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In daily life, decision-making (DM) problem is a complicated work related to uncertainties and vagueness. To overcome these
imprecisions, many fuzzy sets and theories have been presented by different scholars. Probabilistic models are the communal
models proposed for the management of uncertainties. On the other hand, if these uncertainties are not probabilistic in nature,
then other models such as fuzzy linguistic and fuzzy logic are developed. Here, a new approach known as the complex Pythagorean
fuzzy Maclaurin symmetric mean (CPFMSM) operator is used to handle these uncertainties in DM issues. (is complex Py-
thagorean fuzzy set (CPFS) is a modified form of the Pythagorean fuzzy set (PFS) and of the complex intuitionistic fuzzy set
(CIFS).(e aggregation operators have the ability to combine different sources of information.(erefore, an aggregation operator
known as the MSM operator is utilized under the complex Pythagorean fuzzy (CPF) environment to extend the theory and
applications of traditional MSM. For this purpose, we devised new operators known as CPFMSM and CPF dual Maclaurin
symmetric mean (CPFDMSM) to aggregate CPF data. To evaluate an emergency program, the MAGDM approach is used, which
is based on the newly introduced operators. Furthermore, the viability and applicability of the propoundedmethod are certified by
a detailed analysis with the other approaches researched in the past.

1. Introduction

Decision-making is a task performed frequently in practical
life. (e selection of the best suitable and desirable alter-
native from a group of reasonable alternatives is the main
goal of DM. Decision-making is mainly composed of the
judgment and the preferred information of the DM experts.
Due to the rapid changes in technology, emergency man-
agement, and society, the complexity in the DM environ-
ment increases day by day.(erefore, more DMs and experts
are required for the evaluation of complicated DM prob-
lems. (erefore, such problems are called group decision-
making problems. In this scenario, the problem under
consideration is also a group decision-making problem.
(ere have been many papers in the literature in which
complicated group decision-making problems have been
handled [1, 2]. Integration of the judgment information and

the way to describe the solution are two main problems in
the DM process. Many approaches and methods from
various aspects are introduced for the selection process of
the desired value. In the conventional methods, the decision-
making experts had to describe their desired value in the
accurate form of numerical terms. If decision-makers rep-
resent their data in numerical terms, it becomes simple and
easy for calculation. Due to increasing intricacy and
vagueness in the field of decision-making, we have to
manage the different types of uncertain information, which
are inaccurate, incomplete, and sometimes inconsistent in
nature. Many sets and theories are presented for the satis-
factory solution of DM issues. One of them is the complex
fuzzy set (CFS) theory put forward by Ramot et al. [3]. He
presented the concept of CFS by extending the range of
membership degree (MD) from real to complex numbers
within the unit disc. A mathematical analysis of the CFS was
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given by Yazdanbakhsh and Dick [4]. Afterwards, Alkouri
and Salleh [5, 6] extended the concept of CFS to CIFS by the
expression of the complex-valued nonmembership degree.
(ey also presented the idea of CIFS relation and distance
measures under the CIF environment. (e CIFMSM op-
erator introduced by Ali et al. [7] is applied successfully for
the optimal selection of emergency management program.
Atanassov [8] introduced the intuitionistic fuzzy theory,
which is an extended form of the fuzzy set (FS) theory [9].
All the members of the IFS are expressed through an ordered
pair, and all the ordered pairs are categorized through
membership degree (MD) and nonmembership degree
(NMD). (e summation of the MD and NMD of each
ordered pair must be equal to or less than 1. (e IFS theory
has gained much attention after the discovery, but the IFS
theory fails in depicting the evaluation information, i.e., if a
decision-maker judges his evaluation information as
0.5 + 0.7> 1.

So, Yager [10] first presented the PFS to handle the
undefined opinion in the DM problems. Moreover, PFS is
also an efficient tool for the depiction of ambiguity in
multiple attribute decision-making (MADM) issues. (e
PFS model satisfies the condition g+ h ≤ 1 with g2 +h2 ≤ 1
and hence has a better ability than the IFS to handle the
complex uncertainty in DM issues.(e PFS has the ability to
solve those problems, which are not solved by the IFS. In
short, we can say that the PFS is more universal and all the
intuitionistic fuzzy degrees are considered to be a fragment
of the Pythagorean fuzzy degrees and thus are included in it.
(e idea of the Pythagorean fuzzy number (PFN) was in-
troduced by Zhang and Xu [11]. (ey also propounded the
detailed mathematical form for PFS and the Pythagorean
fuzzy TOPSIS, which is a technique for order preference
similar to the best solution. (is method is used to solve the
MCDM issue within PFNs. Pythagorean fuzzy superiority
and inferiority approach and the subtraction and division
operation were presented by Peng and Yang [12] to solve the
MAGDM issue by PFNs. (e PFNs were used by Reformat
and Yager [13] to handle the collaborative-based recom-
mender system. (e characteristics of the continuous Py-
thagorean fuzzy information were studied by Gou et al. [14].
Using Einstein’s operations, Garg [15] propounded the new
generalized Pythagorean fuzzy information aggregator. By
utilizing an interval-valued Pythagorean fuzzy (IVPF) en-
vironment, Garg researched a novel accuracy function for
the evaluation of multi-criteria decision-making issues.
Similarly, Li et al. [16] integrated IVPF sets (IVPFSs) with
the MULTIMOORA technique and suggested a new FMEA
system. (is approach was implemented for the evaluation
of emergency risk assessment of the east route of the south-
to-north water diversion project. Likewise, Huang et al.
proposed a MCDM approach by the fusion of PFS with the
MULTIMOORA approach based on new score function and
distance measure and applied it for the evaluation of solid-
state disk productions [17]. (e Pythagorean fuzzy Einstein,
a novel operator, is proposed for the solution of real-life DM
problems [18]. Furthermore, Ashraf et al. [19] integrated the
sine trigonometric (ST) operator with PF, introduced the
sine trigonometric Pythagorean fuzzy operator, and

implemented it for the evaluation of Internet finance soft
power problem. For understanding the historical progress
and current situation, Lin et al. [20] presented the com-
prehensive analysis of PFS from 2013 to 2020. Furthermore,
Lin et al. [21] devised some directional correlation coeffi-
cients for the measurement of the interrelationship between
the PFSs and implemented them for medical diagnosis and
cluster analysis. Akram et al. [22] extended the concept of
ELECTRE I and TOPSIS method under the PFS environ-
ment.(e main goal of the proposed techniques is to select a
small set of “failures,” which have high-risk priorities [23].
Similarly, Khan et al. extended the concept of PFS for de-
cision support system and in this regard suggested a novel
operator Pythagorean fuzzy Dombi aggregation [24]. In
addition, to opt ideal medicine from various medicines,
particularly, for coronavirus disease, Batool et al. [25, 26]
used the concept of probabilistic hesitant fuzzy and Py-
thagorean fuzzy set. Wu developed various new operators
using the hesitant fuzzy set (HFS) and PFS and validated
them by three numerical examples of decision-making
problems [27]. Furthermore, based on the single-valued
neutrosophic 2-tuple linguistic concept, some novel
Hamacher aggregation operators were proposed for the
evaluation of MAGDAM problems. For more precision
computation, they extend single-valued neutrosophic lin-
guistic sets (SVNLSs) to single-valued neutrosophic 2-tuple
linguistic sets (SVN2TLSs) [28]. (e PFS has the capability
to handle undefined and ambiguous information but fails to
present the fractional ignorance of the information and its
variations in a particular time period throughout the exe-
cution. In practical life, the ambiguity and vagueness existing
in the information change according to the change in the
periodicity of the data. (e current hypothesis fails to
consider this information, and in this way, some data are lost
in the execution process.

Hence, to fulfill the above-mentioned defects of the CIF
and PFS, Ullah et al. [29] put forward a new conception of
CPFS, which satisfies the limitations of phase term and
amplitude. CPFS can translate the ambiguity and vagueness
of the personal opinion in a logical and detailedmanner than
the CIF because of the prominent property that
MD2+NMD2 ≤ 1. (us, the space to express the ill-defined
information is a wider range, and therefore, due to this
important characteristic, the CPFS is better than the pre-
vious existing theories and models. Besides this, by the
removal of the phase term, we got PFS, which solves the
problem by the degree of membership function, whereas the
phase term is entirely overlooked. (is ignorance causes loss
of information during execution. So, the PFS is considered to
be the particular case of CPFS. (e association of the CPFS
with the previous theories and approaches is stated in [30].
Akram et al. presented a hybrid DM technique utilizing the
concept of CPFS and N-soft sets, and it was further used for
the selection of best laptop and the plant locations [31].
Currently, Akram et al. [32] used TOPSIS and ELECTRIC I
technique under the CPFS environment to address the
multi-criteria group decision-making issues. (e competi-
tion graphs in the CPF environment were discovered by
Akram and Sattar [33]. It is the modified version [34] of the
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VIKORmethodology for the solution of MAGDM problems
under the CPF environment. Furthermore, a technique
known as CP Dombi fuzzy operator is proposed for the
evaluation of two-dimensional phenomena [35].

From the aforementioned discussion, we can conclude
that many of the Pythagorean fuzzy aggregation operators
presented are based on the algebraic sum and algebraic
product of PFSs to continue the aggregation process. So,
currently researchers and scholars are using the aggregation
operators under the CPFS environment for the satisfactory
solution of ill-defined decision-making issues. (e Bonfer-
roni mean (BM) and Heronian mean (HM) operators are
presented to take the significance of any two-dimensional
data into account. So, for the computation of picture fuzzy
number (PiFN), Lin et al. [36] suggested interactional op-
erational laws (IOLs), and on the basis of these laws, they
proposed some aggregation operators such as the picture
fuzzy interactional partitioned HM (PiFIPHM) and geo-
metric PiFIPHM (PiFIPGHM). In the same way, Lin et al.
[37] integrated linguistic q-rung orthopair fuzzy sets
(LqROFSs) with HM operator and developed LqROF in-
teractional weighted Pythagorean geometric HM (LqRO-
FIWPGHM) operator, but unfortunately, both the HM and
BM operators are unable in considering the interrelation
between the multi-input data arguments. (erefore, the
Maclaurin symmetric mean operator was basically presented
by Maclaurin [38] and was further studied by Detemple and
Robertson [39]. (e dominant feature of MSM is that it is
able to seize the relationship between the multi-input data
arguments. (is operator is also able to create robustness
and flexibility in the data integration process and thus makes
it suitable for the solution of MADM issue, where attributes
are considered to be independent. In addition, for a set of the
arguments, the MSM operator decreases monotonically with
the decrease in the value of parameter. (is shows the risk
preference of the decision-making experts in real-life
problems. In recent years, MSM has received much attention
from scholars in various fields. (erefore, various essential
developments have been made in theory and application of
MSM [7, 40, 41]. So, using the benefits of the MSM and CPF,
the fuzziness and ambiguity of the complex system are
solved in a better way and the potential of the suggested
method is confirmed by a numerical example of the
emergency management program. We proposed MSM
operators under the CPF environment for decision-making
experts to express their cognitions for the MAGDM issues.
Emergency management is a suitable term for handling the
hazards of disasters and accidents in short interval of time by
limited information. In the emergency management, public
sectors and government try to confirm the activities asso-
ciated with the emergency management, safety of the public
life, health, property, and promotion of healthy and safe
society, through the establishment of essential response
mechanism. It contains essential measures, utilization of
technology, science, management techniques, and plans. In
the past, weak emergency management planes caused sig-
nificant loss and damage to the global economy and to
human lives. (erefore, for the optimal selection of emer-
gency management plan, several researchers have

implemented different aggregation operators in the past. For
the most optimal selection in this study, we have pro-
pounded a more suitable approach CPFMSM, which is more
universal than PFMSM and CIFMSM aggregation operators.
As CPF is the general form of PF and CIF, similarly MSM is
the universal form of HM and BM. Up to now, no research is
based on the MSM operator for the aggregation of data
under the CPF environment; so, it is required to focus on
this issue. Inspired by this notion, this study takes the
membership and nonmembership degrees into consider-
ation as the complex Pythagorean fuzzy elements.

(e summary of aforementioned discussion is as follows:
(1) in the past research studies, fuzzy sets failed in illustrating
the ill-defined and uncertain information, because the de-
cision-making problems are complicated to evaluate in one
dimension. For the solution of this problem, we used CPFS,
which is useful in handling decision-making problems in
two dimensions, and it avoids the loss of information while
dealing with linguistic information. (e CPFS is more re-
liable and flexible to solve hesitation where PFS fails.
(erefore, CPFS can be considered more general than the
present fuzzy sets. Hence, we initially discussed the CPFS
and its basic concepts to express the evaluation data. On the
other hand, the operator under consideration is not perfect
in all aspects. (e propounded approach is capable for two-
dimensional values. (erefore, someone can extend the
proposed concept for q dimensions to solve real-world
complex DM problems more perfectly than the suggested
approach. (is can be done by defining more hybrids op-
erators, which work better than the existing operators in the
literature. (2) (e integration of data has an essential role in
the fusion of the preferred information of DM experts.
Besides this, a lot of practical problems require the asso-
ciation of the recognized attributes. So, due to the usefulness
of MSM operator and CPFS, some complex Pythagorean
fuzzy MSM operators are presented to handle 2-dimensional
fuzzy data, to define more novel operational laws for CPFSs,
and to handle the uncertainties and vagueness of the
complex system in a lucrative way. (3) For effectively in-
tegrating different DMmatrices, here we have proposed two
operators, CPFMSM and CPFDMSM. Furthermore, on the
basis of integrated matrix, a ranking method is suggested for
the evaluation of the DM problems. (4) (e presented
techniques show the risk attitude of various decision-makers
in the practical application by the parameter k. (5) (e
PFMSM operator opts the best alternative from a group of
proper alternatives using the Pythagorean fuzzy MSM op-
erator framework, but it losses some of data due to the lack of
phase term. (e complex Pythagorean fuzzy set makes it
possible to represent the information at a time in two di-
mensions. Similarly, CPFS contains the characteristic of PFS
and CFS at the same time. (erefore, CPFS is superior to
CFS, CIFS, and PFS. (6)(e drawbacks and shortcomings of
the present operators are being addressed by the pro-
pounded operators; as these operators are more universal,
they work excellently not only for CPF data but also for IF,
CPF, and PF information. (7) Some of the particular DM
problems in our daily life have irrational calculation values,
in which the multiple input arguments are not related to
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each other. Neither the CP nor the MSM operator is able to
solve the problem individually; so, it is required to select an
extensive operator, which not only fades the influence of the
unreasonable values but also takes into consideration the
relationship among the multiple input data arguments. (e
CPFS is able to express the fuzzy data more efficiently than
the PFS and CIFS; so, it is extensively used to deliberate the
assessment data in the above-described DM problems. Now,
it is necessary to integrate the MSM operator with CPFS to
introduce the CPFMSM operator for the evaluation of de-
cision-making issues. (e CPFMSM can fully exploit the
benefits of the CPFS and MSM operators, and at the same
time, it is also able to consider the features of the CPFS in
describing the fuzzy data. (8)(e selection and evaluation of
emergency program in management sciences are a serious
and important topic for research. Because of the complexity
and irregularity in the emergency plan, various assessment
approaches are required to handle the problem of emergency
program in a proper way.

Our basic contribution to this study is to devise a general
technique, for the evaluation of MAGDM and MCDM
problems by the synthesis of the CPFS with MSM and
DMSM aggregation operators. (e selection of the best
alternative is a complicated task in the DM setting.When the
evaluation data are demonstrated by CIFNs and PFNs, they
lead to information mutilation.(erefore, we require a more
general technique for improving the capacity of alternatives.
To attain this goal, first we have to find an appropriate tool to
express the information. (en, we have to develop a deci-
sion-making algorithm, which will be useful in various
aspects. As CPFSs are a remarkable extension of CIFSs and
PFSs, it enables the situations to be modeled more broadly
than CIFSs and PFSs. Subsequently, these previous ap-
proaches fail to succeed in solving some practical situations.
MSM operators make the decision results more accurate and
precise when implemented in daily life MADM based on the
CPF environment. At the last, we have to confirm that our
proposed method is helpful and efficient in different aspects
by comparison with other methods. So, the main goal of this
manuscript was stated as follows:

(1) To propound complex Pythagorean fuzzy averaging
(CPFA) operator and complex Pythagorean fuzzy
geometric (CPFG) operator on the basis of CPFMSM
and CPFDMSM

(2) To propose and explain various MSM operators such
as complex Pythagorean fuzzy Maclaurin symmetric
mean (CPFMSM) and complex Pythagorean fuzzy
dual Maclaurin symmetric mean (CPFDMSM)
operator

(3) Some basic characteristics of the proposed operators
are discussed such as idempotency, monotonicity,
and boundedness

(4) To establish a MAGDM method based on these new
approaches

(5) To explain the performance and validation of the
introduced approaches by a universal example for
the evaluation of emergency plan

Inspired by this idea, in this study the MSM is extended
for the implementation in MAGDM and for the accumu-
lation of complex Pythagorean fuzzy data. For this, the
structure of the study is designed as follows.

In Section 2, the basic definitions and concepts related to
CPFMSM such as PFS, complex Pythagorean fuzzy number
(CPFN), CPFS, and operational laws of CPFNs are discussed
in detail; furthermore, methods for comparison, the basic
operational rules, and some important theorems are dis-
cussed, and basic operators and the aggregation operators
MSM and DMSM are presented. Section 3 proposes new
operators such as CPFMSM and CPFDMSM and also in-
cludes the explanation of their suitable characteristics. In
Section 4, the MAGDM approach is presented, founded on
the CPFMSM and CPFDMSM operators, and the emergency
program is evaluated to prove the effectiveness of the
method. A relative study is also conducted to prove the
practicability of the introduced method. At the last in
Section 5, some concluding remarks are enlisted.

2. Preliminaries

(e purpose of this part is to present succinctly the pre-
existing basic definitions associated with PFS, CPFS, and
some correlated concepts and notations.

Definition 1 (see [10]). SupposeU be a fixed set, and a PFS B
on U is a set of order pair and defined as follows:

B � u, μB(u), ]B(u)( 􏼁|uϵU􏼈 􏼉, (1)

where the mapping μB: U⟶ [0, 1] signifies the mem-
bership degree and ]B: U⟶ [0, 1] indicates the non-
membership degree of the member uϵU to B, respectively,
and satisfies the condition that 0 ≤ (μB(u))2 + (]B(u))2 ≤ 1
for all uϵU. For ease, Zhang and Xu [11] named the pair of
these membership functions as PFN, which is signified by
β� μβ, ]β.

Definition 2 (see [11]). Suppose that β� μβ, ]β is a PFN with
the restriction that 0 ≤ μβ, ]β ≤ 1 and 0 ≤ (μβ)2 + (]β)2 ≤ 1,
and the score index S of β is defined as follows:

S(β) � μ2B − ]2B, S(β)ϵ[− 1, 1]. (2)

(e accuracy index E is defined as follows:

E(β) � μ2B + ]2B, E(β)ϵ[− 1, 1]. (3)

For the comparison of PFNs, the following laws are
presented by Zhang and Xu [11].

Definition 3 (see [11, 12]). Suppose that β1 and β2 are PFNs
and S(βt) and E(βt) are score function and accuracy
function of βt(t � 1, 2) respectively, and then,

(1) If S(β1) > S(β2), then β1≻β2
(2) If S(β1) � S(β2), then

(i) If E(β1) > E(β2), then β1≻β2
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(ii) If E(β1) � E(β2), the same numbers are repre-
sented and are denoted as β1, ∼ , β2

Definition 4 (see [29]). A complex Pythagorean fuzzy set L
on universal set Ư is an object of the form

L � u, gL(u)e
i2παL(u)

, hL(u)e
i2πβL(u)

􏼐 􏼑|uϵU′􏽮 􏽯, (4)

where 0 ≤ gL(u), hL(u)≤ 1, αgL
(u), βhL

(u)ϵ[0, 2π],
g2

L(u)+ h2
L(u)ϵ[0, 1], α2gL

(u)+ β2hL
(u)ϵ[0, 2π], and i�

���
− 1

√
.

Definition 5 (see[29]). Let L1 � (u, gL1
(u)ei2παL1(u),􏽮

hL1
(u)ei2πβL1(u))|uϵU′}, L2 � (u, gL2

(u)ei2παL2(u),􏽮

hL2
(u)ei2πβL2(u))|uϵU′}, and L3 � (u, gL3

(u)ei2παL3(u),􏽮

hL3
(u)ei2πβL3(u))|uϵU′} be three CPFSs in U′; then,
(a) L1⊆L2↔gL1

(u) ≤ gL2
(u), hL1

(u)≥ hL2
(u) for am-

plitude terms and for phase terms αL1
(u) ≤ αL2

(u),
βL1

(u)≥ βL2
(u), for each uϵU′

(b) L1 � L2↔gL1
(u) � gL2

(u), hL1
(u) � hL2

(u) for am-
plitude terms and for phase terms αL1

(u) � αL2
(u),

βL1
(u) � βL2

(u), for each uϵU′
(c) Lc � (u, hL(u)ei2πβL(u), gL(u)ei2παL(u))|uϵU′􏼚 􏼛

For convenience, the complex Pythagorean fuzzy
number (CPFN) is represented by (gei2πα, hei2πβ) as L �

((g, α), (h, β)), where 0 ≤ g, h≤ 1 such that g2 + h2 ϵ [0, 1]

and 0 ≤ α, β≤ 2π such that α2 + β2ϵ[0, 2π].

2.1. Complex Pythagorean Fuzzy Set. In this subsection, an
usable expansion of CPFS is shown. Furthermore, the basic
procedures, score index, accuracy index, and fundamental
operators of CPFS are discussed in detail as follows.

2.1.1. Operational Laws of CPFNs

Definition 6 (see [42]). Let ρ� (gei2πα, hei2πβ) be a CPFN,
and the score of CPFN can be defined as follows:

S(ρ) � g
2

− h
2

􏼐 􏼑 +
1
4π2

α2 − β2􏼐 􏼑, (5)

where S indicates the score function of ρ and S(ρ) obviously
lies inside [− 2, 2].

For the comparison of CPFNs, a quite useful and rele-
vant operator is introduced in the next definitions as follows.

Definition 7 (see [42]). (e accuracy of a CPFN ρ� (gei2πα,

hei2πβ) may be defined as follows:

E(ρ) � g
2

+ h
2

􏼐 􏼑 +
1
4π2

α2 + β2􏼐 􏼑, (6)

where E represents the accuracy function of ρ and E(ρ) is
obviously lies in [0, 2].

Definition 8 (see [42]). Let ρ� (gρe
i2παρ , hρe

i2πβρ ) and
σ � (gσei2πασ , hσei2πβσ ) be any CPFNs, and then, their
comparison is stated as follows:

(i) If S(ρ)> S(σ), then ρ≻σ(ρ is superior than σ)

(ii) If S(ρ) � S(σ), then

(1) If E(ρ)> E(σ), then ρ≻σ (ρ is superior to σ)
(2) If E(ρ) � E(σ), then ρ ∼ σ(ρ is equivalent to σ)

Some basic operational laws on CPFNs will be essential.

Definition 9 (see [42]). For any three complex Pythagorean
fuzzy numbers L1 � (gL1

ei2παL1 , hL1
ei2πβL1), L2 � (gL2

ei2παL2 ,

hL2
ei2πβL2), and L3 � (gL3

ei2παL3 , hL3
ei2πβL3), the basic opera-

tions on complex Pythagorean fuzzy numbers are given as
follows:

L1⊕L2 � g
2
L1

+ g
2
L2

− g
2
L1

g
2
L2

􏼐 􏼑
(1/2)

e
i2π αL1/2π􏼐 􏼑

2
+ αL2/2π􏼐 􏼑

2
− αL1/2π􏼐 􏼑

2
αL2/2π􏼐 􏼑

2
􏼒 􏼓

(1/2)

, hL1
hL2

e
i2π βL1/2π􏼐 􏼑 βL2/2π􏼐 􏼑⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

L1 ⊗L2 � gL1
gL2

e
i2π αL1/2π􏼐 􏼑 αL2/2π􏼐 􏼑

, h
2
L1

+ h
2
L2

− h
2
L1

h
2
L2

􏼐 􏼑
(1/2)

e
i2π βL1/2π􏼐 􏼑

2
+ βL2/2π􏼐 􏼑

2
− βL1/2π􏼐 􏼑

2
βL2/2π􏼐 􏼑

2
􏼒 􏼓

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

cL � 1 − 1 − g
2
L􏼐 􏼑

c
􏼐 􏼑

(1/2)
e

i2π 1− 1− αL/2π( )
2( 􏼁

c

( 􏼁
(1/2)

, h
c
Le

i2π βL/2π( )
c

􏼢 􏼣,

L
c

� g
c
Le

i2π αL/2π( )
c

, 1 − 1 − h
2
L􏼐 􏼑

c
􏼐 􏼑

(1/2)
e

i2π 1− 1− βL/2π( )
2( 􏼁

c

( 􏼁
(1/2)

􏼢 􏼣.

(7)

2.2. Maclaurin Symmetric Mean. Maclaurin [38] initially
presented the idea of Maclaurin symmetric mean, and it was
further developed by Robertson and Detemple. Now, the
MSM is defined as follows.

Definition 10. [38] Suppose sr(r � 1, 2, . . . , m) is a set such
that sr ≥ 1 and k� 1, 2, . . ., m. If

Complexity 5



MSM(k)
s1, s2, . . . , sm( 􏼁 � 􏽐1≤j1 < ···<jk≤m

􏽑
k
r�1 sjr

Ck
m

⎞⎠⎞⎠

(1/k)

.⎛⎜⎝⎛⎜⎝ (8)

(en, (8) is known as theMSM operator, where Ck
m is the

binomial coefficient and (j1,j2, . . ., jk) traverses all the k-
tuple combinations of (1, 2, . . . , m).

Some properties of the MSM are presented as follows:

(i) MSM(k) (0,0, . . ., 0 )� 0
(ii) MSM(k) (s,s,. . ., s )� s

(iii) MSM(k) (s1,s2,. . ., sm ) ≤MSM(k) (h1,h2,. . ., hm ), if
sj ≤ hj for all j

(iv) min
j

sj􏽮 􏽯≤ MSM(k) (s1,s2,. . ., sm ) ≤ max
j

sj􏽮 􏽯

2.3. Dual Maclaurin Symmetric Mean. In [43], Qin and Liu
propounded the idea of DMSM based on the MSM operator,
which is presented in the next definition.

Definition 11. Let sr(r � 1, 2, . . . , m) be a collection such
that sr ≥ 1 and k� 1, 2, . . ., m. If

DMSM(k)
s1, s2, . . . , sm( 􏼁 �

1
k

􏽙
1≤j1 < ···< jk ≤m

􏽘

k

j�1
sjr

⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(9)

whereDMSM(k) is known as the DMSM, (j1,j2,. . ., jk )
traverses all the k-tuple combinations of (1, 2, . . . , m), and
Ck

m � m!/k!(m − k)! is the binomial coefficient.
(e properties of DMSM are omitted as same as the

properties of MSM.

3. Complex Pythagorean Fuzzy Maclaurin
Symmetric Mean Operator for CPFNs

Based on the aforementioned discussion, MSM is important,
especially for the evaluation of MAGDM problems. (e
MSM operator is extended in the CPF environment to
propose CPFMSM and CPFDMSM operators. In addition,
some basic characteristics of CPFMSM and CPFDMSM are
discussed in detail.

Definition 12. Let Qj � (gje
i2παgj , hje

i2πβhj )(j � 1, 2, . . . , m)

be a collection of CPFNs and (j1,j2, . . ., jk) traverses all the
k-tuple combinations (1, 2, . . . , m). A function: ℵ ⟶ ℵ is
termed CPFMSM operator and stated as follows:

CPFMSM(k)
Q1, Q2, . . . Qm( 􏼁 �

1≤ l1 < · · · < lk ≤m
⊕

⊗ k
j�1Qlj

􏼒 􏼓

Ck
m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

, (10)

whereℵ is the family of CPFNs.

Theorem 1. Suppose Qi �

(gie
i2παgi , hie

i2πβhi )(i � 1, 2, . . . , m) is a collection of CPFNs,

and the synthesis result of Q1, Q2, . . . , Qm􏼈 􏼉 using the
CPFMSM operator is stated as follows:

CPFMSM(k)
Q1, Q2, . . . Qm( 􏼁

�

1 − 􏽙
ℶ

1 − ⊗ k
i�1gji

􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1 αji

/2π􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/k)

,

1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − hji

􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 􏽙
ℶ

1− ⊗ k
i�1 1− βji

/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓􏼠 􏼡

1/Ck
m( )

⎛⎝ ⎞⎠

(1/k)

⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(11)

where ℶ used for ease represents the subscript
(1≤ j1 < · · · < jk ≤m).

Proof. In view of the basic operations of CPFMSMNs, we
get
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⊗ k
i�1Qji

� ⊗ k
i�1gji

e
i2π ⊗ k

i�1 αji
/2π􏼐 􏼑􏼐 􏼑

􏼠 􏼡, 1 − ⊗ k
i�1 1 − hji

􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓
(1/2)

e
i2π 1− ⊗ k

i�1 1− βji
/2π􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓􏼒 􏼓

(1/2)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

1≤ j1 < · · · < jk ≤m
⊕

⊗ k
i�1Qji

􏼐 􏼑 �

1 − 􏽙
ℶ

1 − ⊗ k
i�1gji

􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

(1/2)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1 αji

/2π􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

(1/2)

,

􏽙
ℶ

1 − ⊗ k
i�1 1 − hji

􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓
(1/2)

e

i2π 􏽙
ℶ

1− ⊗ k
i�1 1− βji

/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓
(1/2)

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

(en,

1
C

k
m

1≤ j1 < · · · < jk ≤m
⊕

⊗ k
i�1Qji

􏼐 􏼑􏼒 􏼓 �

1 − 􏽙
ℶ

1 − ⊗ k
i�1gji

􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1 αji

/2π􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

,

􏽙
ℶ

1 − ⊗ k
i�1 1 − hji

􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓
(1/2)

⎛⎝ ⎞⎠

1/Ck
m( )

e

i2π 􏽙
ℶ

1− ⊗ k
i�1 1− βji

/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓
(1/2)

⎛⎝ ⎞⎠

1/Ck
m( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Hence,

1
Ck

m

1≤ j1 < · · · < jk ≤m
⊕

⊗ k
i�1Qji

􏼐 􏼑􏼒 􏼓􏼠 􏼡

(1/k)

�

1 − 􏽙
ℶ

1 − ⊗ k
i�1gji

􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1 αji

/2π􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/k)

,

1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − hji

􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 􏽙
ℶ

1− ⊗ k
i�1 1− βji

/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

3.1. Properties of CPFMSM Operator. Let Q
�

i � (gie
i2παi ,

hie
i2πβi ) and Qi

‘

� (gi

‘
ei2παi

‘

, hi

‘

ei2πβi

‘

) be two groups of
CPFNs, where (i� 1, 2, . . ., m), and then, the following
properties are present in the CPFMSM operator.

(1) Idempotency. If Q1 � Q2 � . . . � Qm �Q� (gei2πα,

hei2πβ), then for all i CPFMSM(Q1, Q2, . . . , Qm) �Q.

(2) Monotonicity. For Qi and Q
�

i(i � 1, 2, . . . , m), if
Qi ≤ Qi

‘

∀ i, then CPFMSM(Q1, Q2, . . . ,

Qm) ≤ CPFMSM(Q1
‘

, Q
�

2

‘

, . . . , Qm

‘

).
(3) Boundedness. Suppose Qi(i � 1, 2, . . . , m) be a family

of CPFNs, �Q �min
i

Qi􏼈 􏼉 and 􏽢Q �maxi Qi􏼈 􏼉. (en,
�Q≤ CPFMSM(Q1, Q2, . . . , Qm)≤ 􏽢Q.

Complexity 7



Proof. (Property 1) Let CPFMSM(k)(Q, Q, . . . , Q)

�

1 − 􏽙
ℶ

1 − ⊗ k
i�1gji

􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1 αji

/2π􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

1/k

,

1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − hji

􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 􏽙
ℶ

1− ⊗ k
i�1 1− βji

/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 − 􏽙
ℶ

1 − ⊗ k
i�1g􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1(α/2π)( )

2( 􏼁⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/k)

,

1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − (h)

2
􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 􏽙
ℶ

1− ⊗ k
i�1 1− (β/2π)2( )( )⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�

1 − 1 − (g)
2×k

􏼐 􏼑
Ck

m
􏼒 􏼓

1/Ck
m( )

􏼠 􏼡

(1/2)

⎛⎝ ⎞⎠

(1/k)

e
i2π 1− 1− (α/2π)2×k( )

Ck
m􏼐 􏼑

1/Ck
m( )

􏼠 􏼡

(1/2)

􏼠 􏼡

(1/k)

,

1 − 1 − 1 − 1 − h
2

􏼐 􏼑
k

􏼒 􏼓
Ck

m

􏼠 􏼡

1/Ck
m( )

⎛⎝ ⎞⎠

(1/k)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 1− 1− (β/2π)2( )
k( 􏼁

Ck
m􏼒 􏼓

1/Ck
m( )

􏼠 􏼡

(1/k)

⎛⎝ ⎞⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 − 1 − (g)
2×k

􏼐 􏼑􏼐 􏼑
(1/2)

􏼒 􏼓
(1/k)

e
i2π 1− 1− (α/2π)2×k( )( )

(1/2)
( 􏼁

(1/k)

h
2

􏼐 􏼑
(1/2)

e
i2π (β/2π)2( )

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ge
iα

, he
iβ

􏼐 􏼑.

(15)

Proof. (Property (2) As Qi ≤Qi
′, then we have gi ≤ gi

′, αi ≤ αi
′

and hi ≥ hi

‘

, βi ≥ βi
′ for ∀i. (en, for the real valued

membership functions of CPFMSMNs, as gi ≤ gi
′,one has
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⊗ k
i�1gi􏼐 􏼑

2
≤ ⊗ k

i�1 gi

‘
􏼒 􏼓

2
⇒􏽙
ℶ

1 − ⊗ k
i�1 gi􏼐 􏼑

2
􏼒 􏼓≥􏽙

ℶ
1 − ⊗ k

i�1gi

‘
􏼒 􏼓

2
􏼠 􏼡

⇒1 − 􏽙
ℶ

1 − ⊗ k
i�1gi􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

≤ 1 − 􏽙
ℶ

1 − ⊗ k
i�1gi

‘
􏼒 􏼓

2
􏼠 􏼡⎛⎝ ⎞⎠

1/Ck
m( )

⇒ 1 − 􏽙
ℶ

1 − ⊗ k
i�1gi􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

≤ 1 − 􏽙
ℶ

1 − ⊗ k
i�1gi

‘
􏼒 􏼓

2
􏼠 􏼡⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

.

(16)

Correspondingly, for the imaginary valued membership
functions of CPFMSMNs, we get

1 − 􏽙
ℶ

1 − ⊗ k
i�1αi􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

≤ 1 − 􏽙
ℶ

1 − ⊗ k
i�1αi

‘
􏼒 􏼓

2
􏼠 􏼡⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

. (17)

(erefore, we obtain

1 − 􏽙
ℶ

1 − ⊗ k
i�1gi􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

e
i2π 1− 􏽑ℶ 1− ⊗ k

i�1 αi/2π( )( )
2( 􏼁( 􏼁

1/Ck
m( )

􏼒 􏼓
(1/2)

􏼠 􏼡

(1/k)

≤ 1 − 􏽙
ℶ

1 − ⊗ k
i�1gi

‘
􏼒 􏼓

2
􏼠 􏼡⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/k)

e

i2π 1− 􏽙
ℶ

1− ⊗ k
i�1 αi

‘
/2π( 􏼁( 􏼁

2
􏼐 􏼑⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/k)

.

(18)

Also, for the nonmembership degree, we can get

1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − hi( 􏼁

2
􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e
i2π 1− 1− 􏽑ℶ 1− ⊗ k

i�1 1− βi/2π( )( )( )
2( 􏼁( 􏼁

1/Ck
m( )

􏼒 􏼓
(1/k)

􏼠 􏼡

(1/2)

≥ 1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − hi

‘

􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 􏽙
ℶ

1− ⊗ k
i�1 1− βi

‘

/2π􏼒 􏼓􏼒 􏼓􏼒 􏼓
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/k)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

(1/2)

.

(19)

Proof. (Property 3) Because of the idempotency and
monotonicity of the proposed CPFMSM operator, we can
get results stated as follows.

For Qi ≥ �Q �mini Qi􏼈 􏼉, one has CPFMSM(Q1,

Q2, . . . , Qm)≥ CPFMSM(�Q, �Q, . . . , �Q) � �Q.
For Qi ≤ 􏽢Q �maxi Qi􏼈 􏼉, one has CPFMSM(Q1, Q2,

. . . , Qm) ≤ CPFMSM( 􏽢Q, 􏽢Q, . . . , 􏽢Q) � 􏽢Q.

(erefore, mini Qi􏼈 􏼉≤ CPFMSM(Q1, Q2, . . . , Qm) ≤
maxi Qi􏼈 􏼉.

Now, various novel operators will be attained by allo-
cating diver values to parameter k.

Case (1). When k� 1, the CPFMSM operator is changed
into the CPF arithmetic averaging (CPFAA) operator,
which is stated as follows:

Complexity 9



CPFMSM
(1)

Q1, Q2, . . . , Qm( 􏼁 �
1
m

⊕

1≤ j1 ≤m

Qji

⎛⎜⎜⎝ ⎞⎟⎟⎠ �
1
m
⊗ n

j�1Qj􏼐 􏼑 letj1 � j( 􏼁

�

1 − ⊗m
j�1 1 − g

2
j􏼐 􏼑

1/m
􏼒 􏼓

1/2
e

i2π 1− ⊗m
j�1 1− αj/2π( 􏼁

2
􏼐 􏼑

1/m
􏼒 􏼓

1/2

⊗ m
j�1h

1/m
j e

i2π ⊗m
i�1 βj/2π( 􏼁

1/m
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� CPFAA
(1)

Q1, Q2, . . . , Qm( 􏼁
1

n(n − 1)
⊕kj1, j2 � 1

j1 ≠ j2

.

(20)

Case (2). If k� 2, then the CPFMSM operator is re-
duced to a specific operator CPF Bonferroni mean
(CPFBM) operator, stated as follows:

CPFMSM(2)
� Q1, Q2, . . . , Qm( 􏼁

�
1≤ j1 < j2 ≤m

⊕
⊗ 2i�1Qji

􏼐 􏼑

C2
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/2)

�
1

n(n − 1)
⊕kj1, j2 � 1

j1≠j2

Q
1
j1
⊗Q

1
j2

􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

�

1 − ⊗ k

j1, j2 � 1

j1≠j2

1 − g
2
j1

g
2
j2

􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2/n(n− 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− ⊗ k

j1, j2 � 1

j1≠j2

1− αj1/2π􏼐 􏼑
2

αj2/2π􏼐 􏼑
2

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2/n(n− 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

,

1 − 1 − ⊗ k

j1, j2 � 1

j1≠j2

1 − 1 − h
2
j1

􏼐 􏼑 1 − h
2
j2

􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2/n(n− 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− ⊗ k

j1, j2 � 1

j1≠j2

1− 1− βj1/2π􏼐 􏼑
2

􏼒 􏼓 1− βj2/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2/n(n− 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� CPFBM(1,1)
Q1, Q2, . . . , Qm( 􏼁.

(21)

Case (3). If k� 3, then the CPFMSM operator is re-
duced to a specific operator CPF generalized Bonfer-
roni mean (CPFGBM) operator, stated as follows:

10 Complexity



CPFMSM(3)
Q1, Q2, . . . , Qm( 􏼁 �

1≤ j1 < j2 < j3 ≤m
⊕

⊗ 3i�1Qji
􏼐 􏼑

C3
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

(1/3)

�
1

n(n − 1)(n − 2)
⊕kj1, j2, j3 � 1

j1 ≠ j2 ≠ j3

Q
1
j1
⊗Q

1
j2
⊗Q

1
j3

􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/3)

� CPFGBM(1,1,1)
� Q1, Q2, . . . , Qm( 􏼁.

(22)

Case (4). If k�m, then the CPFMSM operator is re-
duced to a specific operator CPF geometric average
mean (CPFGAM) operator, stated as follows:

CPFMSM(m)
Q1, Q2, . . . , Qm( 􏼁 � ⊗ m

i�1Qi( 􏼁
(1/m)

�

⊗ m
i�1gi( 􏼁

(1/m)
e

i2π ⊗m
i�1 αi/2π( )( )

(1/m)

,

1 − ⊗ m
i�1 1 − h

2
i􏼐 􏼑􏼐 􏼑

(1/m)
􏼒 􏼓

(1/2)

e
i2π 1− ⊗m

i�1 1− βi/2π( )
2( 􏼁( 􏼁

(1/m)

􏼐 􏼑
(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� CPFGAM(m)
Q1, Q2, . . . , Qm( 􏼁.

(23)

3.2. Complex Pythagorean Fuzzy Dual Maclaurin Symmetric
Mean. Next, the dual form of CPFMSM operator called
CPFDMSM operator is propounded based on the fusion of
the CPFS and DMSM operators.

Definition 13. Suppose Qi � (gie
i2π(αi/2π), hie

i2π(βi/2π))(i �

1, 2 . . . , m) be a set of CPFNs and k is a parameter, and its
values are taken from the collection 1, 2, . . . , m{ }. A function:
ℵ ⟶ ℵ is called CPFDMSM operator and is defined as
follows:

CPF DM SM
(k)

Q1, Q2, . . . , Qm( 􏼁
1
k

⊗

1≤ j1 < · · · < jk ≤m

⊕ki�1Qji
􏼐 􏼑

1/Ck
m⎛⎝ ⎞⎠, (24)

where ℵ denotes the collection of CPFNs.

Theorem 2. Suppose Qi � (gie
i2π(αi/2π), hie

i2π(βi/2π))(i � 1, 2,

. . . , m) be a set of CPFNs, and then, the combination result of
(Q1, Q2, . . . , Qm) using the CPFMSM operator is presented as
follows:

Complexity 11



CPF DM SM
(k)

Q1, Q2, . . . , Qm( 􏼁

�

1 − 1 − 􏽙
ℶ

1 − ⊗ k
i�1 1 − g

2
ji

􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

1/Ck
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1/2

e

i2π 1− 1− 􏽙
ℶ

1 − ⊗ k
i�1 1 − αji

/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

1 − 􏽙
ℶ

1 − ⊗ k
i�1hji

􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

1/k

e

i2π 1− 􏽙
ℶ

1 − ⊗ k
i�1 βji

/2π􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓⎛⎝ ⎞⎠

1/Ck
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where ℶ stands for the subscript (1≤ j1 < · · · < jk ≤m).
The proof of this theorem is omitted due to its resem-

blance to Theorem 1.

3.3. Properties of CPFDMSM Operator. Suppose

Qi � (gie
i2π(αi/2π), hie

i2π(βi/2π)) and Qi

‘

� (gi

‘
ei2π(αi

‘
/2π),

hi

‘

ei2π(βi

‘

/2π))(i � 1, 2, . . . , m) be two families of CPFNs, and
then, the CPFDMSM operator holds the following features:

(1) Idempotency. If Q1 � Q2 � . . . � Qm �Q� (gei2π(α/2π),

hei2π(β/2π)), then CPFDMSM(Q1, Q2, . . . , Qm) �Q.

(2) Monotonicity. If gi ≤ gi

‘
, hi ≥ hi

‘

, αi ≤ αi

‘
, and

βi ≥ βi

‘

, then CPFDMSM(Q1, Q2, . . . ,

Qm) ≥ CPFDMSM(Q1
‘

, Q2
‘

, . . . , Qm

‘

).
(3) Boundedness. Let Qi(i � 1, 2, . . . , m) be a set of

CPFNs, �Q �min
i

Qi􏼈 􏼉 and 􏽢Q �max
i

Qi􏼈 􏼉, then
�Q ≤ CPFDMSM(Q1, Q2, . . . , Qm) ≤ 􏽢Q.

(e proof of these properties is omitted due to similarity
with the properties of CPFMSM. Furthermore, some par-
ticular operators of CPFDMSM operator will be attained by
taking diverse values of the parameter k.

Case (1). When k� 1, the CPFDMSM operator is re-
duced to the CPF arithmetic averaging (CPFAA) op-
erator, defined as follows:

CPF DM SM
(1)

Q1, Q2, . . . , Qm( 􏼁 ⊗ m
i�1Qi( 􏼁

1/m

�

⊗ m
i�1g

1/m
i e

i2π ⊗m
i�1 αi/2π( )

1/m( 􏼁
,

1 − ⊗ m
i�1 1 − h

2
i􏼐 􏼑􏼐 􏼑

1/m
􏼒 􏼓

1/2
e

i2π 1− ⊗m
i�1 1− βi/2π( )

2( 􏼁( 􏼁
1/m

􏼐 􏼑
1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� CPFAA
(1)

Q1, Q2, . . . , Qm( 􏼁.

(26)

Case (2). If k� 2, then the CPFDMSM operator is
reduced to a specific operator CPF geometric Bon-
ferroni mean (CPFGBM) operator, presented as
follows:
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CPF DM SM
(2)

Q1, Q2, . . . , Qm( 􏼁

�
1
2
⊗ k

j1, j2 � 1

j1≠j2

Qj1
⊕Qj2

􏼐 􏼑
2/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − 1 − ⊗ k

j1, j2 � 1

j1≠j2

1 − 1 − g
2
j1

􏼐 􏼑 1 − g
2
j2

􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

e

i2π 1− 1− ⊗ k

j1, j2 � 1

j1≠j2

1− 1− αj1/2π􏼐 􏼑
2

􏼒 􏼓 1− αj2/2π􏼐 􏼑
2

􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

,

1 − ⊗ k

j1, j2 � 1

j1≠j2

1 − h
2
j1

h
2
j2

􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

e

i2π 1− ⊗ k

j1, j2 � 1

j1≠j2

1− βj1/2π􏼐 􏼑
2

βj2/2π􏼐 􏼑
2

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CPFGBM
(1,1)

Q1, Q2, . . . , Qm( 􏼁.

(27)

Case (3). If k� 3, then the CPFDMSM is reduced to a
specific operator CPF generalized geometric Bonfer-
roni mean (CPFGGBM) operator, shown as follows:

CPF DM SM
(1,1,1)

Q1, Q2, . . . , Qm( 􏼁 �
1
k

⊗

1≤ j1 < · · · < jk ≤m
⊕ki�1Qji

􏼐 􏼑
1/Ck

m⎛⎝ ⎞⎠

�
1
3
⊗ k

j1, j2, j3 � 1

j1≠j2≠j3

Qj1
⊕Qj2
⊕Qj3

􏼐 􏼑
3/n(n− 1)(n− 2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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� CPFGGBM
(1,1,1)

Q1, Q2, . . . , Qm( 􏼁.

(28)

Case (4). If k�m, then the CPFDMSM operator is
reduced to a specific operator CPF geometric average
mean (CPFGAM) operator, shown as follows:

CPF DM SM
(m)

Q1, Q2, . . . , Qm( 􏼁 �
1
m

⊕

1≤ j1 ≤m

Qji

⎛⎝ ⎞⎠ �
1
m
⊕mj�1Qj􏼐 􏼑 setj1 � j( 􏼁

�
1 − ⊗ m

j�1 1 − g
2
j􏼐 􏼑

1/m
􏼒 􏼓

1/2
e

i2π 1− ⊗m
j�1 1− αj/2π( 􏼁

2
􏼐 􏼑

1/m
􏼒 􏼓

1/2

,

⊗m
j�1h

1/m
j e

i2π ⊗m
j�1 βj/2π( 􏼁

1/m
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)
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4. The Proposed MAGDM Method

In this section, we design an algorithm based on the pro-
posed CPFMSM operator to address classical MAGDM
problems.

(is part shall develop a MAGDM method based on a
new proposed CPFMSM operator under the CPF envi-
ronment. For conventional MAGDAM problems, assume
that Ą � {Ą1,Ą2, . . . , Ąm} be a collection of attributes,
Y� {Y1,Y2, . . .,Ym} be a group of alternatives, and
Đ� {Đ1,Đ2,. . . ,Đq} be the family of evaluators. (e eval-
uator Đs(s � 1, 2, . . . , q) provides his information for every
alternative Y, i.e., Yi(i � 1, 2, . . . , n) with regard to the
attribute Ąp(p � 1, 2, . . . , m) in terms of the CPFNs, which

are represented by Qs
ip � (gs

ipe
i2παs

gip , hs
ipe

i2πβs
hip ). Let

Ds � (Qs
ip)n×m be the decision matrices.(erefore, to achieve

the best optimal alternative, we propose an innovative
MAGDM approach to sort the alternatives employed in the
proposed CPFMSM operator. (e main steps for the al-
gorithm are stated as follows:

Step 1. (e decision matrices can be standardized, by
the following transformation manner:

Q
s
ip �

g
s
ipe

i2παs
gip , h

s
ipe

i2πβs
hip􏼒 􏼓, Ąpforbenefitattribute,

h
s
ipe

i2πβs
hip , g

s
ipe

i2παs
gip􏼒 􏼓, Ąpforcosattribute.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

Step 2. Employ the CPFMSM operator or CPFDMSM
operator to fuse all the individual DM matrices
Ds � (Qs

ip)n×m(s � 1, 2, . . . , q) into another single DM
matrix D� (Qip)n×m:

Qip � CPFMSM Q
1
ip, Q

2
ip, . . . , Q

q

ip􏼐 􏼑, (31)

or

Qip � CPF DM SM Q
1
ip, Q

2
ip, . . . , Q

q

ip􏼐 􏼑. (32)

Step 3. Employ the CPFMSM operator or CPFDMSM
operator to integrate linguistic assessment information
Qip(p � 1, 2, . . . , m) into the inclusive evaluation value
of the alternatives Yi(i � 1, 2, . . . , n):

Qi � CPFMSM Qip, Qip, . . . , Qip􏼐 􏼑, (33)

or
Qi � CPF DM SM Qip, Qip, . . . , Qip􏼐 􏼑. (34)

Step 4. Calculate the score index S(Qi) for all evaluation
values of Yi(i � 1, 2, . . . , n) based on Definition 6,
because if score values fail to distinguish the sorting of
different alternatives, it becomes the same. So, we
further utilized E(Qi) for the accuracy value using
Definition 7.

Step 5. Employ Definition 8, and sort all of the alter-
natives Yi(i � 1, 2, . . . , n) to select the best optimum
alternative.
Step 6. (e end.

4.1. Illustrative Example. Now, in this part, a daily life ex-
ample is illustrated for the verification and viability of the
introduced method. After that, the sensitivity of parameter k
is also studied. Furthermore, the comparative analysis is also
carried out in brief to address the validity of the approach.

Emergency management is a suitable term for handling
the hazards of disasters and accidents. (is management
involves the establishment of essential response mechanism
and the selection of emergency steps by the government and
some other public organizations in the process of response,
avoidance, recovery, and clearance of the emergency situ-
ation. (is emergency management includes a sequence of
essential measures, usage of technology, science, manage-
ment techniques, and plans. (is management will help to
certify the activities associated with the emergency man-
agement, safety of the public life, health, property, and the
promotion of healthy and safe society. In the current years,
the frequently occurring natural disasters have caused sig-
nificant loss and damage to the global economy and to the
human lives. To minimize the damage caused by great di-
sasters and accidents, the center for emergency management
will seek out various solutions depending on the kind of
accidents and will invite experts from different fields for the
evaluation of alternative emergency plan. (is assessment of
the emergency alternative is a significant step in the
emergency management program. (is is basically derived
from the classical problem of decision-making, which has
gained the consideration of various scholars and researchers.
So, here, we implement the presented approach to deal with
the assessment problem of the selection of the suitable
emergency alternative for the emergency management plan.
Four suitable alternatives are opted for further assessment,
after a sequence of screening. Four alternatives
{Y1,Y2,Y3,Y4} are selected by three evaluators
{Đ1,Đ2,Đ3} for effective modeling of the characteristic of
alternatives. (e following attributes are taken into account
by discussion with experts, which are presented as follows:
Ą1, used for preparation capability; Ą2, used for rescue
capability; Ą3, used for restoring capability; and Ą4, used for
reaction ability. According to the assessment and experience,
the individual three CPFDM matrices are given by evalu-
ators {Đ1,Đ2, Đ3} and are presented in Tables 1–3,
respectively.

4.1.1. DM Process

Step (1). As all the attributes are of similar type, the
standardization process is omitted.
Step (2). (e CPFMSM operator or the CPFDMSM is
employed to combine all the singular decision-making
matrices into another single matrix and is presented in
Tables 4-5(takek � 2).
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Table 1: Complex Pythagorean fuzzy decision matrix given by expert Đ1.

Ą1 Ą2 Ą3 Ą4

Y1
0.30e

i2π(0.50)

0.20e
i2π(0.40)􏼠 􏼡

0.25e
i2π(0.56)

0.35e
i2π(0.40)􏼠 􏼡

0.20e
i2π(0.70)

0.45e
i2π(0.28)􏼠 􏼡

0.25e
i2π(0.65)

0.15e
i2π(0.20)􏼠 􏼡

Y2
0.45e

i2π(0.55)

0.28e
i2π(0.42)􏼠 􏼡

0.26e
i2π(0.46)

0.32e
i2π(0.36)􏼠 􏼡

0.31e
i2π(0.31)

0.43e
i2π(0.48)􏼠 􏼡

0.30e
i2π(0.58)

0.18e
i2π(0.32)􏼠 􏼡

Y3
0.40e

i2π(0.29)

0.28e
i2π(0.22)􏼠 􏼡

0.29e
i2π(0.64)

0.35e
i2π(0.29)􏼠 􏼡

0.35e
i2π(0.41)

0.51e
i2π(0.28)􏼠 􏼡

0.37e
i2π(0.39)

0.19e
i2π(0.42)􏼠 􏼡

Y4
0.43e

i2π(0.65)

0.20e
i2π(0.12)􏼠 􏼡

0.29e
i2π(0.56)

0.30e
i2π(0.29)􏼠 􏼡

0.38e
i2π(0.61)

0.44e
i2π(0.33)􏼠 􏼡

0.33e
i2π(0.48)

0.10e
i2π(0.39)􏼠 􏼡

Table 2: Complex Pythagorean fuzzy decision matrix given by expert Đ2.

Ą1 Ą2 Ą3 Ą4

Y1
0.20e

i2π(0.80)

0.26e
i2π(0.17)􏼠 􏼡

0.15e
i2π(0.55)

0.42e
i2π(0.35)􏼠 􏼡

0.20e
i2π(0.37)

0.69e
i2π(0.48)􏼠 􏼡

0.22e

0.24e
i2π(0.39)􏼠 􏼡

Y2
0.37e

i2π(0.34)

0.39e
i2π(0.28)􏼠 􏼡

0.26e
i2π(0.38)

0.24e
i2π(0.19)􏼠 􏼡

0.43e
i2π(0.19)

0.32e
i2π(0.47)􏼠 􏼡

0.20e
i2π(0.47)

0.17e
i2π(0.28)􏼠 􏼡

Y3
0.10e

i2π(0.27)

0.37e
i2π(0.38)􏼠 􏼡

0.36e
i2π(0.28)

0.46e
i2π(0.55)􏼠 􏼡

0.41e
i2π(0.46)

0.37e
i2π(0.29)􏼠 􏼡

0.28e
i2π(0.59)

0.36e
i2π(0.37)􏼠 􏼡

Y4
0.39e

i2π(0.64)

0.18e
i2π(0.25)􏼠 􏼡

0.17e
i2π(0.60)

0.27e
i2π(0.34)􏼠 􏼡

0.18e
i2π(0.49)

0.55e
i2π(0.38)􏼠 􏼡

0.24e
i2π(0.45)

0.57e
i2π(0.41)􏼠 􏼡

Table 3: Complex Pythagorean fuzzy decision matrix given by expert Đ3.

Ą1 Ą2 Ą3 Ą4

Y1
0.61e

i2π(0.40)

0.33e
i2π(0.38)􏼠 􏼡

0.37e
i2π(0.65)

0.24e
i2π(0.22)􏼠 􏼡

0.29e
i2π(0.57)

0.59e
i2π(0.32)􏼠 􏼡

0.22e
i2π(0.42)

0.21e
i2π(0.39)􏼠 􏼡

Y2
0.47e

i2π(0.36)

0.36e
i2π(0.27)􏼠 􏼡

0.32e
i2π(0.38)

0.23e
i2π(0.40)􏼠 􏼡

0.17e
i2π(0.58)

0.30e
i2π(0.44)􏼠 􏼡

0.29e
i2π(0.49)

0.15e
i2π(0.46)􏼠 􏼡

Y3
0.37e

i2π(0.36)

0.30e
i2π(0.39)􏼠 􏼡

0.28e
i2π(0.29)

0.45e
i2π(0.45)􏼠 􏼡

0.21e
i2π(0.57)

0.43e
i2π(0.31)􏼠 􏼡

0.19e
i2π(0.11)

0.27e
i2π(0.74)􏼠 􏼡

Y4
0.22e

i2π(0.64)

0.10e
i2π(0.25)􏼠 􏼡

0.36e
i2π(0.19)

0.29e
i2π(0.56)􏼠 􏼡

0.29e
i2π(0.53)

0.56e
i2π(0.83)􏼠 􏼡

0.38e
i2π(0.56)

0.57e
i2π(0.26)􏼠 􏼡

Table 4: Collective DM matrix using the CPFMSM operator.

Ą1 Ą2 Ą3 Ą4

Y1
0.3632e

i2π(0.5653)

0.2664e
i2π(0.3302)􏼠 􏼡

0.2576e
i2π(0.5868)

0.3423e
i2π(0.3298)􏼠 􏼡

0.2300e
i2π(0.5501)

0.5859e
i2π(0.3656)􏼠 􏼡

0.2300e
i2π(0.5446)

0.2020e
i2π(0.3363)􏼠 􏼡

Y2
0.4300e

i2π(0.4155)

0.3347e
i2π(0.3270)􏼠 􏼡

0.2795e
i2π(0.4068)

0.2650e
i2π(0.3266)􏼠 􏼡

0.3054e
i2π(0.3562)

0.3527e
i2π(0.4636)􏼠 􏼡

0.2646e
i2π(0.5133)

0.1670e
i2π(0.3580)􏼠 􏼡

Y3
0.3018e

i2π (0.3063)

0.3180e
i2π(0.3370)􏼠 􏼡

0.3097e
i2π (0.3952)

0.4225e
i2π(0.4408)􏼠 􏼡

0.3253e
i2π (0.4800)

0.4395e
i2π(0.2936)􏼠 􏼡

0.2806e
i2π (0.3756)

0.2784e
i2π(0.5281)􏼠 􏼡

Y4
0.3494e

i2π(0.6433)

0.1640e
i2π(0.2131)􏼠 􏼡

0.2748e
i2π(0.4654)

0.2869e
i2π(0.4061)􏼠 􏼡

0.2839e
i2π(0.5434)

0.5195e
i2π(0.5421)􏼠 􏼡

0.3170e
i2π(0.4968)

0.4687e
i2π(0.3582)􏼠 􏼡
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Step (3). (e CPFMSM operator or the CPFDMSM is
employed to combine linguistic assessment informa-
tion Qip(p � 1, 2, . . . , m) presented in Tables 4-5 and to

get the inclusive assessment value of alternatives
Yi(i � 1, 2, . . . , n), which is presented in Table 6 (take
k� 2).

Table 7: Score index of all the alternatives of Yi(i � 1, 2, . . . , n).

Operator Y1 Y2 Y3 Y4

CPFMSM operator S (Q1) � 0.1460 S (Q2) � 0.0648 S (Q3) � 0.0532 S (Q4) � 0.0938
CPFDMSM operator S (Q1) � 0.1736 S (Q2) � 0.0778 S (Q3) � -0.0267 S (Q4) � 0.1242

Table 6: Collective evaluation data attained using CPFMSM and CPFDMSM operators.

Alternative CPFMSM operator CPFDMSM operator

Y1
0.2711e

i2π(0.5618)

0.3565e
i2π(0.3406)􏼠 􏼡

0.2807e
i2π(0.5736)

0.3505e
i2π(0.3337)􏼠 􏼡

Y2
0.3209e

i2π(0.4243)

0.2846e
i2π(0.3704)􏼠 􏼡

0.3254e
i2π(0.4324)

0.2850e
i2π(0.3658)􏼠 􏼡

Y3
0.3045e

i2π(0.3911)

0.3677e
i2π(0.4046)􏼠 􏼡

0.3110e
i2π(0.4055)

0.3642e
i2π(0.3940)􏼠 􏼡

Y4
0.3063e

i2π(0.5388)

0.3730e
i2π(0.3888)􏼠 􏼡

0.3124e
i2π(0.5458)

0.3647e
i2π(0.3718)􏼠 􏼡

Table 9: Score index values and ranking of alternatives on the basis of different values of k.

Parameter value S (Y1) S (Y2) S (Y3) S (Y4) Ranking relation Optimal selection

k� 1 − 0.4910 − 0.4474 − 0.6516 − 0.6130 Y2 >Y1 >Y4 >Y3 Y2
k� 2 0.1460 0.0648 0.0532 0.0938 Y1 >Y4 >Y2 >Y3 Y1
k� 3 1.2738 1.4303 1.1203 1.2998 Y2 >Y4 >Y1 >Y3 Y2

Table 5: Collective DM matrix using the CPFDMSM operator.

Ą1 Ą2 Ą3 Ą4

Y1
0.3878e

i2π(0.5889)

0.2632e
i2π(0.3216)􏼠 􏼡

0.2651e
i2π(0.5886)

0.3377e
i2π(0.3246)􏼠 􏼡

0.2317e
i2π(0.5641)

0.5782e
i2π(0.3589)􏼠 􏼡

0.2302e
i2π(0.5518)

0.200e
i2π(0.3296)􏼠 􏼡

Y2
0.4318e

i2π(0.4231)

0.3434e
i2π(0.3224)􏼠 􏼡

0.2807e
i2π(0.4078)

0.2632e
i2π(0.3193)􏼠 􏼡

0.3150e
i2π(0.3776)

0.3494e
i2π(0.4634)􏼠 􏼡

0.2659e
i2π(0.5154)

0.1682e
i2π(0.3523)􏼠 􏼡

Y3
0.3153e

i2π(0.3080)

0.3162e
i2π(0.3323)􏼠 􏼡

0.3111e
i2π(0.4184)

0.4203e
i2π(0.4319)􏼠 􏼡

0.3312e
i2π(0.4837)

0.4368e
i2π(0.2933)􏼠 􏼡

0.2856e
i2π(0.4010)

0.2736e
i2π(0.5065)􏼠 􏼡

Y4
0.3559e

i2π(0.6434)

0.1626e
i2π(0.2088)􏼠 􏼡

0.2807e
i2π(0.4865)

0.2872e
i2π(0.3944)􏼠 􏼡

0.2907e
i2π(0.5455)

0.5173e
i2π(0.5030)􏼠 􏼡

0.3203e
i2π(0.4985)

0.4432e
i2π(0.3545)􏼠 􏼡

Table 8: Sorting of each alternative.

Operator Order relation of Yi(i � 1, . . . , 4) Most optimal

CPFMSM operator Y1 >Y4 >Y2 >Y3 Y1
CPFDMSM operator Y1 >Y4 >Y2 >Y3 Y1
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Step (4). (e score functions S(Qi) calculated for each
alternative Yi(i � 1, 2, . . . , n) by employing Definition
6 are presented in Table 7.
Steps (5). All the alternatives Yi(i � 1, 2, . . . , n) are
ranked by utilizing Definition 8, and the best optimum
alternative is attained from them, which is shown in
Table 8 as follows.

4.1.2. Sensitivity Analysis for the Parameter k. As shown in
the aforementioned calculations, the parameter has played
an important role in process of decision-making. It also
affects the final decision. So, in this subsection, we will
perform a parameter analysis for the parameter k. For ease,
we used the CPFMSM operator to analyze and solve the
presented example. We have used the CPFMSM operator
with different parameter values to prove the sensitivity of the
parameter k in the decision results. Various parameter
values are used to incorporate the real example mentioned

above and to achieve the sorting results. (ese results are
presented in Table 9 (if k� 2).

Table 9 depicts that the alternative result alters when the
value of the parameter alters. (ese alternations show the
interrelationship between the attributes in the process of
decision-making. For example, if we set k� 1 or 3 in the
CPFMSM operator, the ranking of the involved alternatives
becomes Y2 >Y1 >Y4 >Y3 and Y2 >Y4 >Y1 >Y3, re-
spectively, which is different according to the other situa-
tions because, in such situation, the CPFMSM operator will
be transformed into CPFAA and CPFGBM operators, re-
spectively. In that situation, the relationships between the
discussed attributes are incapable to address the DM
problems.We have observed from Table 9 that as the value of
parameter k increases, the score value of CPFMSM also
increases. (is shows that the proposed operator is more
flexible and DM may select the value of k according to their
real situation and preferences. For solving the decision-
making problem and to aggregate the assessment, data

Table 10: DM matrix from Example 2.

Ą1 Ą2 Ą3 Ą4

Y1
0.70e

i2π(0.80)

0.36e
i2π(0.95)􏼠 􏼡

0.55e
i2π(0.55)

0.62e
i2π(0.35)􏼠 􏼡

0.89e
i2π(0.37)

0.69e
i2π(0.48)􏼠 􏼡

0.78e
i2π(0.56)

0.84e
i2π(0.39)􏼠 􏼡

Y2
0.67e

i2π(0.34)

0.69e
i2π(0.28)􏼠 􏼡

0.56e
i2π(0.38)

0.59e
i2π(0.85)􏼠 􏼡

0.69e
i2π(0.59)

0.78e
i2π(0.47)􏼠 􏼡

0.87e
i2π(0.47)

0.97e
i2π(0.73)􏼠 􏼡

Y3
0.90e

i2π(0.27)

0.96e
i2π(0.67)􏼠 􏼡

0.68e
i2π(0.28)

0.85e
i2π(0.79)􏼠 􏼡

0.65e
i2π(0.46)

0.76e
i2π(0.48)􏼠 􏼡

0.81e
i2π(0.59)

0.77e
i2π(0.37)􏼠 􏼡

Y4
0.67e

i2π(0.64)

0.78e
i2π(0.25)􏼠 􏼡

0.57e
i2π(0.60)

0.48e
i2π(0.88)􏼠 􏼡

0.33e
i2π(0.49)

0.66e
i2π(0.38)􏼠 􏼡

0.24e
i2π(0.45)

0.87e
i2π(0.81)􏼠 􏼡

Table 11: Values of the score function and ranking of alternatives of Example 2.

Approaches Value of score function Sorting
CIFWA operator propounded in [46] Impotent to calculate Impotent to calculate
CIFBM operator [47] (p � q � 1) Impotent to calculate Impotent to calculate
CPFS in [29] Impotent to calculate Impotent to calculate
Cq-ROF2TLMSM operator propounded in [48]
(k � 2andq � 3)

S (Y1) � 0.8924, S(Y2) � 0.7290
S(Y3) � 0.7036, S(Y4) � 0.6228 Y1 >Y2 >Y3 >Y4

CPFMSM operator propounded in this manuscript (k � 2)
S (Y1) � 0.1451, S(Y2) � − 0.2820
S(Y3) � − 0.3099, S(Y4) � − 0.3744 Y1 >Y2 >Y3 >Y4

Table 12: Comparative analysis with previous existing operators.

Operator S (Y1) S (Y2) S (Y3) S (Y4) Ranking

CIFMSM [7] 0.1467 0.1129 0.0826 0.1149 Y1 >Y4 >Y2 >Y3
CIFDMSM [7] 0.1772 0.1066 0.0499 0.1547 Y1 >Y4 >Y2 >Y3
CIFWA [46] 0.7027 0.6900 0.6663 0.7023 Y1 >Y4 >Y2 >Y3
CIFBM [47] 0.8752 0.8474 0.8268 0.8720 Y1 >Y4 >Y2 >Y3
Cq-ROF2TLWMSM [48] for q� 1 0.8764 0.8483 0.8275 0.8750 Y1 >Y4 >Y2 >Y3
Cq-ROF2TLWMSM [48] for q� 2 0.8752 0.8474 0.8268 0.8720 Y1 >Y4 >Y2 >Y3
Cq-ROF2TLWMSM [48] for q� 3 0.8736 0.8474 0.8268 0.8720 Y1 >Y4 >Y2 >Y3
Cq-ROF2TLWDMSM [48] for q� 2 0.1802 0.1607 0.1688 0.1706 Y1 >Y4 >Y3 >Y2
CPFMSM 0.1460 0.0648 0.0532 0.0938 Y1 >Y4 >Y2 >Y3
CPFDMSM 0.1736 0.0778 − 0.0267 0.1242 Y1 >Y4 >Y2 >Y3
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decision-making experts have to set k� 2 in the CPFMSM
operator. In diverse values of parameter k, DMs may select
an optimal parameter of their own preference and can attain
a satisfactory and reasonable decision result. For general
values, we can take the value of k� [n/2], for calculation in
DM issues, where n denotes the number of attributes and
symbol [.] represents the round function [44, 45]. In this
situation, the interrelationship between the individual ar-
guments is taken into consideration, while the DM’s choice
is taken as neutral.

Moreover, by comparing with the existing operators in
the literature such as Bonferroni and generalized Bonfer-
roni operators, these operators capture the relationship
between two attributes, while the proposed method is
superior to the Bonferroni method, as it can capture the
relationship among the multiple attributes. Similarly, the
BM and generalized BM operators require two and three
parameters, respectively, from an infinite rational set, while
our suggested operator requires one parameter for pro-
cessing the CPF data. (erefore, the complexity in the
calculation of our suggested approach is more less than the
BM and generalized BM operators. Furthermore, the
proposed operator can be reduced to some previously
suggested operators such as arithmetic averaging, BM,
generalized BM, and geometric averaging, respectively, by
assigning different values to k such as k� 1, k � 2, k� 3, and
k�m. (erefore, the suggested operator is more general-
ized, flexible, and easy to implement for evaluating the DM
problem with CPF data.

4.1.3. Generalization Analysis. Now, in this subsection a
second numerical example is used to deliberate the gener-
ality of the introduced approach. (e assessment data
presented by the DM experts for the complex linguistic

number are presented in Table 10, and then, the case is
solved by our propounded approach and the decision results
are displayed in Table 11.

It is shown in Table 11 that the previous methods such as
distance measures [29], complex intuitionistic fuzzy
weighted averaging (CIFWA) [46], and complex intui-
tionistic fuzzy BM (CIFBM) [47] are unable to resolve
Example 2, while the CPFMSM can successfully solve it. (is
shows the dominancy of the CPFMSM method, as the CPF
and CIF are the particular cases of our presented approach.

4.1.4. Further Contrastive Analyzing. Now, we will perform
a comprehensive analysis between the method propounded
in this manuscript and the previous approaches. (e su-
premacy of propounded approach is as follows

(1) Comparison with the CIFWA Operator Presented by Garg
and Rani [46]. As the CIFWA operator is a basic aggregation
operator for the aggregation of data, it supposes that at-
tributes considered in the daily life issues are unrelated; i.e.,
it deems the significance of attributes, which makes the
decision result ill-defined and conspicuous. CPFMSM can
satisfy the abovementioned defect and also consider the
interrelationship of attributes. Furthermore, CPFMSM
shows the individual preference of the decision-makers and
the great tendency of order relation of the alternatives using
variable parameters. So, the CPFMSM is more useful in
addressing the decision-making issues

(2) Comparison with CIFBM Operator Proposed by Garg and
Rani. [47]. Although the CIFBM operator is an aggregation
operator, used for the aggregation of complex intuitionistic
fuzzy data, it considers the interrelationship between the two
attributes. CPFMSM operator utilized in this manuscript
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Figure 1: Comparison among different approaches.
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considers the relationship between the attributes, and it also
minimizes the computational complication in the process of
aggregation of information. Moreover, the CPFMSM can
resolve those problems, which are not solved by the CIFBM.
So, CPFMSM is more universal and gives rational calcula-
tion results in the DM process.

(3) Comparison with the Cq-ROFLHMOperator Presented by
Liu et al. [49]. (e relationship between two attributes is
taken into consideration by the HM operator, whereas the
CPFMSM operator considers the relationship between the
multi-input data arguments. Moreover, the HM has two
parameter values, which makes the process of calculation
much complicated and complex.(is also creates a difficulty
for the decision-makers in the selection of a satisfied pa-
rameter value, whereas CPFMSM has a single parameter
value, which is convenient for the decision-maker to allocate
the suitable depending on the need. So, CPFMSM is gen-
erally more efficient and effective in handling DM issues.

Furthermore, if we use the proposed operators such as
CPFMSM and CPFDMSM, we get the ranking of alternatives
as Y1 >Y4 >Y2 >Y3, for k� 2, in which the optimal al-
ternative is the same and coincides with existing operators in
the literature [7, 48], whereas the slight difference in the
ranking is due to considering different environment and
operators. Hence, the best alternative is Y1. (is validates
that the propounded operators are effective, rational, and
reasonable in the DM process. (e score values and ranking
of different operators are summarized in Table 12.

A comparison between the existing approaches and the
proposed one is presented graphically in Figure 1.

5. Conclusion

In this manuscript, the MSM operator is presented under the
CPF environment to solve DM problems. In the past, many
aggregation operators were developed under the IFS and PFS
environments, in which the range of the consistentmembership
and nonmembership degree was the subset of real numbers, but
now CPFS has fulfilled this deficiency, because in CPFS envi-
ronment, the range of the MD and NMD is expanded to
complex numbers from real numbers within the unit disc. So,
the environmental model is the best method for the repre-
sentation of time variable issues. Moreover, CPFSs are also very
efficient in handling the two-dimensional data in one set. In this
CPFmethod, the preferences of theDMexperts are expressed in
linguistic form. Some aggregation operators such as CPFMSM
and CPFDMSM are propounded by the combination of CPF
with MSM and DMSM for aggregation of data. Ascending
order is used in the paper to rank the alternatives. To express the
ambiguous and ill-defined evaluation information, CPFSs are
integrated with the MSM operator, which not only solves the
problem of the complex uncertain information but also reduces
the loss of information in the MAGDM issues. Furthermore, a
newMAGDM approach is established here, based on the newly
propoundedCPFMSMandCPFDMSMoperators. A numerical
case is carried out to certify the efficiency of the designed
approach. (e validity of the proposed approach is also shown
by a practical problem. Finally, a contrastive and comparative

analysis is carried out between the previously proposedmethods
and our presented approach.

(e weight of parameter plays an important role in the
ranking process, but we have to ignore it at this stage in order
to avoid lengthy calculation while the best alternative re-
mains the same [48]. In near future, we will consider the
weighted form of parameter for better optimal results.
Furthermore, in future, we will implement the propounded
approach to handle many practical problems, for instance,
the selection of the best student for doctoral supervision [50]
and evaluation of the innovative capability of the universities
[51]. Moreover, the proposed operators were limited to two
dimensions, but someone can extend the proposed concept
for q dimensions. (e presented methods can be modified to
other generalized fuzzy sets, which will generate different
useful structures that will be useful for implementation in
science, economics, and technology. Moreover, we will focus
on complex fuzzy sets [40, 41], which are the generalization
of the picture fuzzy to address the problem of ambiguity and
fuzziness. (erefore, the study of spherical fuzzy will be the
main concern in this scenario. Furthermore, we will consider
approaches of complex fuzzy sets and other theories such as
consensus reaching [52, 53], which have a significant role in
GDM problems.
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