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In order to obtain continuous stratum information during TBM tunneling, using TBM tunneling parameters, stratum recognition
is carried out through the K-nearest neighbor model, and the model is improved by the entropy weight method to improve the
stratum recognition rate. By analyzing the correlation between TBM tunneling characteristic parameters and stratum, the
tunneling characteristic parameter vector which is most sensitive to the stratum is obtained by sensitivity analysis, and the stratum
recognition model based on the K-nearest neighbor algorithm is established. Aiming at the problem that the model has a large
error in complex formation recognition, a formation recognition model based on the entropy weight K-nearest neighbor al-
gorithm is established, and the wrong data of the K-nearest neighbor model is recalculated. *e recognition rate of the stratum in
the new model is increased from 90.95% to 98.55%. *e results show that the K-nearest neighbor model has a better recognition
effect for the interval with single stratum distribution, and the recognition rate of entropy weight K-nearest neighbor model for
complex stratum is significantly improved, which provides an effective method to obtain stratum information by using tunneling
characteristic parameters.

1. Introduction

With the increasing demand for tunnel construction and
underground engineering in China, TBM is widely used as
special tunneling equipment. In the early stage of TBM
selection and construction, the geological survey of the
whole construction section is required. Due to China’s vast
territory and complex geological conditions, the TBM
construction process often faces complex geology such as a
boulder, upper soft, and lower hard. Considering the con-
struction cost and survey methods (usually discontinuous
drilling sampling), accurate geological characteristics cannot
be obtained from geological survey data. In the process of
tunnel construction, the objective and complex geological
conditions are one of the main reasons restricting the safe
and efficient construction of tunnels, which may lead to the
damage of the TBM, affect the construction period, and
more seriously endanger the safety of tunnel construction

[1–4]. At present, the advanced geological prediction
methods are mainly divided into a geological method, a
physical exploration method, and a drilling method [5–7].
However, considering the large differences in the scope of its
use and sensing objects, each has its advantages and dis-
advantages, and a single sensing method is difficult to be
effectively guaranteed in terms of accuracy. *erefore, it is
particularly important to accurately identify geological
characteristics during TBM tunneling.

As the external performance of the TBM perception of
geology, studying the relationship between tunneling pa-
rameters and geological conditions is conducive to the
recognition of geological characteristics. Relevant scholars at
home and abroad have conducted extensive research on the
correlation between TBM tunneling parameters, derivative
parameters of main tunneling parameters, and strata. Zhao
et al. [8] analyzed the correlation between the tunneling
parameters of TBMs and various strata in different projects
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and found that the average tunneling speed and the average
penetration were quite different. *e thrust and torque
fluctuated significantly higher in hard rock strata than in
other strata, and the rest parameters changed little. Ghasemi
et al. [9] and Delisio and Zhao [10] respectively used the
fuzzy logic theory method, support vector machine, and
multiple regression analysis methods to establish a regres-
sion model to predict TBM tunneling speed under hard rock
conditions and predict TBM penetration. Guo et al. [11]
proposed a three-stage method to predict the collapse po-
sition of a TBM tunnel by predicting torque and thrust based
on the data of noncollapse area from the construction of a
long-short-term memory model. *erefore, it is feasible to
invert stratum information through shield tunneling
parameters.

Some scholars use tunneling parameters to classify rocks
or identify certain geologies. Elbaz et al. [12] involved the
expression and classification of geological information in the
research of optimizing the performance of the cutter head
driver, adopted a coding method to define the correction
index of the physical meaning of the input parameters to
quantify the geological characteristics, and combined with
the mechanical properties of the soil and other character-
istics to divide the soil layers into three categories, which
improved the accuracy of geological retrieval. Based on the
tunneling parameters, Liu et al. [13] proposed the correction
of specific energy and constructed the recognition model of
boulder geology. Using BP neural network technology, the
recognition model was established to realize the recognition
of solitary rock geology. Huang and She [14] classified the
surrounding rock grade based on the geological records of
slag and TBM and established the extension evaluation
method of surrounding rock stability classification based on
extension theory. Hou et al. [15] proposed a superimposed
ensemble classifier for real-time prediction of rock mass
classification using TBM operation data, in which the hyper-
parameters of each classifier were optimized by the grid
search method. Compared with a single classifier, the
superimposed ensemble classifier has better performance,
and has stronger learning ability for small samples and
unbalanced samples. Liu et al. [16] proposed an ensemble
learning model based on a classification regression tree and
AdaBoost algorithm to predict surrounding rock classifi-
cation and integrated a few over-sampling techniques to
solve the imbalance problem of rock classification in the
database. Yan et al. [4, 17] realized the prediction of geo-
logical characteristics by integrating grid search (GS) and
K-fold cross-validation (K-CV) into the overlay classifica-
tion algorithm (SCA) according to the data generated by
shield tunneling and borehole data. *erefore, in addition to
the identification of a single stratum, it is very necessary to
identify the combined stratum of the tunnel section.

*is paper is based on the Guangfo Ring Line Shield
Tunnel Project in Guangdong Province. In the section where
the moderately and completely weathered stratum contains
boulders, the muck is viscous and difficult to flow, and it is
easy to form a hard “mud cake” in the cutter head and the
chamber (as shown in Figure 1), which aggravates the tool
loss. *e torque of the cutter head and the thrust resistance

of the shield increases rapidly. *e auger cannot be exca-
vated normally, and the shield cannot be pushed normally.
*e tunnel project adopts the construction method of a
combination of open-cut method and TBM method, in
which the surrounding rock of the shallow section of the
tunnel is classified as Grade V∼VI, and the surrounding rock
of the deep section where the rock mass is complete is
classified as Grade III∼IV. *e weathering of the granite
section is uneven, the bedrock surface undulates greatly, and
there are boulders distributed locally on the top and body of
the tunnel. It is difficult to identify the composite strata by
the previous methods.

In the process of principal component analysis of shield
tunneling parameters, the stratum is introduced, and the
tunneling parameters that can best reflect the stratum are
extracted. *rough sensitivity analysis, the combination of
tunneling parameters that are most sensitive to stratum
identification through the model is selected, which reduces
the impact of redundant features on the identification rate,
reduces the dimension of characteristic parameters, and has
certain innovations in the method of feature selection. In
this paper, the EWM-KNN model based on the entropy
weight method (EWM) and KNN model is established for
composite strata. *e problem of identifying strata by shield
tunneling parameters is solved. Especially for the project
studied in this paper, the identification of the section
containing boulders in the completely weathered stratum
has a recognition rate of 98.55%, which is about 8% higher
than that of the KNN model. *is model has certain in-
novations in the identification of composite strata.

2. Characteristic Parameters Processing and
Correlation Analysis

*rough the obtained actual TBM tunnel engineering data,
the different geotechnical combinations in the tunnel line
are analyzed. Combined with the characteristic value of the
foundation bearing capacity of rock and soil, uniaxial sat-
urated compressive strength and surrounding rock grade,
the different rock and soil combinations are divided, and the
geological code is rewritten. *e tunneling data during
tunnel construction are processed to analyze the correlation
between tunneling data and geological code. Based on a
tunnel project in Guangdong Province, an earth pressure
balance shield (EPB) machine is used, and the open-cut

Figure 1: “Mud cake” at cutter head opening.
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method combined with the shield method are adopted in the
project. *e total length of the upward line tunnel is
3100.19m, of which the EPB tunneling is 982.80m and the
diameter of the cutter head excavation is 9.15m (the main
design parameters of the shield machine are shown in Ta-
ble 1). *is section of the tunnel mainly passes through
residual soil, fully weathered granite, strongly weathered
granite, and moderately weathered granite. It contains two
rock sections where boulders may occur.

2.1. Establishment of Stratigraphic Code. According to the
geological survey data, the geological survey map can be
obtained, as shown in Figure 2. In combination with the
national standard Code for Geotechnical Engineering In-
vestigation of Urban Rail Transit (GB 50307-2012) [18] and
Code for Design of Building Foundation (GB 50007-2011)
[19], according to the characteristics of each rock and soil
layer and engineering geological conditions, the sur-
rounding rock types of rock and soil layers of TBM tunnel
construction in this project are shown in Table 2.

It can be seen from Table 2 that the residual soil and fully
weathered granite belong to grade VI and grade V respec-
tively in the classification of surrounding rock, but the
characteristic values of foundation bearing capacity are very
similar, and the structural characteristics and complete state
are relatively loose. *e actual construction process is re-
flected in the TBM tunneling data, so the residual soil, fully
weathered granite, and the combined strata of the two are
marked as code No. 1. According to the different combi-
nations of rock and soil layers in the TBM tunneling section,
the strata and their combination marks are shown in Table 3.

2.2. Processing of TunnelingParameters. In the study of TBM
tunneling performance, parameters such as total thrust,
cutter head torque, tunneling speed, cutter head rotational
speed, and average soil pressure are usually selected for
analysis. Taking the total thrust as an example, the sampling
period of the time-domain signal in the TBM tunnel con-
struction project is 1min, that is, a group of data is collected
every 60 s, as shown in Figure 3(a). Considering the inter-
ference of the data in the start-stop stage and the data in the
nonexcavation process, in this paper, the invalid data in the
continuously collected data are removed, and the valid data
are spliced to obtain the test data. *e binary discriminant
method is that in a group of data collected at a certain time,
as long as the value of one of the tunneling parameters is
zero, all data at that time will be deleted to obtain various
tunneling data under the normal tunneling state [13], as
shown in Figure 3(b).

*e data collected in practical engineering applications
often have a lot of noise, and the signal jitter is serious.
*erefore, by smoothing the outliers and noise data, the
trend of various tunneling data over time is obtained, as
shown in Figure 3(c).

*e comparison between the original data and the
processed data is shown in Figure 3. From the results before
and after the total thrust data processing, it is more con-
tinuous and intuitive to reflect the variation of tunneling

parameters with geology in the tunneling process, which
provides a data basis for the correlation analysis between
tunneling parameters and strata.

2.3. Correlation Analysis between Tunneling Parameters and
Strata. *emain parameters of TBM tunneling include total
thrust, cutter head torque, tunneling speed, penetration, and
average earth pressure. *e thrust factor and tunneling-
specific energy derived from the main tunneling parameters
can reflect the tunneling performance of the shield machine
by integrating the characteristics of various parameters [20].

In the process of TBM tunneling, the penetration is
affected by the tunneling speed and the rotational speed of
the cutter head, which is defined as the distance of each
rotation of the cutter head, and can directly reflect the
tunneling efficiency. With other tunneling parameters
unchanged, the penetration decreases with the increase of
surrounding rock strength. Under the same formation
conditions, the penetration increases with the increase of
the total thrust, so the thrust factor is introduced to rep-
resent the total thrust required by the unit penetration,
reflecting the boreability of the formation. *e thrust factor
F′ is defined as follows [21], and its time domain is shown in
Figure 4.

F′ �
F

p
, (1)

where F is the total thrust (kN), p is the penetration (mm/r),
which represents the forward driving distance of TBM when
the cutter head rotates for one circle.

From the perspective of energy, when other tunneling
parameters remain unchanged, the increase of cutter head
torque, cutter head speed, or total thrust will consume more
tunneling energy. By calculating the energy consumption
per unit volume of rock and soil to characterize the bore-
ability of rock and soil, the specific energy (SE) of TBM
tunneling has a strong correlation with rock strength [22],
which is defined as follows, and the time domain diagram is
shown in Figure 5.

SE �
Tw + Fv

πR
2
v

, (2)

where T is the cutter head torque (kN·m), w is the cutter
head rotational speed (r/min), v is the tunneling speed (mm/
min), and R is the cutter excavation radius (m).

Pearson correlation principle is used to analyze the
correlation between tunneling parameters, derivative

Table 1: Main performance parameters of EPB.

Name Parameter
Excavation diameter (mm) 9150
*e opening rate of cutter head (%) 35
Main drive speed (rpm) 0∼2.8
Main drive power (kW) 12× 250
Rated torque (kN·m) 17960
*e thrust of the propulsion cylinder (kN) 70000
Rated torque of screw conveyor (kN·m) 249
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parameters, and strata [13], as shown in the following
equation, and the correlation results are shown in Table 4.

ρ(X, Y) �
E X − μX(  Y − μY(  

σXσY

, (3)

where X and Y represent two parameters for correlation
analysis, respectively.

*e correlation coefficient ρ is a real number between
(−1, 1). When ρ ∈ [−1, 0], there is a negative correlation
between variables. When ρ ∈ (0, 1), there is a positive
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Figure 2: Stratum distribution and corresponding stratum code.

Table 2: Rock and soil layer characteristics, construction conditions, and surrounding rock classification∗.

Stratum Structural characteristics and complete
state

Characteristic value of
foundation bearing capacity

(kPa)

Classification of
surrounding rocks

Classification of
earth and stone

Residual soil Loose or soft 180 VI Ordinary soil
Fully weathered
granite Loose structure 200 V Hard soil

Strongly
weathered
granite

Inlaid structure of stone and gravel 500 IV Soft rock

Medium
weathered
granite

Large block masonry structure, local
block stone, gravel mosaic structure 1500 III Hard stone

Lonely stone Inlaid structure of stone and gravel 1500 III Hard stone
Fully weathered
granite Inlaid structure of stone and gravel 500 IV Soft rock

∗Boulders can be considered similar to moderately weathered bedrock.

Table 3: Stratum section combination and corresponding stratum code.

Stratum section combination Stratum code
Residual soil, fully weathered granite, residual soil, and fully weathered granite 1
Fully weathered granite and strongly weathered granite 2
Strongly weathered granite 3
Strongly weathered granite and moderately weathered granite 4
Boulder 5
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correlation between variables. *e closer |ρ| is to 1, the
stronger the correlation between variables, and vice versa. It
can be seen from the correlation coefficient in the last
column of Table 4 that the tunneling-specific energy, thrust
factor, and average soil pressure are highly correlated with
the strata. *e cutter head torque and tunneling speed are
strongly correlated with the strata.

Since the buried depth of the tunnel has a great in-
fluence on the average soil pressure, the average soil
pressure is ignored. *e correlation degree between the

tunneling parameters can be obtained by Pearson cor-
relation analysis. *e tunneling-specific energy is highly
correlated with the thrust factor and has strong collin-
earity. It is difficult to accurately distinguish the influence
of each variable on the formation recognition results by
using both of them. *erefore, the tunneling-specific
energy with a higher correlation with the formation is
selected. Finally, the tunneling parameter vectors (T, v),
(T, SE), (v, SE), and (T, v, SE) composed of cutter head
torque T, tunneling speed v, and tunneling specific energy
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Figure 3: Comparison chart of total thrust before and after data processing: (a) original total thrust and partially enlarged view; (b) total
thrust after binary discrimination and partially enlarged view; (c) total thrust after smoothing.
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SE are formed, which are used as the data basis for
stratum recognition based on K-nearest neighbor
algorithm.

3. Formation Recognition Model Based on the
K-Nearest Neighbor Algorithm

3.1. K-Nearest Neighbor Algorithm. As an online classifica-
tion technology, K-Nearest Neighbor (KNN) algorithm is
first applied to text classification research because of its
simple theory, high accuracy, and good tolerance to outliers
and noises. It is now widely used in classification and rec-
ognition fields such as face recognition and network public

opinion analysis [23, 24]. *is paper applies the KNN al-
gorithm model to stratum recognition.

Define U as training set data, n as a training set data
quantity, then the training set is composed of cutter head torque
U1� {u11, u12,. . .,u1n}, tunneling speed U2� {u21, u22,. . .,u2n},
and tunneling specific energyU3� {u31, u32,. . .,u3n}.X is the test
set data, m is the test set data quantity, then the test set is
composed of cutter head torque X1� {x11, x12, . . ., x1m}, tun-
neling speed X2� {x21, x22, . . ., x2m}, and tunneling specific
energy X3� {x31, x32,. . .,x3m}. *e distance set between training
set data pointsU (u1i, u2i, u3i) and test set data points X (x1j, x2j,
x3j) isDij�D (U (u1i, u2i, u3i),X (x1j, x2j, x3j)), i∈ (1, n), j∈ (1,m),
and Euclidean distance is selected as the distance metric, as
shown in the following equation:
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Figure 4: Time domain diagram of thrust factor and partially enlarged view.
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Table 4: Pearson correlation analysis.

Factor Cutter head torque Speed of tunneling Average soil pressure *rust factor Specific energy Strata
Cutter head torque 1 0.438 0.610 0.755 0.730 0.725
Speed of tunneling 1 0.663 0.424 0.605 0.637
Average soil pressure 1 0.787 0.828 0.822
*rust factor 1 0.955 0.911
Specific energy 1 0.947
Strata 1
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,

(4)

C i is the classification attribute corresponding to U (u1i,
u2i, u3i), namely, strata. *e neighborhood of the distance D
between the element x of the test set X and the training set U
is defined as ε, and the number nε of the neighborhood ε is
defined in the following equation:

nε(x, U) � ui ∈ U|D x, ui( ≤ ε . (5)

To make nε have at least k, the constraints shown in the
following equation are added:

nε(x, U)


≥ k. (6)

If require that the number of neighborhoods ε′ less than
ε is not greater than k, add the constraints as shown in the
following equation:

∀ε′ < ε, nε′(x, U)


< k. (7)

Two constraints of (6) and (7) make the number of
distances nε nearest to x in U exactly k.

*e set of k samples closest to x in U is defined as Ak

Ak(x, U) � ui ∈ U|D x, ui( ≤ ε(k, x, U) . (8)

Class c with the largest number of members in Ak is the
final classification, and the classification result is represented
by set P.

% P x, Ak(x, U)(  � argmax ui ∈ Ak(x, U)|C ui(  � c 


.

(9)

3.2. Selection of the K Value Based on Cross-Test Method.
*e training set dataU is marked according to the categoryC
of each data point, and the KNN algorithm is used to mark
the category of each data point in the test set X in turn. *e
boundary between various categories inX forms the decision
boundary. *e decision boundary becomes smoother and
smoother with the increase of the K value. If the K value is
too small, the classification accuracy will be reduced. If K is
too large and the samples in X are unbalanced, it will in-
crease the noise and reduce the classification effect. Gen-
erally, the cross-test method is used to select the appropriate
K value [25].

*e test set data cannot be used to guide the training of
the model. *erefore, the training set data are further di-
vided into a training set and verification set (the training set
data are divided into a training set and verification set
according to 7 : 3 in this paper). Starting from selecting a
small K value, the value of K is continuously increased, and
the variance of the verification set is calculated. *e veri-
fication set is used to evaluate the recognition rate of the
KNN model under different K values. As shown in Figure 6,
when K� 273, the recognition rate of the verification set R is

up to 93.3%, and the subsequent stratum recognition based
on the KNN algorithm takes K� 273.

3.3. Parameter Sensitivity Analysis. Parameter sensitivity
analysis of the formation recognition model is the change
of recognition results caused by parameter changes, which
is one of the important contents of model parameter un-
certainty analysis, and also an indispensable part of the
research and development and evaluation model [26–28].
Without losing generality, the probability density function
of stratum identification is shown in the following
equation:

q � f x1, x2, . . . , xi, xn( , (10)

where q is the probability density of stratum recognition, xi is
the ith influencing factor, n is the number of factors affecting
q (n� 3 in this paper), x1, x2, and x3 are cutter head torque T,
tunneling speed v, and tunneling specific energy SE,
respectively.

When all the factors change from x1, x2, and x3 to x1′, x2′
and x3′, and their changes are Δx1, Δx2, and Δx3, respectively,
x1′� x1+Δx1, x2′� x2+Δx2, x3′� x3+Δx3, the probability den-
sity function of stratigraphic recognition also changes from q
to q′, and Δq� q′ – q can be used to represent the change of q
caused by all the factors. As shown in the following equation,
Δq is expressed by Taylor expansion of multivariate function:

Δq �
zq

zx1
Δx1 +

zq

zx2
Δx2 +

zq

zx3
Δx3. (11)

If only factor xi changes, other factors do not change, that
is, Δxi≠ 0, Δxl � 0, l≠ i, then the variation of the probability
density q of stratigraphic recognition is denoted by Δqi, as
shown in the following formula:

Δqi �
zq

zxi

Δxi, i � 1, 2, 3 (12)

*e definition of sensitivity Si is as follows:
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Si �
Δqi/q
Δxi/xi

�
zf/zxi( /Δxi /q
Δxi/xi

�
zf

zxi

×
xi

q
. (13)

*e sensitivity of each tunneling parameter to the re-
sponse result of the KNN algorithm stratum recognition
model is shown in the following equation:

Sxi �
zD

zx1
·
xi

D
�

−xi ui − xi( 

D
2 , i � 1, 2, 3. (14)

S i> 0 indicates that the change directions of Δq and Δxi
are the same. *e larger |Si| is, the more sensitive the
probability density q of stratum identification is to the
parameter xi. *e sensitivity of cutter head torque T, tun-
neling speed v, tunneling specific energy SE, and the sen-
sitivity of multiple tunneling parameters (T, v), (T, SE), (v,
SE), and (T, v, SE) is obtained, as shown in Figure 7.

It can be seen from Figure 7 that before the 450th ring,
with the increase of data points, the sensitivity of each group
of tunnel parameters to the stratum becomes higher and
higher, and the sensitivity tends to be stable after the 450th
ring.*e sensitivity of v, SE and [v, SE] is always low, which is
not suitable for the input parameters of the subsequent KNN
algorithm stratigraphic recognition model. *e tunneling
parameter vector [T, SE] has the highest sensitivity to stratum
recognition. In the subsequent calculation, [T, SE] is used as
the data basis for verifying and improving the KNN model.

3.4. Verification of Stratum Recognition Model Based on the
KNN Algorithm. *e cutter head torque T and tunneling
specific energy SE constitute the tunneling parameter vector
(T, SE), which is used as the input of the KNN model for
stratum recognition based on TBM tunneling parameters.
Figure 8 shows the comparison between the strata identifi-
cation results based on the KNN model and the actual strata.

It can be seen from Figure 8 that the identification error
is mainly concentrated between the 277th ring and the
344th. After three changes in this interval, the identification
error of the KNN model is relatively large. After the 351st
ring, there are errors in the identification of the No. 5
formation, and the wrong data are concentrated in the same
section. *e main reason is that after calculating the K
nearest distances in the KNN model, the stratum with the
largest number of stratum types corresponding to these K
distances is taken as the identification result. However, the
data amount of tunneling parameters corresponding to
stratum 1 and stratum 2 is relatively small, and the stratum
changes many times in less data amount. It has certain
limitations to rely solely on Euclidean distance as the basis
for determining the stratum.

In 12936 test data, through the KNN model, 11765 data
points are correctly identified, 1171 are wrongly identified,
and the recognition rate is 90.95%. For 1171 false data, in
order to improve the recognition rate of intervals with
frequent formation changes, a formation recognition model
of the K-nearest neighbor algorithm based on the entropy
weight method is proposed.

4. Stratigraphic Recognition Model Based on
K-Nearest Neighbor Algorithm of Entropy
Weight Method

KNN algorithm calculates the K Euclidean distances closest
to the test set data, but the density and importance of the
type distribution of these K samples are different. Only
taking the type with the largest number of K distances as the
final judgment result will lead to large errors. Considering
the influence of the density and importance of sample
distribution on stratigraphic recognition, it is taken as the
weight of distance. Under the premise of existing data, it is
more reliable to carry out weight analysis from the infor-
mation contained in the data itself. *erefore, the KNN
algorithm based on the entropy weight method is proposed.
Aiming at the problem of sample imbalance, the weight is
determined by the difference in information content be-
tween samples and the accuracy of stratum recognition is
improved.

4.1. Stratigraphic Recognition Model Based on the K-Nearest
Neighbor Algorithm of Normal Entropy Weight Method
(EWM-KNN). Entropy Weight Method (EWM), as a
method to determine the weight through the amount of
information, has strong objectivity and adaptability. It is
mainly used to solve evaluation problems and avoid errors
caused by artificial weighting [29]. *is paper is mainly used
for the weight analysis of the information contained in K
points closest to the test set. InK points, the data distribution
of each stratum type is weighted and scored by the entropy
weight method, and the stratum type with the highest score
is obtained [30, 31].

*e information entropy of event X is shown in the
following equation:
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Figure 7: Sensitivity of tunneling parameters to strata identifi-
cation model.
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H(x) � − 
n

i�1
p xi( ln p xi( , (15)

where xi denotes the possible occurrence of event X, p(xi) is
the probability of each occurrence, and −lnp(xi) denotes the
amount of information contained in each case, their rela-
tionship is shown in Figure 9. −p(xi)lnp(xi) is the expected
value of information content. *erefore, the essence of in-
formation entropy is to represent the expected value of
information. *e maximum value of H(x) is ln(n).

For the ith distance information in K distances obtained
by the KNN algorithm, divided by a constant ln(n) the range
is [0, 1]. *e information entropy calculation is shown in the
following equation:

ej � −
1

ln(n)


n

i�1
pij ln pij, j � 1, 2, 3, . . . , m. (16)

*e greater the value of information entropy, the smaller
the amount of information. *erefore, wj � 1− eij is used as
the utility value of information. After normalization, the
entropy weight of distance information is obtained. *e
calculation formula is as follows:

Wj �
wj


m
j�1 wj

, j � 1, 2, 3, . . . , m. (17)

As an online classification technology, EWM-KNN in-
cludes the advantages of the KNN algorithm, chooses tanh as
the activation function [32], and improves the accuracy of
formation identification through the entropy weight method
(EWM).

4.2. Verification of Stratum Recognition Model Based on
EntropyWeightK-NearestNeighborAlgorithm (EWM-KNN).
*e [T, SE] tunneling parameter vector is used as input, and
1171 data recognition errors are found in 12936 test data
based on the traditional KNN model. By reidentifying, the
1171 test data with the formation identification model based
on the entropy weight K-nearest neighbor algorithm (EWM-
KNN), the purpose of identifying the interval with more
frequent formation changes is achieved, so as to improve the
formation identification rate. Figure 10 shows the com-
parison between the stratum identification results based on
the EWM-KNN model and the actual stratum.

It can be seen from Figure 10(b) that the identification
error of the EWM-KNN model is mainly concentrated
between the 277th ring and 341st ring, which realizes the
identification of No. 2 formation with the least sample size,
but there are still mainly concentrated in the identification of
formation No. 1 to No. 5. *e possible reasons for the
identification error are that the sample size of the stratum
core is small, and the fitting error of the stratum data and the
tunneling parameters is large.
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In 1171 test data, through the EWM-KNN model, 984
data points are correctly identified, 187 data are wrongly
identified, and the recognition rate is 84.03%. Combined
with the previous recognition results, 12749 data points were
correctly identified in 12936 test data, and the improved
recognition rate was 98.55%. *e entropy weight method is
used to solve the problem of low recognition rate in the
frequent interval of strata change, and the EWM-KNN
model is used to improve the recognition rate of strata.

5. Discussion

*e general KNN algorithm has been widely used in the
classification and recognition fields such as face recognition
and network public opinion analysis. However, as an inert
learning algorithm, the KNN algorithm constructs the
model at the last moment of the classification of the given
test set and has certain requirements for the calculation time
and equipment storage space (Section 3.1). Because the
algorithm is based on Euclidean distance, but the Euclidean
distance is not scale-invariant, that is, the calculated distance
may be skewed according to the unit of the elements.
Generally, data need to be normalized before using this
distance measure. With the increase of data dimension,
Euclidean distance loses its physical meaning, making the
distance in a high dimension very unintuitive. However, in
addition to the Euclidean distance, other commonly used
distance measurement methods (Cosine similarity, Man-
hattan distance, Chebyshev distance, Jaccard index, and
Haversine distance) have their own application fields and
applicable conditions, which are not suitable for the research
method in this paper. *erefore, when the KNN algorithm is
adopted in this paper, the measurement content of Eu-
clidean distance is improved [23, 24].

*ere is also an important parameter in the KNN al-
gorithm, that is, the selection of the K value. How many

points should be extracted closest to the test set as the final
classification set is crucial to the final recognition results?
*erefore, the cross-validationmethod is used to select the K
value (Section 3.2). *e commonly used cross-validation
forms include holdout verification, K-fold cross-validation,
and leave-one-out cross-verification (LOOCV). Among
them, Holdout Verification is not a strict cross-validation,
because the data is not cross-used. *e randomly selected
part of the initial sample forms cross-validation data, and the
remaining data as training data. *is makes the test set used
in advance, resulting in errors in subsequent recognition
results. LOOCV uses one of the original samples as vali-
dation data, and the remaining variables are left as training
data. *is makes the factors affecting the results not fully
considered, and it is also easy to lead to identification errors
[25]. *erefore, K-fold cross-validation is selected, and 30%
of the training set is taken as the validation set to determine
the K value. *e selection of the K value and the accuracy of
model recognition are shown in Figure 6.

When the distance metric in the KNN algorithm is im-
proved, the entropy weight method is used to weigh the
Euclidean distance (Section 4.1). *e data generated in the
process of TBM tunneling is random. *e method of sub-
jective weighting requires the weight setter to have rich ex-
perience and rely too much on human factors [30, 31]. *e
objective weighting method determines the weight of pa-
rameters according to the correlation degree of each pa-
rameter attribute, or the amount of information provided by
each parameter. It has strong objectivity and a theoretical
basis. It is not only limited to the same project or TBM, but
also can be widely used in the stratum identification of TBM
tunnels, and has strong universality.*e relationship between
the probability of event occurrence and the amount of in-
formation is shown in Figure 9. However, the weight de-
termined by the objective weighting method is likely to be
inconsistent with the actual situation. *erefore, when
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selecting the tunneling parameters involved in stratum rec-
ognition, the correlation analysis [13] (Section 2.3, Table 3)
and sensitivity analysis [26–28] (Section 3.3, Figure 7) are
used to eliminate the redundant parameters with overlapping
information, reduce the dimension of input parameters of
stratum recognition model, and avoid the interference be-
tween information.

6. Conclusions

*is paper provides a new method of identifying stratum
through machine learning using shield tunneling pa-
rameters. Its steps include preprocessing and feature ex-
traction of tunneling data, digitization of geological
features, and optimization of the stratum recognition
model. *e model is tested by the tunneling parameters of
shield tunneling projects in Guangdong. *e following
conclusions are drawn by comparing the recognition ef-
fects of the two models:

(1) *e parameters T and SE that can best reflect the
stratum in the composite stratum are extracted,
which reduces the dimension of stratum recognition
features and reduces the influence of redundant
features on the accuracy of model recognition.

(2) *eKNNmodel determines the stratum to which the
test data belongs by comparing the distance between
the test data and the training data. *e recognition
rate of the whole stratum is 90.95%, and the rec-
ognition effect of the single stratum is good.

(3) For the section with large soil viscosity and boul-
ders, the recognition rate of the two models is about
8% higher than that of the KNN model alone.
EWM-KNN model has a higher accuracy rate for
stratum identification than the KNNmodel, and the
identification accuracy rate can reach 98.55%,
which is suitable for the identification of composite
stratum.
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