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3is paper uses the 5-five-minute high-frequency data of energy-listed companies in China’s A-share market to extract the jump
of energy stock prices and build a dynamic stock price jump complex network. 3en, we analyze the clustering effect of the
complex network. 3e research shows that the energy stock price jump is an important part of stock price volatility, and the
complex network of energy stock jump risk has obvious time-varying characteristics. However, the infection problem of stock
price jump risks needs specific analysis. China’s coal industry has an important influence on the development of China’s energy
industry. According to the clustering analysis results of the network community, the clustering effect of the network community
has time-varying characteristics. After October 2017, the clustering effect of the jumping risk of the coal industry and the new
energy industry is obvious. 3e risk contagion within the new energy industry community is a key point for the development of
the new energy industry.

1. Introduction

With the acceleration of global economic integration, the
energy finance market developed based on the energy in-
dustry and relying on the financial market has become an
important global financial trading platform. 3e effective
combination of the energy and financial markets has become
the key to whether the energy market can meet the growing
energy demand in the human economy. At the same time,
with the rapid development of energy finance, energy and
financial risk management has become the key to the de-
velopment of the international energy and international
financial markets. 3e energy finance market efficiently
allocates resources while spreading the risks of the energy
finance market throughout the industry.3is paper takes the
energy stock price in China’s stock market as the research
object and uses the realized jump method to measure the

jump risk in the energy financial market. To study the
dynamic characteristics of a complex network of energy
prices, we use Prim’s algorithm to build a complex network
of energy price jumping risks.

3e main work of our paper is as follows. First, we use
the five-minute high-frequency data of the energy stock
market to obtain the realized volatility. Second, we use the
realized jump method to obtain the jump risk of the energy
stock. 3ird, we build complex networks for all stock price
jumps to study the dynamic changes of complex networks.
Fourth, the community method is used to study the dy-
namic changes in the energy stock jump communities.
3rough our research, the paper draws the following
conclusions. (1) 3e energy stock price jump is an im-
portant part of energy stock price volatility. (2) 3e
complex network of the energy company stock price jump
has obvious time-varying characteristics. After October
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2017, the link between the stock price jump is closer, and
the risk of a stock price jump is more likely to occur. (3)3e
energy stock complex network community has a strong
time-varying feature. (4) China’s coal industry is the most
critical in the complex network of the entire energy in-
dustry, and the internal risk management of the coal in-
dustry is very important. (5) 3e risk contagion within the
new energy industry community is vital for the develop-
ment of the new energy industry.

3e main contributions of this paper are as follows. (1)
3is paper takes the jump of the energy industry stock price
as the object and studies the jumping risk problem of the
energy industry by using the complex network method. (2)
3is paper analyzes the dynamic characteristics of the
complex network of energy stock jump risk. (3) 3e coal
industry occupies a central position in China’s energy
complex network, and the risk of jumping within the coal
industry community and the new energy industry com-
munity is worthy of attention.

2. Literature Review

Energy finance market risk management has always been a
hot issue for many scholars around the world. Many scholars
have studied the impact of financial markets on energy and
financial markets from the perspectives of the stock, gold,
and foreign exchange markets. Kaneko and Lee [1] found a
negligible interaction between oil prices and stock returns by
studying the relationship between the oil market and the
stock market. Basher and Sadorsky [2] used a multifactor
risk analysis model to investigate the relationship between
oil price risk and emerging stock market returns using
conditional regression and unconditional regression. It
found that oil price volatility significantly influences stock
market returns in emerging markets. 3e results of Zhang
et al. [3] show a significant spillover effect between oil prices
and the US dollar exchange rate. Narayan [4] showed a long-
term cointegration relationship among international gold
prices, future oil prices, and spot prices. 3e change in oil
price affects mainly the price of gold through inflation.

3e above studies are based on the analysis of energy
market prices, and volatility is an important indicator to
measure risk. 3is paper will use realized volatility and the
realized jump method to study the complex network of
energy stock price jumps; therefore, it is necessary to review
the related research.

With continuous research on volatility, the use of his-
torical standard deviation to study volatility can no longer
meet the needs of modern research. 3e method of
extracting realized volatility from high-frequency data has
attracted increasing attention from scholars, such as
Andersen and Bollerslev [5] and Barndorff-Nielsen and
Shephard [6]. It is precise because of the rapid development
of realized volatility methods that scholars can use realized
methods to separate realized jumps from realized volatility
so that they can more accurately study the relevant prop-
erties of price jumps. For example,Wang et al. [7], Anderson
et al. [8], Zeng and Zuo [9], Xu et al. [10], Wang [7], and Hu
et al. [11] do so.

In recent years, an increasing number of scholars have
studied the complex network of stock prices. By constructing
a complex network of stock prices, scholars can study the
risk contagion, price linkage, and return forecasting among
stock prices. In the process of constructing complex net-
works, many scholars have proposed various methods:
Mantegna [12] and Zhuang and Jin [13] proposed a mini-
mum spanning tree algorithm. Pothen et al. [14] used
Laplacian graph feature values to construct complex net-
works; Chi et al. [15] and Peron et al. [16] established stock
networks by using the relationship between stock prices as
the edges between them in the model. Newman [17, 18]
proposed the Girvan-Newman (GN) algorithm and fast
Newman algorithm to construct complex networks. Zhan
et al. [19] proposed the fast unfolding algorithm based on
Newman [17, 18].

Some of the literature has used the method of complex
networks to study the energy financial market. Xi and An
[20] constructed a complex network using the financial
indicators of energy stocks. 3e study found that the
threshold value of 0.7 is the sudden change of the network.
With the increase in the threshold value, the community’s
independence is enhanced. Li et al. [21] used the method of
complex networks to study the global energy investment
structure and found that the vast majority of foreign in-
vestment and foreign investment relations are still in the
hands of a few countries.

By analyzing the existing research, we can determine the
following. First, the existing research mainly focuses on the
study of the interaction between the energy market and
other markets. 3ere is little research focus on the mutual
contagion of stock risk of different energy companies within
the energy industry. Second, in the study of the risk of the
energy industry, most of the research mainly analyzes the
energy price directly. Few articles use the jump of energy
stock prices to conduct in-depth analysis. 3ird, research on
applying complex networks to energy finance risk man-
agement is scant. Fourth, when using complex networks to
study market risk, few scholars study the dynamic charac-
teristics of complex networks.

Based on the existing research, this paper extracts the
jump risk of energy stock prices from high-frequency data of
energy stock prices and studies the jump risk of energy
industry stock prices. 3is paper applies the method of
complex networks to the energy industry and deeply studies
the clustering effect of the jump risk of the energy industry.
3is paper studies the time-varying characteristics of
complex networks and communities of energy price jump
risk.

3. Theoretical Analyses of Realized Jump and
Complex Network

We follow the methods of Zhang et al. [3] to research the
time-varying complex network of jump risk in the energy
industry. 3is paper uses the realized method to extract
jumps from energy stock volatility and uses it to study the
complex network clustering effect within the energy in-
dustry. According to the following formula,
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realized volatility � continuous volatility + realized jump.

(1)

Equation (1) shows that when we obtain the realized
volatility and continuous volatility, we can calculate the
realized jump.

3.1. Extracting Volatility by Using the Realized Method.
pt,i is the log price of the ith underlying asset on the t-th day.
3e intraday return rt.i can be expressed as

rt.i � pt,i − pt,i−1. (2)

We define RDt is the realized variance. 3e realized
variance can be calculated as follows:

RDt � 
N

i�1
r
2
t,i. (3)

N is the number of returns on t-th day. By annualizing
the realized variance, we can obtain the realized volatility.

RVt �
�������
W · RDt


, (4)

where RVt is the realized volatility. W is the number of
trading days in a year.

3.2. Realized Jump. Early research was based on parametric
models to study and estimate jumps by setting specificmodel

forms. With the widespread use of high-frequency data, the
use of realized methods to calculate jumps has been favored
by scholars. 3e realized method is nonparametric. It is
model-free, convenient to calculate, and accurate to
estimate.

3e realized jump method was first proposed by
Barndoff-Nielsen et al. [22]. Based on quadratic variation
theory, they decompose the total variation into two parts:
integral volatility and discrete jump.

When the asset return x(t) follows the geometric
Brownian motion with a jump, the total volatility of the
logarithmic return at time t is not a consistent estimate of
the integral volatility. It will be a composite volatility that
includes a discrete jump component and continuous
volatility components. 3e quadratic variation of the
logarithmic return at time t, t ∈ [t, t − 1] is

QVt � [r, r]t � 

t

t−1

σ2s ds + 
t−1≤ s≤ t

κ2s , t ∈ [t, t − 1]. (5)

According to quadratic variation theory, at time t,
t ∈ [t, t − 1], the total change in the logarithmic return
consists of a continuous integral volatility 

t

t−1 σ
2
sds

(
t

t−1 σ
2
sds<∞) and a discrete jump part t−1≤s≤tκ2s .

Anderson and Bollerslev [5] showed that when the
frequency of intraday discrete samples is sufficiently large,
the quadratic variation consistently estimates the actual
volatility. At t ∈ [0, T],

RVt � 
n

i�1
r
2
t,i⟶

n ⟶∞ QVt � [r, r]t � 

t

t−1

σ2s ds + 
t−1≤ s≤ t

κ2s , t ∈ [0, T]. (6)

3e integral volatility under a continuous path can be
estimated from the realized bipower variation (RBV).
When the sample is large enough, that is, n⟶∞, the
RBV is achieved as a consistent estimate of the integral
volatility (IV). 3e RBV is a consistent estimator of in-
tegral volatility.

RBVt � u
−2
1

n

n − 2
  

n

j�3
rt,j−2



 rt,j



, t ∈ [0, T]. (7)

ua � E[|Z|a] � 2a/2[Γ((a + 1)/2)Γ(1/2)− 1]. Γ is the
Gamma function. Z ∼ N(0, 1). When a� 1,
u1 � E[|Z|1] �

���
π/2

√
. n/n − 2 is the correction for the sample

space.

3.3. Constructing the Complex Network Based on Prim’s
Algorithm. 3ere are many different methods to construct
a complex network, such as the Kruskal algorithm and the
Prim algorithm. After comparing different algorithms, we
think that the Prim algorithm has the advantages of
stability and simplicity. 3is paper uses the Prim algo-
rithm to construct the time-varying complex network of

the jump of the energy stock prices, which can make the
complex network more robust. 3e closeness to the center
is used to analyze the importance of different nodes:

Cc vi(  �
(N − 1)


N
i�1,j≠ 1 dij 

. (8)

Suppose there are N nodes in a complex network. Cc(vi)

is the degree of closeness to the center for each node. We use
dij to represent the minimum number of edges between two
nodes i and j, which belong to [1, N]. 3e greater the degree
of closeness of the node, the more importance it has in the
network.

3.4. 9e Community of the Complex Network. After con-
structing the complex network of the jump of the Chinese
energy stock price, we need to further analyze which stock
price jump is relatively closely related in the entire complex
network. 3e community is used to study the clustering
problem of complex networks. When dividing communities,
the fast unfolding algorithm is used to classify the com-
munities of the stocks.
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3e modular Q function is a good way to divide the
number of communities.3e communities can be calculated
as follows:

i,jaijδ σi, σj 

i,jaij

�
i,jaijδ σi, σj 

2M
. (9)

In the modular Q function, we use the community
number to distinguish whether two different nodes are in the
same community. If the community labels of the two nodes
are the same, we consider that the two nodes belong to the
same communities. σi represents the community label of
node vi. If vi and vj are connected, then aij＝1. If vi and vj

are not connected, then aij＝0. If vi and vj belong to the
same community. δ(σi, σj)＝1. If they do not belong to the
same community, δ(σi, σj)＝0. M represents the number of
all interconnected edges in the complex network, and
M � aij.

3e Modular Q function is

Q �
1

2M

i,j

aij −
kikj

2M
δ σi, σj   . (10)

3e i and j represent the ith and jth nodes. Ki and kj
represent the weight of the edge connected to node i and
node j, respectively.3e larger the value ofQ is, the better the
result of community division is. 3e fast unfolding algo-
rithm is simple and efficient; thus, we use it to divide the
network into communities. 3e reduction formula of the
Modular Q function is

Q �
 in
2M

−
 tot
2M

 

2

, (11)

where in represents the sum of the number of connected
edges of all nodes in the same community, and tot is the
number of edges connected to nodes of the same
community.

4. Empirical Analyses

4.1. Data. 3is paper takes all energy stocks listed on China
A-Share from October 10, 2016, to October 10, 2018, as an
empirical study. We handle the data as follows. (1) Remove
the missing values. (2) Use five-minute high-frequency data
for the empirical analysis. (3) Assume that the stock price
jump is 0 during the suspension period. (4) 3e data is from
the Wind database.

4.2. 9e Empirical Results of Realized Volatility and Jump of
Energy Stock Price. Taking China Petroleum (601857.SH) as
an example, the time series of the return of China Petroleum
(601857.SH) is shown in Figure 1.

Figure 1 shows that starting from 2018, the yield fluc-
tuated 601857.SH increased.3e volatility and jump risk can
be predicted as 601857.SH will increase significantly starting
from 2018. To further explain the basic statistical charac-
teristics of the sample data, Table 1 shows the statistical
characteristics of the six stocks.

Figure 2 shows the results of the realized volatility and
jumps.

Figure 2 shows that the stock price jump is a common
phenomenon and an important part of volatility. 3e trend
of 601857.SH in Figure 2 verifies the previous prediction.
Beginning in 2018, the realized volatility of 601857.SH be-
comes larger, and the frequency and intensity of the jump
increase. Figure 2 shows that the stock price jumps in dif-
ferent periods are not completely consistent, and there are
certain differences in the frequency and intensity of stock
jumps in different time periods.3is difference inspires us to
study the time-varying characteristics of stock jump risk. For
this article, we need to study the time-varying characteristics
of complex networks of the energy industry. 3e statistical
properties of the realized volatility and the realized jump are
shown in Tables 2 and 3.

4.3. Empirical Results of Time-Varying Complex Network.
To study the time-varying characteristics of the complex
network of energy stock price jumps, this paper divides the
sample interval into four time periods, which are from
October 10, 2016, to April 10, 2017; April 11, 2017, to
October 10, 2017; October 11, 2017, to April 10, 2018; and
April 11, 2018, to October 10, 2018.

4.3.1. Correlation Coefficient Matrix and Distance Matrix of
the Energy Stock Jump. Table 4 shows the correlation co-
efficient matrix for some energy stock price jumps from
October 2016 to April 2017.

We use the following formula to transfer the jump
correlation coefficient ρij(Δt) to the corresponding distance
d(i, j):

d(i, j) �

������������

2 1 − ρij(Δt) 



. (12)

3e smaller the distance d(i, j) is, the stronger the
correlation between stocks (Table 5).

4.3.2. Using a Distance Matrix to Build an Energy Stock Jump
Complex Network. As shown in Figures 3–6, this paper
constructs the complex networks of energy stock jumps in
four different time periods. Each complex network diagram
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Figure 1: 601857.SH 5-minute high-frequency return.
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Table 1: Statistical characteristic of the sample.

Stock code Mean Maximum Minimum Standard deviation Skewness Kurtosis ADF (P value)
601857.SH −8.47E− 06 0.0602 -0.0753 0.0030 0.0880 41.8161 0.0001
601898.SH −1.44E− 05 0.0641 −0.0904 0.0032 0.1365 67.4181 0.0001
601918.SH −2.69E− 05 0.0892 −0.0870 0.0039 1.7818 79.0994 0.0001
. . . . . . . . . . . . . . . . . . . . . . . .

000059.SZ 1.18E− 05 0.0346 −0.0279 0.0020 0.3518 21.4666 0.0001
000096.SZ −2.52E− 06 0.0577 −0.0392 0.0028 0.4606 24.8307 0.0001
000159.SZ −1.29E− 06 0.0719 −0.0458 0.0033 0.9072 26.7503 0.0001
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Figure 2: Realized volatility and realized jump of 601857.SH.

Table 2: Statistical properties of realized volatility for some energy stocks.

Stock code Mean Maximum Minimum Standard deviation Skewness Kurtosis ADF (P value)
601857.SH 0.2028 0.7310 6.17E− 05 0.0851 1.9145 8.8743 ≤0.0000
601898.SH 0.2793 1.0872 0.0001 0.1155 2.5710 13.5124 ≤0.0000
601918.SH 0.3438 1.2864 0.0000 0.1426 1.9979 9.3526 ≤0.0000
. . . . . . . . . . . . . . . . . . . . . . . .

000059.SZ 0.2990 1.4772 0.0002 0.1411 2.8378 17.5631 ≤0.0000
000096.SZ 0.3120 1.6058 0.0004 0.1690 2.7712 14.7394 ≤0.0000
000159.SZ 0.3668 1.7750 0.0002 0.2311 2.8914 13.5160 ≤0.0000

Table 3: Statistical properties of realized jumps for some energy stocks.

Stock code Mean Maximum Minimum Standard deviation Skewness Kurtosis ADF (P value)
601857.SH 0.0471 0.5721 0.0000 0.0824 2.3704 10.6442 ≤0.0000
601898.SH 0.0604 0.7949 0.0000 0.1051 2.6145 13.6347 ≤0.0000
601918.SH 0.0823 1.0694 0.0000 0.1354 2.3204 11.7368 ≤0.0000
. . . . . . . . . . . . . . . . . . . . . . . .

000059.SZ 0.0488 1.1677 0.0000 0.1179 4.0722 27.6676 ≤0.0000
000096.SZ 0.0861 1.4636 0.0000 0.1526 3.4660 22.6176 ≤0.0000
000159.SZ 0.0993 1.5125 0.0000 02004 3.3232 17.1421 ≤0.0000

Table 4: Jump correlation coefficient matrix from October 2016 to April 2017.

601857.SH 601898.SH 601918.SH . . . 000059.SZ 000096.SZ 000159.SZ
601857.SH 1.0000 0.3860 0.2683 . . . 0.4625 0.3234 0.3725
601898.SH 0.3860 1.0000 0.2589 . . . 0.2664 0.2192 0.4458
601918.SH 0.2683 0.2589 1.0000 . . . 0.1162 0.0752 0.0973
. . . . . . . . . . . . . . . . . . . . . . . .

000059.SZ 0.4625 0.3234 0.3725 . . . 1.0000 0.2631 0.2270
000096.SZ 0.2664 0.2192 0.4458 . . . 0.2631 1.0000 0.1187
000159.SZ 0.1162 0.0752 0.0973 . . . 0.2270 0.1187 1.0000
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has 62 nodes, which represent the jump of 62 energy sample
stock prices. In complex network diagrams, the number of
interconnected nodes and the length of the distance between
nodes are used to represent complex network relationships.
3emore nodes that are connected to each other, the greater
the stock price jumps directly when the node’s energy stock
price jumps. 3e distance between the nodes represents the
weight between the nodes. If the distance between the two
nodes is shorter, then the correlation between the jumps of
the stock price is stronger. If the node does not appear in the
complex network diagram, then there is no correlation
between the jump of the energy stock price and other stock
prices.

We can draw the following conclusions. (1) China’s
energy stock prices directly or indirectly affect one another.
Figures 3–6 show that the 62 sample points in this paper all
appear in the complex network diagram. 3ey will be di-
rectly or indirectly linked, indicating that the jump risk of
China’s energy stock price is ubiquitous and can be influ-
enced by each node. (2) In the complex network diagram,
the influence of different energy stock price jumps is in-
consistent. For example, in Figure 3, node 55 is directly
connected to multiple stocks. When the stock price of this
node jumps, it will cause node 13.3e stock prices on 15, 15,
22, 32, and 37 jumped, but the stocks directly connected to
nodes 6 and 36 were fewer. 3e results show that in the
energy stock industry, the contagion of risks in different
stocks is inconsistent. (3) 3e infectious power of the energy
stock jump risk will change with time. Comparing node 55 in
Figure 3 with node 31 in Figure 5 shows that there are 6
nodes in Figure 3. Nodes 55 are connected, but only one
node in Figure 5 is connected to node 55. In Figure 5, a total
of 8 nodes are connected to node 31, indicating that the risk-
infecting ability of the same source-only stock changes over
time in the entire network diagram. (4) 3e shape of the
complex network changes with time, indicating that the
energy stock price jumps the complex network relationship
over time. Figures 3 and4 show the complex network of
energy stock hopping before October 2017, showing a
“banded” distribution. 3ere are fewer nodes directly ad-
jacent to each node, indicating that the energy stock price
jumps on a certain node. It is not easy to directly cause a
large jump in the energy stock price of the entire network.
However, Figures 5 and6 show that the complex network of
energy stock hopping after October 2017 tends to be
“grouped”, and the nodes directly adjacent to each node
increase, indicating that the energy stock price occurs on a
certain node. Jumping will directly cause more energy stock

prices to jump. 3e results show that starting from October
2017, the correlation between stock market jump risks in the
energy industry is stronger, and the risk contagion between
energy stocks is stronger.

4.3.3. Analysis of the Importance of Network Nodes. 3is
study uses closeness centrality to analyze the importance of
the nodes. Table 6 shows that the energy stocks with the
highest centrality value in the complex network diagrams of
four different time periods are 300157. SZ, 000059. SZ,
000059. SZ, and 000968. SZ, respectively.

Table 6 shows the following. (1) 3e role of each node in
the complex network on the stability and invulnerability of
the network is inconsistent. In the period of October 2016 to
April 2017, 300157.SZ is most important to the stability of
the network. (2) 3e importance of nodes in complex
networks is time-varying. In different time periods,
according to the results of the closeness centrality, the top
five energy stock codes are not completely consistent. (3) For
the Chinese energy market, the coal industry is the most
important throughout the network tree. 3e analysis shows
that in these four time periods, more than 50% of the stocks
are coal stocks, and after October 2017, the proportion of
coal stocks increased. 3e results show that the stability of
the coal industry is very important for the development of
China’s energy industry. 3e reason is that China is a large
country in coal production and consumption. In China’s
energy consumption structure, coal energy consumption
stands at more than 65%. 3erefore, at present, the coal
industry is at the core of China’s energy finance complex
network.

4.3.4. Complex Network Dynamic Cluster Analysis. 3e
previous analysis shows that the time-varying characteristics
of the complex network of energy stock jumps are obvious.
To further explain the dynamic clustering characteristics of
energy stock jumping complex networks, a fast unfolding
algorithm is used.

3e results of the community-based Q-based commu-
nity classification in Table 7 show that from October 2016 to
October 2018, the optimal number of community divisions
is gradually reduced, indicating that more energy stock price
jumps are included in the same community. 3e clustering
characteristics within the community are more obvious, and
the results further confirm that after October 2017, the
contagion of the risk of jumping between energy stocks
becomes stronger. 3e clustering analysis results of complex

Table 5: Jump distance matrix from October 2016 to April 2017.

601857.SH 601898.SH 601918.SH . . . 000059.SZ 000096.SZ 000159.SZ
601857.SH 0.0000 1.1081 1.2097 . . . 1.0369 1.2113 1.3295
601898.SH 1.1081 0.0000 1.2175 . . . 1.1632 1.2497 1.3600
601918.SH 1.2097 1.2175 0.0000 . . . 1.1203 1.0528 1.3436
. . . . . . . . . . . . . . . . . . . . . . . .

000059.SZ 1.0369 1.1632 1.1203 . . . 0.0000 1.2140 1.2434
000096.SZ 1.2113 1.2497 1.0528 . . . 1.2140 0.0000 1.3277
000159.SZ 1.3295 1.3600 1.3436 . . . 1.2434 1.3277 0.0000
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networks in different time periods are reported in
Figures 7–10. 3e different colors in Figures 7–10 represent
different communities. 3e jump correlation between
communities is shown in Table 8.

3e analysis of the average correlation coefficient of the
communities in different time periods reported in Table 8
shows that the energy enterprises with the highest average
correlation coefficient in different time periods are

inconsistent, and the time-varying characteristic is obvi-
ous. Prior to October 2017, most of the energy stocks in the
communities with the highest average correlation coeffi-
cient were energy mining equipment manufacturers, but
after October 2017, most of the energy stocks in the
communities with the highest average correlation coeffi-
cient were coal companies and new energy companies. 3e
empirical results show that the degree of risk contagion of
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different types of energy companies is inconsistent at
different time periods. China must pay attention to the risk
contagion within the coal industry and the new energy
industry. China’s coal stock jump risk is highly correlated
and prone to risk contagion within the coal industry. Once
the risk accumulates within the coal industry, it is likely to
affect the entire energy industry in China. China also needs

to pay attention to the risk contagion problem within new
energy enterprises. At present, many enterprises in China
develop mainly new energy focused on electricity, solar
energy, wind energy, and so on. 3ese enterprises have
similar development paths and are prone to systemic risks,
which hinder the development of the new energy industry
in China.
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Figure 7: 3e community of energy stock price jump from October 2016 to April 2017.

Table 6: Importance analysis of complex network nodes based on closeness centrality.

Ranking 2016.10-2017.04 2017.04-2017.10 2017.10-2018.04 2018.04-2018.10
1 300157.SZ 000059.SZ 000059.SZ 000968.SZ
2 601101.SH 000723.SZ 000937.SZ 601898.SH
3 601808.SH 002629.SZ 601666.SH 600339.SH
4 600188.SH 300191.SZ 600348.SH 002128.SZ
5 000983.SZ 600157.SH 600508.SH 000059.SZ

Table 7: Modular Q statistics.

Period Optimal number of communities Modular Q value
2016.10-2017.04 10 0.7846
2017.04-2017.10 9 0.7698
2017.10-2018.04 8 0.7802
2018.04-2018.10 7 0.7740
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Figure 9: 3e community of energy stock price jump from October 2017 to April 2018.
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5. Conclusions

3is paper systematically studies the clustering problem of
dynamic complex networks of stock jumping risk of energy-
listed companies. Based on the research of this paper, we
conclude the following. (1) 3e jump of the stock price is an
important component of volatility. (2)3e complex network
of stock price jumps of energy enterprises has obvious time-
varying characteristics. After October 2017, the risk con-
tagion of the stock price jump is more likely to occur. (3)3e
community of the energy stock price complex network also
has strong time-varying characteristics. (4)3e coal industry
is the most critical in the complex network of the entire
energy industry, and the internal risk of the coal industry is
highly contagious. (5) 3e risk contagion within the new
energy industry community is key for the development of
the new energy industry.

Based on the above conclusions, we believe that in the
field of energy finance, the following points should be
considered. (1) 3e energy stock price jump is a common
phenomenon, but the infection problem of stock price jump
risks needs specific analysis. (2) 3e issue of energy financial
risk management should be viewed holistically. (3)3ere are

different ways to jump risk contagion in the energy industry.
We need to systematically analyze the clustering results of
the energy industry, penetrate specific industries according
to the results, and adopt appropriate methods for risk
management. (4) China needs to take measures to protect
the jumping risk of the coal industry.
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