals more
flexibly.

2.2. PatternClassification ofVMP-DESN. From the dynamics
of VMP-DESN in equation (2), it can be noticed that the VMP-
DESNmainly includes two types of delayed links, i.e., the delay
of internal state in each reservoir and the delay of state in-
formation transmission between every two subreservoirs. In
order to explore the impact of differentmemory patterns on the
network performance, three various VMPs-DESN are dis-
cussed in this current study, as shown in Table 1.

2.2.1. Pattern I: VMP1-DESN. To test the delay of internal
state in each reservoir on network performance, the VMP1-
DESN is developed with τ1 � 0 and τ2 ≥ 1. /e update rules
of VMP1-DESN are rewritten as follows:

xl(t) �
tanh Winu(t) + Wres

1 x1 t − τ2(  , if l � 1,

tanh Wl
extxl−1(t) + Wres

l xl t − τ2(  , if1< l≤M.

⎧⎪⎨

⎪⎩
(8)

It can be seen that only one kind of memory mode is
retained in VMP1-DESN. VMP1-DESN is a special case of
VMP-DESN (equation (2)) which can also be regarded as an
extension of DESN./e ridge regression training mechanism in
equation (4) can also be used to regulateWout of VMP1-DESN.

2.2.2. Pattern II: VMP2-DESN. In order to verify the delay
of state information transmission between every two sub-
reservoirs on network performance, the VMP2-DESN is
established with τ1 ≠ 0 and τ2 � 1. /e update equations of
VMP2-DESN are expressed as follows:

xl(t) �
tanh Winu(t) + Wres

1 x1(t − 1) , if l � 1,

tanh Wext
l xl−1 t − τ1(  + Wres

l xl(t − 1) , if1< l≤M.

⎧⎪⎨

⎪⎩
(9)

Obviously, the VMP2-DESN is also an extension of
DESN. Compared with traditional ESN and DESN, the
VMP2-DESN can obtain richer asynchronous state signals,
which can express more input history features.

2.2.3. Pattern III: VMP3-DESN. VMP3-DESN includes two
kinds of delayed links, i.e., the delay of internal state in each
reservoir and the delay of state information transmission
between every two reservoirs./e dynamics of VMP3-DESN
are formulated as follows:

xl(t) �
tanh Winu t( ) + Wres

1 x1 t − τ2(  , if l � 1,

tanh Wl
extxl−1 t( ) −τ1  + Wres

l xl t − τ2( ), if1< l≤M.

⎧⎪⎨

⎪⎩

(10)

In VMP3-DESN, it should be satisfied that τ1 ≠ 0 and
τ2 > 1. It can be observed that the VMP3-DESN model is an
extension of DESN, VMP1-DESN, and VMP2-DESN.

Remark 3. In order to study the influence of different
memory patterns on network performance, VMP1-DESN,
VMP2-DESN, and VMP3-DESN are developed, respec-
tively, which correspond to different reservoir state update
equation. VMP1-DESN, VMP2-DESN, and VMP3-DESN
are three special forms of VMP-DESN (equation (2)) under
different constraints. /erefore, the method to train the
above three VMPs-DESN can refer to Algorithm 1. Fur-
thermore, the effect of three various VMPs-DESN on net-
work performance will be discussed and compared in later
simulation.

2.3. Echo State PropertyAnalysis ofVMP-DESN. A valid ESN
should satisfy the echo state property (ESP), which plays an
important role in ensuring the asymptotical stability [31].
ESP denotes that the reservoir states only depend on the
input signal with time and independent of its initial values.
Similarly, the ESP of the VMP-DESN system is mainly
discussed in this section, to guarantee the asymptotically
stable operation. To facilitate the theoretical analysis of ESP,
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the dynamics of VMP-DESN in equation (2) are rewritten as
follows:

xl(t) � tanh Win
l Il(t) + Wres

l xl t − τ2(  , (11)

where the input signal Il(t) is defined as

Il(t) �
u(t), if l � 1,

xl−1 t − τ1( , if1< l≤M,
 (12)

and the input connection matrices Win
l is denoted as

Win
l �

Win
, if l � 1,

Wext
l , if1< l≤M.

⎧⎨

⎩ (13)

/en, the Euclidean distance between xl(t) and xl
′(t)

randomly initialized from xl(0) and xl
′(0) is computed by

xl(t) − xl
′(t)

����
���� � tanh Win

l Il(t) + Wres
l xl t − τ2(  

�����

− tanh Win
l Il(t) + Wres

l xl
′ t − τ2(  

�����.
(14)

According to Lagrange’s mean value theorem and the
fact tanh′ ∈ (0, 1), one can obtain that

xl(t) − xl
′(t)

����
���� � tanh Wres

l xl t − τ2(  − Wres
l xl
′ t − τ2( ( 

����
����

≤ Wres
l

����
���� xl t − τ2(  − xl

′ t − τ2( 
����

����

≤ . . . . . . ≤ Wres
l

����
����

t− τ2 xl(0) − xl
′(0)

����
����,

(15)

xl(0) and xl
′(0) are randomly initialized state values, i.e.,

‖xl(0) − xl
′(0)‖ is bounded. According to equation (15), it

can be obviously obtained that ‖xl(t) − xl
′(t)‖⟶ 0, when

‖Wres
l ‖< 1 and t⟶∞. /erefore, ρ(Wres

l )< 1 can ensure
the ESP of reservoir l, as a result of ‖Wres

l ‖≥ ρ(Wres
l ) (ρ(·)

denotes the spectral radius of Wres
l ). Furthermore, the

necessary condition to guarantee the ESP of VMP-DESN
model is deduced as follows:

max
l�1,2,...,M

ρ Wres
l( < 1. (16)

3. Experimental Design and Results

In this section, the effectiveness of the proposed VMP-DESN
is substantiated by solar irradiance forecasting. /e solar
irradiance datasets in the whole year 2017 with hourly time
interval are used for simulation, which are obtained from
California Irrigation Management Information System
(CIMIS) [32]. CIMIS provides public access to data on the
solar irradiance and other details about the stations. For each
dataset, the training period and testing period are shown in
Table 2.

3.1. Performance Evaluation Metrics. In this current study,
the performance of the proposed methodology is compre-
hensively evaluated through quantitative and qualitative
analysis. Four different external metrics in [1] are used to
quantitatively evaluate the accuracy of VMPs-DESN, i.e.,
root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and
normalized root mean square error (nRMSE), as shown in
equations (17)–(20).

RMSE �

�����������������������

1
lte



lte

t�1
yforecasted,t − yactual,t 

2




, (17)

MAE �
1
lte



lte

t�1
yforecasted,t − yactual,t


, (18)

MAPE �
1
lte



lte

t�1

yforecasted,t − yactual,t

yactual,t




, (19)

nRMSE �
1
y

�����������������������

1
lte



lte

t�1
yforecasted,t − yactual,t 

2




, (20)

where yforecasted,t is the predicted value, yactual,t is the target
value, y is the mean of actual value, and lte denotes the length
of testing step. In addition, the antidisturbance ability and
memory capacity of VMP-DESN will be further qualitatively
analyzed in later simulation./e influence of disturbance on
one network with strong antidisturbance ability will dis-
appear quickly, which plays an important role in practical
applications. Memory capacity refers to the information
length that one network can remember in a short time.

3.2. Modeling Accuracy of VMP-DESN. /e prediction
performance of VMP-DESN is verified by one-hour-ahead
solar irradiance prediction, and only the historical solar
irradiance data are adopted to model in this study. In order
to provide appropriate input and output signals for VMP-
DESN, the time series analysis [23] is used to characterize the
historical solar irradiance data. /e network parameters are

(1) Input: u;
(2) Output: Wout;
(3) Initialization: Win,Wext

l ,Wres
l , K, N, L, M, c, τ1, τ2 ;

(4) for t←1toLtr

(5) for l←1toM

(6) if l � 1 then
(7) xl(t)←tanh(Winu(t) + Wres

1 x1(t − τ2));
(8) else
(9) xl(t)←tanh(Wext

l xl−1(t − τ1) + Wyes
l xl(t − τ2));

(10) end
(11) end
(12) y(t)←ydesired(t); X(t)←(x1(t), x2(t), . . . , xM(t));
(13) end
(14) M←(X(1),X(2), . . . ,X(Ltr));
(15) D←(y(1), y(2), . . . , y(Ltr));
(16) (Wout)T←(MTM + cE)− 1MTD;

ALGORITHM 1:Training procedures of VMP-DESN.
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determined by trial and error, and they are set as follows: the
total reservoir size is set as 200, the number of reservoir layer
is 4, the input number is 2, and the output layer is 1;
connection weights in matrices Win and Wext

l 
M

l�2 are
sampled from a uniform distribution over [−0.1,0.1], while
the spectral radius of matrices Wres

l 
M

l�1 is set as 0.85 to meet
the ESP condition. /e regularization parameter c is 10− 3.

/e influence of different delayed time on the four-
layer VMP-DESN is firstly studied. Evaluation period II in
Seeley station is adopted to test the prediction accuracy
versus delayed time. /e iteration process is stopped when
the testing error is greater than the initial error. /e
statistical results are shown in Table 3, in terms of RMSE,
nRMSE, MAE, and MAPE, respectively. In addition, the
effect of different memory patterns on VMP-DESN per-
formance is also compared in Table 3. Note that VMP-
ESN with τ1 � 0, τ2 � 1, andM � 1 corresponds to stan-
dard ESN and VMP1-ESN with τ1 � 0, τ1 � 1, andM> 1
corresponds to traditional DESN. From the results in
Table 3, it can be obtained that (1) the prediction accuracy
of DESN is higher than that of ESN with the same res-
ervoir units; (2) the proposed VMP-DESN and VMP-ESN
perform better than DESN and ESN; (3) VMP1-DESN,
VMP2-DESN, and VMP3-DESN have equivalent pre-
diction accuracy, indicating that the performance of
DESN can be effectively improved by adding these three
different memory patterns. Additionally, the prediction
error of VMP-ESN, VMP1-DESN, and VMP3-DESN
varies rapidly with the delayed time, and it starts to in-
crease when the delayed time is greater than 3. However,
the prediction error of VMP2-ESN varies slowly with the
delayed time, and it starts to increase when τ1 > 7. /e
reason behind this phenomenon may be that the delayed
link in reservoir can speed up the network response, while
the delayed link between every two subreservoirs can
stabilize the network performance. /e performance of
classical ESN, DESN, VMP-ESN, and VMPs-DESN with
the best prediction accuracy is compared in Figure 2(a),
and the corresponding relative errors are shown in
Figure 2(b). Obviously, experimental results clearly show
that the proposed VMP-DESN could match the actual
value better than ESN, DESN, and VMP-ESN, especially
for some inflection points.

Taking Seeley and Blythe NE stations as two examples,
the performance of VMPs-DESN is further verified. /e
statistical results of different prediction models are recal-
culated and reported in Table 4, in terms of RMSE, nRMSE,
MAE, and MAPE. According to the results obtained, it can
be seen that VMPs-DESN can achieve higher accuracy than
other models for the most testing evaluation periods.
Comparative results between ESN and DESN indicate the
advantage of hierarchical topology, while the comparative

results between ESN and VMP-ESN verify the effectiveness
of variable memory. In addition, the equivalent prediction
accuracy of VMP1-DESN, VMP2-DESN, and VMP3-DESN
further demonstrates the validity of three different types of
memory patterns in improving the accuracy of DESN.

3.3. Antidisturbance Ability of VMP-DESN. /e anti-
disturbance ability of VMP-DESN will be qualitatively
evaluated in this subsection. /e effect of two kinds of
disturbances on the networks is mainly analyzed, i.e., the
disturbances caused by differences in state initialization and
noise in the input signal. For a certain model, the first kind of
disturbance can be constructed by initializing two different
reservoir states, while other model parameters remain the
same. Similarly, the second type of disturbance can be built
by adding small disturbance to the input signal, while the
model parameters remain consistent. /e effect caused by
disturbance is expressed by the difference between reservoir
states. In this current study, Euclidean distance is adopted to
characterize the state differences, as shown in the following
equation:

D X1 − X2


 �

�������������



MN

i�1
x1i − x2i( 

2




, (21)

where X1 and X2 are the reservoir states generated under
different conditions. If the distance is close to zero as the
iteration progresses, it can indicate that the difference be-
tween the two states has disappeared. /at is to say, the
corresponding model has the antidisturbance capability./e
faster the difference disappears, the stronger the anti-
disturbance ability of a model, and vice versa.

/e impact of state initialization differences on above
prediction models is firstly studied. /e only variable is the
initialized reservoir states, while other model parameters
remain the same. /e antidisturbance ability of ESN, DESN,
VMP-ESN, and VMP-DESN is compared in Figure 3, with
the initialized state values as X1 � 0 and X2 � 0.01. From
Figure 3, it can be observed that (1) the state Euclidean
distance of six prediction models gradually decreases to zero
as the training progresses; (2) the disturbance curves of
VMP-ESN decay are significantly slower than the other
five models, and the decay speed of the disturbance curves
corresponding to ESN, DESN, and VMP2-DESN is faster
than the other three models; and (3) the state difference of
ESN, DESN, and VMP2-DESN has decayed to zero, when
the training reaches the time step 30. /erefore, it can be
concluded that each of the six models has a certain
antidisturbance ability, and the antidisturbance ability of
ESN, DESN, and VMP2-DESN is stronger than the other
three models. /e reason is that ESN, DESN, and VMP2-
DESN contain their own delayed states, which affect the
ability to resist such kind of disturbance caused by initial
states.

/en, the ability of six models to resist the second type of
disturbance is further explored. /e single variable is input
signal, while the other model parameters remain unchanged.

Table 1: Different pattern cases of VMP-DESN.

Pattern Model Parameter setting
I VMP1-DESN τ1 � 0, τ2 ≥ 1
II VMP2-DESN τ1 ≠ 0, τ2 � 1
III VMP3-DESN τ1 ≠ 0, τ2 > 1
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Assume that the input signal at 200th time step receives a
small disturbance and changes from the original value
u(200) to u(200) + 0.005. For better presentation, the
semilogarithmic Euclidean distance curves of six models

under input disturbance are plotted and compared in Fig-
ure 4. As can be seen from Figure 4, there is an immediate
difference between states at time step 200, when the dis-
turbance is added to the input signal. Simultaneously, the

Table 2: Different evaluation periods for prediction models.

Evaluation period Training period Testing period
I Jan. 1 ∼ Feb. 28 Mar. 1 ∼ Mar. 31
II Apr. 1 ∼ May. 31 Jun. 1 ∼ Jun. 30
III Jul. 1 ∼ Aug. 31 Sep. 1 ∼ Sep. 30
IV Oct. 1 ∼ Nov. 30 Dec. 1 ∼ Dec. 31
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Figure 2: (a) /e actual values versus predicted solar irradiance by different models. (b) /e corresponding relative error comparison.

Table 3: RMSE, nRMSE, MAE, and MAPE versus delayed time for evaluation period II at Seeley station.

Seeley
Model Parameter RMSE nRMSE MAE MAPE

VMP-ESN (τ1 � 0, M � 1)

τ2 � 1 109.756 0.0696 80.639 0.0662
τ2 � 2 77.474 0.0491 54.972 0.0442
τ2 � 3 72.403 0.0459 48.903 0.0389
τ2 � 4 77.188 0.0489 55.261 0.0444
τ2 � 5 129.548 0.0821 96.560 0.0807

VMP1-DESN (τ1 � 0, M � 4)

τ2 � 1 84.499 0.0536 61.642 0.0495
τ2 � 2 73.313 0.0465 53.647 0.0421
τ2 � 3 67.390 0.0427 46.639 0.0360
τ2 � 4 75.011 0.0476 54.490 0.0425
τ2 � 5 125.346 0.0795 103.069 0.0813

VMP2-DESN (τ2 � 1, M � 4)

τ1 � 1 78.260 0.0496 57.778 0.0458
τ1 � 2 74.674 0.0473 53.797 0.0425
τ1 � 3 73.375 0.0465 51.799 0.0409
τ1 � 4 70.243 0.0445 49.499 0.0385
τ1 � 5 67.909 0.0431 46.905 0.0364
τ1 � 6 67.425 0.0427 46.508 0.0357
τ1 � 7 65.608 0.0416 44.645 0.0342
τ1 � 8 65.686 0.0416 43.829 0.0333
τ1 � 9 69.991 0.0444 46.500 0.0349
τ1 � 10 78.880 0.0500 56.207 0.0437

VMP3-DESN (τ1 � τ2, M � 4)

τ1 � 1 78.260 0.0496 57.778 0.0458
τ1 � 2 69.917 0.0443 49.495 0.0386
τ1 � 3 65.952 0.0418 44.736 0.0342
τ1 � 4 74.159 0.0470 53.202 0.0416
τ1 � 5 125.869 0.0798 101.536 0.0812

Complexity 7



difference between states reaches the maximum at time step
200. As the iteration goes on, the impact of input disturbance
on six models gradually decreases. In addition, the distur-
bance curves corresponding to DESN, VMP-DESN2, and
ESN decay faster than the other three models, further in-
dicating the stronger ability to resist input disturbance.

/e quantitative results in Subsection 3.2 have illustrated
that VMP1-DESN, VMP2-DESN, and VMP3-DESN cor-
responding to the three different types of memory patterns
can achieve equivalent performance in improving the pre-
diction accuracy. However, the qualitative analysis results in
this subsection show that VMP2-DESN performs better than
VMP1-DESN and VMP3-DESN in resisting the input and
initial states disturbances.

3.4. Memory Capacity of VMP-DESN. /e memory capacity
(MC) of several models is investigated in this section. MC
refers to the information length that one network can re-
member in a short time, i.e., the ability to recall the input
signal. According to [33], MC is denoted and computed as
follows:

MC � 
∞

d�0
MCd,

MCd � R
2

u(t − d), yd(t)( ,

(22)

where yd(t) is the actual network output and u(t − d) is the
input signal with a delay d. R(u(t − d), yd(t)) denotes the
correlation coefficient between u(t − d) and yd(t). /e goal
is to train the readout of a network to recall the input signal
with a delay d. /at is to say, u(t − d) is the target output
with the input signal u(t). /e closer MCd is to 1, the higher
the accuracy of a network is to recall the delayed input signal.

In this experiment, MC of traditional ESN, DESN, VMP-
ESN, and the proposed VMPs-DESN is calculated and
compared. /e input signal u(t) is sampled from a uniform
distribution [−1, 1], and the upper limit of d is set as 200 for
practical consideration. /e number of reservoir layer is 4,

and the total reservoir size is set as 200, while other model
parameters remain unchanged.

Taking a four-layer VMP2-DESN as an example, the
influence of delayed time τ1 on memory capacity is dis-
cussed. Figure 5 shows the changes of MCd with d under
different τ1 in VMP2-DESN. As illustrated in Figure 5,
MCd is almost monotonously decreasing over delay d,
when τ1 is relatively small, such as τ1 � 3 and τ1 � 7.
However, MCd decreases to zero through a series of
discrete time spans, when τ1 is large, such as τ1 � 12 and
τ1 � 15. /e reason behind this phenomenon may be the
special memory mode in VMP2-DESN. When τ1 is rel-
atively small, there exist duplicate memories in different
reservoir layers, and only a small amount of past input
information can be recalled accurately by VMP2-DESN.
Duplicate memories denote that some input features
preserved in former reservoir layer are also contained in
the latter reservoir layer. When τ1 is large, the duplicate
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Figure 3: Euclidean distance curves comparison of six prediction
models under different initial states.
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memories among reservoirs in VMP2-DESN can be ef-
fectively decreased to a certain extent. /e input features
far away from the current time can also be recalled ac-
curately under this circumstance.

Table 5 and Figure 6 further compare the MC of
several models. From the results in Table 5, it can be seen
that (1) the MC of DESN is larger than that of ESN due to
multiple reservoir layers; (2) VMP-DESN has higher MC
than ESN because of the adjustable memory intervals. In
addition, VMP2-DESN has the highest MC value among

three different types of VMP-DESN, which further il-
lustrates the advantages of adding delay links between
every two subreservoirs. Figure 6 shows MCd versus delay
d in ESN, DESN, and VMP2-DESN. Obviously, VMP2-
DESN has a higher MC than ESN and DESN. For ESN and
DESN, the memory capacity is limited under constant
reservoir size. However, the memory of this proposed
VMP-DESN can be designable in advance by adjusting the
delayed time. /erefore, VMP-DESN can obtain higher

Table 4: Statistical results comparison of different prediction models for Seeley and Blythe NE stations.

Seeley Blythe NE
Evaluation period Model RMSE nRMSE MAE MAPE RMSE nRMSE MAE MAPE

I

ESN 167.595 0.1384 123.126 0.1495 154.064 0.1460 110.396 0.1904
DESN 158.339 0.1307 116.498 0.1373 136.354 0.1292 97.528 0.1631

VMP-ESN 149.746 0.1236 97.804 0.1229 127.295 0.1206 87.527 0.1506
VMP1-DESN 145.011 0.1197 99.792 0.1209 123.427 0.1170 87.351 0.1479
VMP2-DESN 148.265 0.1224 98.790 0.1195 117.998 0.1118 82.129 0.1409
VMP3-DESN 142.745 0.1179 96.283 0.1189 120.941 0.1146 84.456 0.1454

II

ESN 109.756 0.0696 80.639 0.0662 128.531 0.0856 90.449 0.0869
DESN 84.499 0.0536 61.642 0.0495 90.723 0.0604 59.659 0.0582

VMP-ESN 72.403 0.0459 48.903 0.0389 65.009 0.0433 43.961 0.0401
VMP1-DESN 67.390 0.0427 46.639 0.0360 60.566 0.0403 41.645 0.0363
VMP2-DESN 65.608 0.0416 44.645 0.0342 55.107 0.0367 33.162 0.0296
VMP3-DESN 65.952 0.0418 44.736 0.0342 58.438 0.0389 40.099 0.0346

III

ESN 185.986 0.1517 126.347 0.1913 194.415 0.1713 127.720 0.4790
DESN 168.241 0.1372 104.368 0.1707 172.362 0.1519 99.462 0.4144

VMP-ESN 160.927 0.1313 107.736 0.1597 163.245 0.1438 96.228 0.3936
VMP1-DESN 161.722 0.1319 104.934 0.1549 157.274 0.1386 90.041 0.3935
VMP2-DESN 158.641 0.1294 99.464 0.1531 154.356 0.1360 87.808 0.3664
VMP3-DESN 160.226 0.1307 99.302 0.1582 155.123 0.1367 88.044 0.3878

IV

ESN 233.259 0.3791 177.588 0.6571 119.322 0.1871 89.370 0.7635
DESN 178.297 0.2897 132.655 0.4350 99.633 0.1562 69.862 0.4839

VMP-ESN 165.194 0.2685 114.809 0.3371 108.399 0.1699 71.808 0.3168
VMP1-DESN 154.903 0.2517 109.331 0.3229 100.391 0.1574 68.039 0.3304
VMP2-DESN 152.537 0.2479 108.142 0.3285 95.838 0.1502 64.519 0.2994
VMP3-DESN 154.311 0.2508 109.010 0.3193 99.679 0.1563 67.264 0.3258

Table 5: MC comparison of six different models.

Model MC
ESN 12.377
DESN 18.754
VMP-ESN (τ2 � 3) 11.791
VMP-ESN (τ2 � 7) 11.612
VMP1-DESN (τ2 � 3) 17.629
VMP1-DESN (τ2 � 7) 15.933
VMP3-DESN (τ1 � 3) 19.682
VMP3-DESN (τ1 � 7) 18.476
VMP2-DESN (τ1 � 3) 27.156
VMP2-DESN (τ1 � 7) 41.617
VMP2-DESN (τ1 � 12) 54.289
VMP2-DESN (τ1 � 15) 56.645
VMP2-DESN (τ1 � 17) 56.225
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Figure 6: MCd versus delay d in ESN, DESN, and VMP2-DESN.
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memory capacity under proper memory pattern and
delayed time.

4. Conclusion

A novel deep echo state network is proposed in this paper,
i.e., VMP-DESN. /is model introduces different types of
memory patterns, which is helpful to extract more input
features of solar irradiance with long-range dependency.
Compared with traditional ESN and DESN, the memory
length of VMP-DESN is variable and designable. /erefore,
it is more flexible for VMP-DESN to deal with various input
signals. /e effect of three memory patterns on VMP-DESN
is explored by quantitative and qualitative analysis in detail.
/e quantitative simulation results illustrate that the VMPs-
DESN under different memory modes can achieve equiv-
alent performance in improving the prediction accuracy.
From the qualitative analysis results, VMP-DESN under the
second memory pattern has a stronger antidisturbance
ability and a higher memory capacity than the other two
modes.

In this current study, the delayed time between every two
subreservoirs are set to be the same with the delayed time in
each reservoir for simplification. For more complex mod-
eling in practice, the parameters can be different. However, it
should be noted that different delayed time will increase the
difficulty of parameter optimization.
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