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Zero pronominals challenge Type Logical Grammar in two ways. One, TLG displays a linear resource management regime for
semantic composition, meaning that pronominals call for special treatment if they want to do resource multiplication. Two, as a
grammar of lexicalism, TLG applies to phonologically realized lexical entries only, illegitimating the phonetically null items during
syntactic derivation. Jägor extends the inventory of category-forming connectives of TLG by a third kind of implication that
creates categories of anaphoric items and solves the first problem above.,is article goes a step further to tackle the second one. In
order to formalize the constructions with zero pronominals, we design a ternary category [A〈B〉C] and include the latter into
Jägor’s system. ,e proposed system is proof-theoretically well-behaved. It is complete, sound, and decidable. More importantly,
zero pronominals of various forms can be derived in the system.

1. Introduction

Natural languages are economical, arguably on all tangible
levels, to convey more information with less effort [1, 2]. On
the sentence level, various resource reuse strategies are
utilized to shun repetitiveness. ,e multiplicated resources
sometimes resort to pronouns, reflexives, and auxiliaries, as
in (1)–(3), and sometimes are covert, as the subject in the
second coordinate of (4) and the PROs in control con-
structions of (5) and (6). Interestingly, however, the story
goes to the contrary on the semantic side. Each of the re-
petitive resources, even if it is in zero form, multiplies the
meaning of its antecedent and reappears in semantics. For
instance, the two PROs in (5) and (6) pick up the meaning
representations of their controllers in logical interpretations.
,ey are logically represented as the subject JOE′ and object
JEAN′ (in bold), respectively, of the upstairs verbs, as shown
in (7) and (8).

(1) Joe claims that hewill win. pronoun
(2) Joe likes himself. reflexive
(3) Joe walks and Jean does too. ellipsis

(4) Joe walks and talks. coordination
(5) Joei promises Jean [PROi to stay] subject control
(6) Joe asks Jeani [PROi to stay]. object control
(7) PROMISE′ (JOE′, JEAN′, STAY′(JOE′))
(8) ASK′ (JOE′, JEAN′, STAY′(JEAN′))

,e issue of how to calculate these resource reuse
mechanisms in TLG is an apparent challenge to the
grammar because TLG assumes a monostratal model for
natural languages, which means that they can only
combine neighboring items or constructions. However, all
above-mentioned reused linguistic items in (1)–(6), in-
cluding anaphora, non-constituent coordination, and
control, are discontinuous constructions, in which the
anaphor/PRO locates several words away from its ante-
cedent/controller. ,us, the grammar has to be capable of
coping with discontinuity in order to be a competent
natural language grammar. ,ere are mainly two ways to
deal with anaphoric constructions in type logical setting.
One is to treat pronominals as being triggered by certain
lexical items whose semantic representations contain a
λ-operator that binds more than one variable occurrence
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[3–7]. However, the strategy of this kind forces highly
complex lexical entries and coerces formidable mecha-
nisms, like secondary wrapping [5], into syntax. Another
way is to introduce into syntax a specifically designed
operation to secure the pronominals a semantic inter-
pretation as simple as an identity function. Hepple’s
permutation operator Δ [8], Jacobson’s variable free se-
mantics [9, 10], and Jägor’s Lambek calculus with Limited
Contraction (LLC) [11] are all attempts of the sort, among
which the last attracts the most attention and engenders a
series of logical extensions for its theoretical simplicity
[12–15].

Jägor [11] includes a limited version of the structural
rule of contraction as is shown in Rule 1. Rule 1 does
nothing more than allowing the antecedent formulae to be
multiplied. ,e resulted system LLC highlights its vertical
slash | that creates categories of anaphoric items. A sign
has category A|B iff it needs an antecedent of category B
and, if it finds one, behaves like an item of category A.
,us, both the pronoun in (1) and reflexive in (2) are
identity functions λx.x of category np|np. Making use of |
Elimination Rule 2, the simple reflexive sentence (2) is
derived as in Figure 1. We use natural deductions for rules
or syntactic derivation hereinafter due to the reason stated
in [11] as there is a tight correspondence between the
structure of proofs and the syntactic structure of the
Curry–Howard terms.

Rule 1. Sequent representation of limited contraction 1
X, x: A, y: A, Y⇒M: B

X, x: A, Y⇒M[x/y]: B
. (1)

Rule 2. | ELIMINATION

[M: A]i . . .
N: B|A

NM: B
|E, i . (2)

Despite all these successful treatments over disconti-
nuity, we find that the current categorial machine struggles
to legitimately derive constructions concerning zero pro-
nominals, for example, the PROs in (5) and (6). PROs are
different from elided constituents in coordination.,e latter
can be derived by the generalized coordination rule (Rule 3)
as shown in Figure 2, whereas the PROs are in embedded
clauses rather than a coordination construction, thus not
eligible for predicate coordination.

Rule 3. GENERALIZED BOOLEAN COORDINATION
SCHEME

⋮/M: np\s and⋮/N: np\s

λx[Mx∧Nx]: np\s
Conj. (3)

Here is the dilemma for deriving pronominals in TLG.
On the one hand, the zero pronominals have to be explicit to
carry their meaning for appropriate semantic derivation,
while on the other hand, Lambek calculus does not allow
zero pronominals to be made explicit as it will induce the
structural rule of monotonicity and jeopardizes decidability

of the system by allowing the addition of some formula that
is similar to one in the antecedent.

As a result, an ideal system for the present purpose is to
extend LLC further to allow covert anaphoric items to be
overt without hurting the system’s decidability. ,is is our
goal in the present study. It differs from earlier extensions of
LLC in such a way that it is a direct logical expansion, rather
than a lexical enrichment that includes anaphoric slash in
the categories of control verbs [12], and may offer a more
meticulous version for the noticing trending works of
connecting TLG to computational distributional semantics
[16–20]. In Section 2, we will flash out our theoretical as-
sumptions for zero pronominals, then present the axiomatic
presentation, Gentzen style sequent formulation, and labeled
natural deduction of the new system LLCM in Sections 3–5,
respectively, proving that LLCM is complete, sound, and
decidable. More linguistic phenomena concerning zero
pronominals will also be discussed in Section 5.

2. Anaphora Slot and LLCM

We want to follow Jäger’s approach to anaphors [11] and
extend LLC in a way that it can accommodate two desirable
properties: one, the system should allow covert item to be
overt; two, the made-explicit item should be anaphoric. ,is
means that the system should allow both pronominals and
zero pronominals. In this way, the PROs in control con-
structions can take up an actual logical form as well as
interpretation during sentence derivation. ,us, (5) and (6)
can be derived ideally as in Figures 3 and 4, where to stay can
take up the right subject identical to its controller, instead of
looting direct object of the upstairs predicate—its left
neighbor—to be its subject. (To simplify the derivation, we
ignore the morphological distinction between finite and
infinite VPs and treat to stay as a single lexical entry.)

We name the location where the zero pronominal resides
“anaphora slot.” ,us, an anaphora slot introduction rule in
embryo should be like Rule 4.

Rule 4. ANAPHORA SLOT INTRODUCTION
M: A N: C

M: A W: B|A N: C
. (4)

Figure 1: Type Logical derivation of (2).

Figure 2: Type Logical derivation of (4).
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Under type logical perspective, introducing an anaphora
slot in syntax means that the logic of grammatical com-
position allows somewhat “redundant” (because they are
covert in actual discourse) but not arbitrary category in a
valid deduction. ,is amounts to an assumption that the
structural rule of monotonicity is part of the grammar in one
way or another. ,us, we name our system LLCM, meaning
LLC with limited monotonicity.

We put forward a ternary category [A〈B〉C], in which
[. . . 〈. . .〉 . . .] is an anaphora slot operator (sometimes
simplified as 〈 〉). It may help to reveal how the category of a
zero pronominal is introduced, deleted, or concatenated
with categories to its left or right. From our experience with
control construction and PROs, there is a preferable con-
catenative order among the adjacent strings “A, B, C,” where
Bwill concatenate with C (if there is a C to B’s right) first and
the result will further concatenate leftwards with its left
neighbor A. ,us, the zero pronominals, when made overt,
should obey the limited contraction 2 (Rule 5) in its sequent
representation.

Rule 5. SEQUENT REPRENTATION OF LIMITED
CONTRACTION

X, (x: A, (y: A, z: C)), Y⇒M: D

X, (X: A, z: C), Y⇒M[x/y]: D
. (5)

In the coming two sections, we will define LLCM of its
axiomatic version and Gentzen style sequent formulation,
and prove that it is sound, complete, and decidable under
such expansion.

3. Model Theory of LLCM

Now we extend the inventory of LLC category-forming
connectives by the ternary operator [〈〉]. So the set of LLCM
categoriesF over a collection of atomic categories A is given
below.

Definition 1. LLCM CATEGORIES
If F is a well-formed LLCM categories, then F/F, F\F, F|F,

F·F and [F<F>F] are also well-formed LLCM categories.

All well-formed LLCM categories are recursively defined
as in Definition 1. Next, a sound and complete model-
theoretic interpretation for LLCM is presented.

Definition 2. MODEL of LLCM (,ismodel is based on LLC
in [11] and a preliminary version of this system is given in
our earlier work [21].)

A Model M for LLCM is a tuple <W, R, S, T, ∼, f, g>,
where W is a non-empty set of linguistic signs, T ⊆ W4 is a
quaternary relation onW; R, S ⊆W3 are ternary relations on
W; ∼ ⊆ W2 is a binary relation on W; f is a function from
atomic categories to subsets of W; and g is a function from
LLCM-categories to W. ,e verification relation between
points in W and LLCM categories is defined as follows:

║p║ M= f(p)⊆W
║A•B║M= {x|∃yz[Rxyz & y ∈║A║M & z ∈║B║M]}
║A\B║M= {x|∀yz[Rzyx & y ∈║A║M⇒ z ∈║B║M]}
║A/B║M= {x|∀yz[Rzxy & y ∈║B║M⇒ z ∈║A║M]}
║A|B║ M= {x|∃y [Sxyg(B) & y ∈║A║ M]}
║A〈B〉C║M= {x|∃yzu[Txyzu & y ∈║A║M & z ∈║B║
M & u ∈║C║ M]}

,e ternary relation R can be taken as ordinary syntactic
concatenation between linguistic signs. Rxyz means that if y
and z occur adjacently in that order, the combination of the
two gets an x. Relation S is a ternary relation in [11]. It is
similar to R but it is responsible for anaphoric resolution.
Sxyz means that x is changed into y if there is an element
similar to z (noted as y∼ z in meaning postulates) available
to be antecedent for anaphora resolution. Relation Tmodels
anaphora slot operation and Txyzumeans that x is the result
of inserting z in between y and u.

,e following meaning postulates hold:

MP1 ∀xyzwu[Rxyz & Szwu⇒∃ v [Sxvu & Rvyw]]
MP2 ∀xyzwu[Rxyz & Sywu⇒∃ v [Sxvu & Rvwz]]
MP3∀xyzwuv[Rxyz& Sywu& Szvu⇒∃r[Sxru&Rrwv]]
MP4 ∀xyzwu[Rxyz&Szwu&y∼ u⇒Rxyw]
MP5 ∀Aw[w ∈ ‖A‖M⇒w∼g(A)]
MP6 ∀xyzu[Rxyz⇒Txyuz]
MP7 ∀xyzu[Txyzu⇒∃ v [Rxyv & Rvzu]]
MP8 ∀xyzuvw[Rxyz & Tzuvw⇒∃t[Txtvw & Rtyu]]
MP9 ∀xyzuvw[Rxyz & Tyuvw⇒∃t[Txtvw & Rtuz]]
MP10 ∀xyzuvw[Rxyz & Tzuvw⇒∃t[Txuvt & Rtyw]]
MP11 ∀xyzuvw[Rxyz & Tyuvw⇒∃t[Txuvt & Rtwz]]
MP12 ∀xyzuvwst[Rxyz & Tyuvw & Tzsvt⇒∃ab[Txavb
& Raus & Rbwt]]

Figure 3: Partial derivation for (5).

Figure 4: Partial derivation for (6).
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MP13 ∀xy[Rxyy⇒ y ⊆ x]
MP14 ∀B[‖B‖M≠∅]

MP1–5 mean postulates about relation S [11]. MP 6–7
are about relation T, exhibiting an important feature of
LLCM. ,ey amount to say that if x contains an anaphora
slot and x is composed by y and z, then x can also be
composed by y and v among which v is the result of con-
joining z and the covert u. In other words, a complex sign
with an anaphora slot can be represented similarly either
with or without the anaphor participating in its syntactic
composition. MP8–12 show how categories in the ternary
operator [〈 〉] compose with its neighboring categories.
MP13 says that the extension over a set of linguistic signs is
closed under R. ,e last postulate is a structural postulate
complementary to MP6 and MP7.

Definition 3. AXIOMATIC VERSION OF LLCM
,e axiomatic version of LLCM is the system that is

obtained when the following 12 axioms and 4 rules are added
to the axiomatic version of L:

A1 A • B|C⟶ (A • B)|C
A2 A|B • C⟶ (A•C)|B
A3 A|C • B|C⟶ (A • B)|C
A4 A • B|A⟶A • B
A5 A • C⟶ [A〈B〉C]
A6 [A〈B〉C]⟶A • (B • C)
A7 D • [A〈B〉C]⟶ [(D • A)〈B〉C]
A8 [A〈B〉C] • D⟶ [(A • D)〈B〉C]
A9 D • [A〈B〉C]⟶ [A〈B〉(D • C)]
A10 [A〈B〉C] • D⟶ [(A〈B〉(C • D)]
A11 [A〈B〉C] • [D〈B〉E]⟶ [(A • D)〈B〉(C • E)]
A12 A • A⟶A (monotonicity)

Deductive rules:

D1

A⟶ B

A|C⟶ B|C
. (6)

D2
A⟶ B

[A〈D〉C]⟶ [B〈D〉C]
. (7)

D3
A⟶ B

[D〈C〉A]⟶ [D〈C〉B]
. (8)

D4
A⟶ B

[D〈A〉C]⟶ [D〈B〉C]
. (9)

,en we can prove the soundness and completeness of
the axiomatic version in a way that closely follows the proof

for L in [22] and LLC in [11]. We will start with the axiom 6
and D2. ,e rest cases are already proved in [11].

Theorem 1. SOUNDNESS
If LLCM├ A⟶B, then for all models M, ║A║M ⊆ ║B║

M.

Proof. A • C⟶ [A〈B〉C]

Suppose x ∈║A • C║M. ,en there are y ∈║A║M and
z ∈║C║ M such that Rxyz. According to MP14 and MP6,
there is a u ∈║B║M such that Txyuz. Hence, for x ∈║A • C║
M, there is y ∈║A║M, u ∈║B║M, and z ∈║C║M such that
Txyuz, thus x ∈║[A〈B〉C]║ M.

Now prove [A〈B〉C]⟶ A • (B • C).
Suppose x ∈║[A〈B〉C]║ M. ,en there are y∈║A║M,

z ∈║B║M, and u ∈║C║M such that Txyzu. According to
postulate 7, there is a v such that Rxyv and Rvzu. Hence
v ∈║B • C║ M, and thus x ∈║A • (B • C)║ M.

Axioms 7–11 stipulate associativity of the ternary cat-
egory. Here we will prove axiom 7 only.

Now prove D • [A〈B〉C]⟶ [(D • A)〈B〉C].
Suppose x∈║D • [A〈B〉C]║ M. ,en there are y∈║D║

M and z ∈║[A〈B〉C]║ M such that Rxyz. Furthermore,
there is a y∈║D║M such that Rxyz, and u∈║A║M, v∈║B║
M, and w∈║C║M such that Tzuvw. MP8 entails that there is
a t such that Txtvw and Rtyu. Hence t ∈║D • A║M, and then
x ∈║[(D • A)〈B〉C]║ M.

Last, we prove A • A⟶ A.
Suppose x ∈║A • A║M. ,en there is a y ∈║A║M such

that Rxyy. MP13 entails that y ⊆ x. Since ⊆ is closed underW,
thus x ∈║A║ M.

,e proof for deduction rules are similar. We will leave
them for readers as exercise. □

Theorem 2. COMPLETENESS
For all LLCM-models M, if ║A║ M ⊆ ║B║ M, then

LLCM├ A⟶B. (We may use ├ to stand for LLCM├ when
no misunderstanding arises.)

Proof. We start with constructing a canonical model CM=
〈W, R, S, T, ∼, f, g〉, where W is simply a set of all LLCM
categories.

For all atomic categories p, f(p)� {A |├ A⟶ p}.

RABC iff├A⟶B • C, and
SABC iff ├A⟶B |C, and
TABCD iff├ A⟶ [B〈C〉D],
and A∼B iff├ A⟶B,
and g(A)�A for all categories A and B.
A ⊆ B iff ├ B⟶A

,en we prove the truth lemma below. □

3.1. Truth Lemma. In canonical model CM, it holds for all
LLCM categories A and B that A∈║B║CM iff ├ A⟶B.
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Proof. We prove this via induction over the complexity of B.
If B is atomic, it follows directly from the construction of f. If
B is constructed by one of the three Lambek connectives or
LLC’s anaphoric connective, the proof of the induction step
follows that in [11, 21]. We will only show the induction
steps for the ternary operator.
⇒Suppose that B� [C〈E〉D] and suppose A ∈║[C

〈E〉D] ║CM. ,en there are y∈║C║CM, z∈║E║CM, and
u∈║D║CM such that TAyzu according to the definition of [].
,is means that there are A1∈║C║CM, A2∈║E║CM, and
A3∈║D║CM such that TAA1A2A3. It follows that ├
A1⟶C,├ A2⟶ E,├ A3⟶D, and├ A⟶ [A1〈A2〉A3]
by the way the canonical model is defined. By D2, D3, and
D4, it follows [A1〈A2〉A3]⟶ [C〈A2〉A3], [C〈A2〉
A3]⟶ [C〈E〉A3], and [C〈E〉A3]⟶ [C〈E〉D], re-
spectively. Hence├ A⟶ [C〈E〉D].
⇐ Suppose that├ A⟶ [C〈E〉D]. By the way the

model is constructed, there is TACED. By the induction
hypothesis, there are C ∈║C║CM, E ∈║E║CM, and
D ∈║D║CM. Hence, there is an A such that TACED. By the
way [] is defined, thus A ∈║[C〈E〉D]║CM.

,en we have to prove that all postulates for LLCM in
Definition 2 are fulfilled by the model. ,ey follow directly

from the model construction, monotonicity of the product,
and the truth lemma above, thus will not be provided here.■

Finally, we will show that all LLCM valid formulae are
derivable in LLCM. Let ║A║CM⊆║B║CM. Suppose that A
⟶ B is not derivable in LLCM. ,ere should be a
A∉║B║CM by the truth lemma. By identity axiom,├
A⟶A. ,us there is always A∈║A║CM and it is not the
case ║A║CM⊆║B║CM, which contradicts our assumption.
Hence, A⟶B is derivable in LLCM.

Henceforth, the axiomatic system of LLCM is sound and
complete. □

4. Sequent Presentation of LLCM

In order to characterize the decidability of LLCM, we need
its Gentzen-style sequent presentation. ,e sequent pre-
sentation of LLCM extends that of LLC by proposing R and L
for anaphora slot operator [], and monotonicity. For sim-
plicity, we will omit the labeled λ-terms for the sequent
presentation in the present section.

Definition 4. SEQUENT PRESENTATION OF LLCM

A⇒A[Ax]
Δ⇒A Γ, A , Γ′⇒C

Γ,Δ, Γ′⇒C
[Cut],

Δ, B⇒A

Δ⇒A/B
[/R]
Δ⇒B Γ, A , Γ′⇒C

Γ, A/B,Δ, Γ′⇒C
[/L],

B, Δ⇒A

Δ⇒B/A
[\R]
Δ⇒B Γ, A , Γ′⇒C

Γ,Δ, B/A, Γ′⇒C
[\L],

Γ, A, B, Γ′⇒C

Γ, A•B, Γ′⇒C
[•L]
Γ⇒A Γ′⇒B

Γ, Γ′⇒A•B
[•R],

X, A1, Y1, . . . , An, Yn⇒B

X, A1|C, Y1, . . . , An

􏼌􏼌􏼌􏼌C, Yn⇒B|C
|R

Y⇒B X, B, Z, A, W⇒C

X, Y, Z, A|B, W⇒C
|L,

Γ, A1, Y1, . . . , An, Yn⇒A B⇒D Δ, C1, Z1, . . . , Cn, Zn⇒C

Γ,Δ, A1〈B〉C1􏼂 􏼃, Y1, Z1, . . . , An〈B〉Cn􏼂 􏼃, Yn, Zn⇒[A〈D〉C]
〈 〉R,

X, A, B, C, Y⇒D

X, [A〈B〉C], Y⇒D
〈 〉L,

X, (A, (B, C)), Y⇒D

X, (A, C), Y⇒D
C(LimitedContraction 2),

X, A, Y⇒D

X, A, A, Y⇒D
(Monotonicity).

(10)
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To prove the sequent presentation is equivalent to the
axiomatic version, Lemma 1 is needed. And also, a function
σ that maps all commas in a sequent into products • is
utilized to ensure categories to type correspondence. ,us,
σ(A)�A; σ(X, Y)� σ(X) • σ(Y).

Lemma 1. @e arrow σ(Γ, Δ, [A1〈B〉C1], Y1, Z1, . . .,
[An〈B〉Cn], Yn, Zn)⟶[σ(Γ, A1, Y1, . . ., An, Yn)〈B〉σ(Δ, C1,
Z1, . . ., Cn, Zn)] is derivable in LLCM’s axiomatic version.

Proof. For n� 1, the arrow σ(Γ, Δ, [A1〈B〉C1], Y1, Z1)⟶
[σ(Γ, A1, Y1)〈B〉σ(Δ, C1, Z1)] holds by axioms 7–10 and the
way “σ” is defined.

Provided that the arrow holds when n� k. By induction
hypothesis, arrow σ(Γ, Δ, [A1〈B〉C1], Y1, Z1, . . ., [Ak〈B〉Ck],
Yk, Zk)⟶ [σ(Γ, A1, Y1, . . ., Ak, Yk)〈B〉σ(Δ, C1, Z1, . . ., Ck,
Zk)] holds in axiomatic version. Obviously, there is
σ([Ak+1〈B〉Ck+1], Yk+1, Zk+1)⟶ [σ(Ak+1, Yk+1) 〈B〉σ(Ck+1,
Zk+1)] by A8 and A10. Via monotonicity of “• ”, there is: σ(Γ,
Δ, [A1〈B〉C1], Y1, Z1, . . ., [Ak〈B〉Ck], Yk, Zk) •

σ([Ak+1〈B〉Ck+1], Yk+1, Zk+1)⟶ [σ(Γ, A1, Y1, . . ., Ak, Yk)〈
B〉σ(Δ, C1, Z1, . . ., Ck, Zk)] • [σ(Ak+1, Yk+1)〈B〉σ(Ck+1, Zk+1)]

By σ’s definition and A11, we get σ(Γ, Δ, [A1〈B〉C1], Y1,
Z1, . . ., [Ak〈B〉Ck], Yk, Zk, [Ak+1〈B〉Ck+1], Yk+1, Zk+1)⟶
[σ(Γ,A1, Y1, . . .,Ak, Yk,Ak+1, Yk+1)〈B〉σ(Δ,C1, Z1, . . ., Ck, Zk,
Ck+1, Zk+1)] □

Lemma 1. is thus proved.

Theorem 3. EQUIVALENCE OF AXIOMATIC AND
GENTZEN PRESENTATIONS

LLCM├ X⇒A iff├ σ(X)⟶A is derivable in the axi-
omatic version.

The proof is omitted for the current purpose. We prove
the equivalence of LLCM’s axiomatic and sequent versions
for the same reason that Lambek proves the equivalence of
L’s sequent version and its axiomatic counterpart. ,e de-
cidability is decidable by Cut Elimination in sequent pre-
sentation and this result can therein further percolate to its
axiomatic version.

Theorem 4. CUT ELIMINATION
If LLCM├ X⇒A, then there is a Cut-free sequent proof of

LLCM├ X⇒A.
To prove this theorem, we have to distinguish three

cases: (1) at least one premise of the Cut is an identity axiom;
(2) both premises are results of logical rules, and the Cut
formula is the active formula in both premises; (3) both
premises result from introducing logical rules, and the Cut
formula is not the active formula in one premise. The proof
is left as an exercise to the reader.

Theorem 5. DECIDABILITY
Decidability in LLCM is decidable.

Proof. For each rule of the Cut-free sequent calculus, the
conclusion sequent of each rule contains more symbols than
its premises because each formula in the premise occurs as a
subformula in the conclusion and each logical rule

introduces one connective. In addition, there are only finite
ways to match certain sequents with the conclusion of some
sequent rule. As a result, there are always at most finite
choices to do a bottom-up proof search and every branch of
the proof tree is finite. Decidability in LLCM is thus
decidable. □

5. Tests on More Linguistic Phenomena

5.1. LLCM’sNaturalDeduction inTree-format. Before testing
on more linguistic phenomena, we offer LLCM’s labeled
natural deduction in tree-format here. As is shown in Sections
1 and 2, labeled deduction in tree-format helps to visualize the
type-logical deduction over a sentence. Suppose Δ is a n-ary
operator, ΔE and ΔI stand for its elimination rule and in-
troduction rule, respectively. Here, we will offer <>I only.

Definition 5. <>INTRODUCTION RULE IN TREE-
FORMAT

D: A2
A: M C: N

〈B: A1|A2〉
〈 〉I. (11)

〈〉 I enables the covert or elided pronominals to be
inserted first before a [A〈B〉C] structure is constructed. E,
however, is not given because is a temporary notational
strategy to show where zero pronominal is. ,e notational
will disappear when the zero pronoun finds its antecedent
and multiplies its interpretation with |E. Now we can show
the charm of LLCM with more linguistic constructions that
allow zero pronominals.

5.2. Deriving Pros. ,e anaphora and control construc-
tions we list in (1)–(6) exhibit only the tip of the iceberg of
the zero pronominals used in natural languages. Gener-
ative grammar distinguishes two types of zero pronom-
inals. In addition to the PROs that are limited to the
subject position of a non-finite clause as in control
constructions of (5) and (6), there are zero pronouns that
occur elsewhere in less restricted manners than PROs. ,e
linguistic economy allows pronouns to be dropped in
many languages. ,ey are called little pro. For instance, a
subject pronoun in Spanish may be dropped from a tensed
clause as in (9), and in Chinese, both the subject and
object pronouns may be dropped in similar circumstances
as in (10) and (11). Apparently, a type-logical system ready
to derive correct readings for sentences in these languages
is expected to be capable of inserting the elided pronouns
in the anaphora slots and multiplying the semantic re-
source legitimately.

(9) José sabe [que él/pro ha sido visto por Maŕıa]. [22].
José know that he/∅ has been see by Maŕıa.
‘José knows that [he] has been seen by Maria.’

(10) Zhangsani shuo [Lisi hen xihuan pro∗ i/j]. [23].
Joe said Lee very liked [him].
‘Joei said that Lisi liked [him∗ i/j].

(11) Zhangsani shuo [ta/pro hen xihuan pro∗ i/j].
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Joe said he/∅ very like ∅
‘Joe said that [he] liked [him/it. . .].’

,us, when the Lambek system is equipped with ana-
phoric slash and an anaphora slot operator, it becomes as
powerful as we would expect it to be. For example, derivation
of (9) is illustrated in Figure 5.

In Chinese, both subject and object pronominals in a
tensed clause can be dropped. However, the dropped object
cannot take the matrix subject as its antecedent, but as some
other person known in the discourse. For example, in the
Chinese discourse (12) below, pro in speaker B’s answer can
only refer to the object in A’s question. Ideally, if our system
allows the inserted pronominal to search its antecedent
across the sentence border, it can derive (10) in the same way
as that of (12) in Figure 6. Derivation for sentences like (11)
that drops both subject and object is likewise.

(12) Speaker A: Zhangsan xihuan huaju ma?
Joe like stage-play Q?
‘Does Joe like stage play?’
Speaker B: Zhangsan shuo ta hen xihuan pro.
Joe said he very like [it].

6. Discussion

LLCM’s labeled natural deduction in tree-format shows that
in LLCM, sentences with different degrees of zero pronom-
inals are all derivable, be it a PRO with the restricted oc-
currence, or a pro-drop with less restrictions in syntax. It
exhibits a very promising picture. Nevertheless, poetic as it
seems to be, the situation of pros is more complicated than we
assume because they are under different restrictions in dif-
ferent pro-drop languages. How to tailor the system according
to the requirements of different languages remains to be a
question. It might be a good idea to set up a universal model
and assign different parameters for different languages as in
multimodal CCG [24]. We will leave it for future work. [25].

As seen from substructural logics, system LLCM with the
ternary complex category [A〈B〉C] is a specific substructural
logic system. It not only shares structural rules such as

associative law and commutative law, but also contains
monotonicity and a variant of limited contraction, whose
axiomatic counterpart is A • C⟶A • (A • C). ,is rule is
capable of inserting the left-hand side category A and is exactly
what is needed for characterization on zero pronominals.
However, linguistic facts also demonstrate that category B in
the anaphora slot may relate to categories outside the slot. In
other words, the elided or covert category may bear an ana-
phoric relation with the category outside the slot. ,us, we
stipulate those three categories in the anaphora slot are dif-
ferent from each other and propose the variant of contraction.
Further research is needed on theoretical significance of this
variant from the perspective of substructural logics.
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