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Alarm management is an important task to ensure the safety of industrial process technologies. A well-designed alarm system can
reduce the workload of operators parallel with the support of the production, which is in line with the approach of Industry 5.0.
Using Process Mining tools to explore the operator-related event scenarios requires a goal-oriented log file format that contains
the start and the end of the alarms along with the triggered operator actions. 'e key contribution of the work is that a method is
presented that transforms the historical event data of control systems into goal-oriented log files used as inputs of process mining
algorithms.'e applicability of the proposed process mining-based method is presented concerning the analysis of a hydrofluoric
acid alkylation plant. 'e detailed application examples illustrate how the extracted process models can be interpreted and
utilized. 'e results confirm that applying the tools of process mining in alarm management requires a goal-oriented log-
file design.

1. Introduction

'e motivation of the present work is to develop a meth-
odology for the process mining-based analysis of alarm and
event-log databases to increase process safety and reduce the
workload of the operators. As a result, we will be able to
understand the chain of events that trigger an operator
action, as well as explore the effects of different operator
action strategies; from another point of view, to gain the
models of processes, leading potentially to malfunctions or
safety incidents. With the help of this knowledge, a better
designed and more effective alarm management [1] and
operator training system can be developed.

'e Industry 5.0 approach considers the wellbeing of the
workers in productivity and efficiency improvement projects
more. State-of-the-art industrial production systems contain
complex process control solutions. 'e amount of recorded
signals and process variables makes it difficult to have a clear
view of the relationships between the different process el-
ements; the control of the processes can be a demanding task
for the workers. To lower the workload of the operators, a

good understanding of the process element relationships is
needed to predict the probable event scenarios that can be
the basis of a decision-supporting system. 'e work of the
operators can be reduced and supported in other ways as
well. Generally speaking, predictable alarms do not contain
useful information for the operators. 'erefore, automation
solutions should handle them before they occur, or com-
pletely useless alarms should be suppressed before an an-
nouncement is made [2]. Future alarm sequences can also be
predicted using historical knowledge of the process [3]. 'e
exploration of operational strategies holds promising op-
portunities for automation as well: the sequences of alarms
and the corresponding operator actions can be determined
besides the best operational practices [4]. 'e analysis of the
announced alarms can also facilitate root cause analysis [5].
A wide range of data-based solutions have been applied to
reduce the operator workload, e.g., the conventional tech-
niques of deadbands [6], delay timers [7], or filtering [8].
Advanced alarm management solutions aim to define more
informative features for the operators by identifying re-
dundant and co-occurring alarms. Twomain approaches are
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known. First, correlation analysis-based techniques are
widespread, where the aim is to find frequently co-occurring
alarms over a short period of time, which can be considered
redundant [9]. Second, the frequently occurring longer
operational patterns can be considered to be the symptoms
of the same malfunction and can be revealed by frequent
pattern mining algorithms [10], as well as applied in terms of
alarm prediction and suppression [2]. It is also advantageous
to apply highly efficient data-driven solutions, like deep
learning [11] or decision tree-based classifiers [12]. To gain
understandable models that can be directly used in alarm
management is challenging. To explore complex event
chains or comparable models of operator action strategies,
determining the correlation of event pairs, deep learning
methods with hard-to-understand results are not satisfying.
For compact and comprehensible models, we need to apply
process mining.

Process mining is a collection of techniques that support
the understanding of processes based on event logs [13].
Process mining algorithms are applied in various fields,
without the aim of completeness: in healthcare to improve
the operational efficiency of processes [14], in business
management to analyze the processes and reveal their
bottlenecks [15], for the automatized analysis of financial
statements during audit processes [16], or the support of
e-learning are among the applications as well [17]. More-
over, a recent and highly promising application field is the
identification of repetitive processes using process mining to
discover potential processes for robotic process automation
[18]. For a recent collection of research fields and application
areas in process mining, please refer to the work of Garcia
et al. [19]. 'ese process mining algorithms are tailored to
goals for the purpose of discovering process flows, where the
events of the different processes are organized into traces. A
trace is a collection of events that are considered to be related
in some way. 'e definition of the traces is essential for the
purpose of process discovery, especially in the case of alarm
management, where the connection between alarms and
operator actions requires accurate trace generation. 'ere-
fore, the structures of alarm and event logs are unsatisfactory
in terms of process mining as they lack this very important
component, that is, trace indicators. A process mining-based
approach was applied to evaluate the behavior of plants and
support the rationalization of alarms. Its basic concepts are
presented in Reference [20], while the applicability of
process mining algorithms for the determination of alarm
performance metrics and the exploration of process be-
havior are presented in Reference [21], which can be con-
sidered to be the motivation of the present study.

Although these studies usually focus on different aspects
of alarm management, e.g., operator actions [4] or alarm
rationalization [21], they lack the general formalization of
the problem and the goal-oriented definition of the input
database for different purposes of analysis. Given the lack of
a comprehensive study on the applicability of the techniques
of process mining with regard to large-scale industrial alarm
and event log databases, the contribution of the present work
is the following:

(i) We discuss the goal-oriented tasks and the related
definition of the events, as well as further charac-
teristics of the events and resources. Traces must be
defined to provide a suitable structure of alarms and
the related operator actions, resulting in the most
appropriate input dataset for the applied mining
algorithms.

(ii) 'e effectiveness and applicability of the proposed
methodology are presented with regard to the
analysis of the large-scale alarm and event-log da-
tabase of an industrial plant. We have gained un-
derstandable and comprehensive information that is
useful not only in alarm management and operator
training systems but also in the process mining of
other industrial sectors.

According to the contributions, the core applicability
of the proposed methodology is not narrowed down to
the industrial alarm systems but can be transferred to
other fields of applications as well, where temporal
events are present and their follow-up or cause and effect
type of relationship is to be analyzed (similarly to the
back and forth relationship of alarms and operator ac-
tions). In the case of alarm systems, the type of process
control system, let it be a distributed control system
(DCS), supervisory control and data acquisition system
(SCADA), or any other type of system, is irrelevant, as
long as the provided alarm (or event) data are timely and
accurate. Using the proposed methodology, the alarm
evolution paths can be identified, the triggering alarms of
operator actions can be revealed, and recommendations
for the reduction of the probability of hazardous situ-
ations can be provided.

'e structure of the work is the following. In Section
Materials and Methods, we provide a brief overview of
industrial log files (structure and content), introduce the
goal-oriented definition of the traces, identify the necessary
rules to generate traces, and discuss the process mining
tools necessary to achieve our goals. In Section Results and
Discussion, we examine the previously defined process
mining tasks, the preparation of the log file, the time
distribution analysis of the events (alarms and operator
actions), the alarm spillover analysis between the pro-
duction units, and the discovery of the connection between
alarms and operator actions. In Section Conclusion, some
concluding remarks are provided, experiences are dis-
cussed, and possible future research directions are
identified.

2. Materials and Methods

'is section introduces the basis of process discovery (log
files), the event-clustering method (trace generation rules),
and the goal-oriented selection of process exploration tools.
As in the case of any project-like activity, an execution plan
to achieve our predefined goals must be drawn up. In terms
of the present case study, a schematic summary is provided
in Figure 1.
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2.1. 0e Structure of the Alarm and Event Log Databases.
Discrete events, e.g., alarms and warnings, are recorded in
the process control unit of almost every production site
when a variable exceeds its associated threshold. An in-
dustrial alarm and event-log database is usually composed of
these alarms and warnings, operator actions, system mes-
sages, as well as any further timestamped information logged
by the control system. For the purpose of further mathe-
matical formulation, every event can be regarded as a state of
the technology (denoted by s) represented by < pv, a> data
pairs. pv indicates the name of the process variable, while a
represents the attribute that indicates the state occurring on
the given variable, e.g., high or low alarm in the case of an
alarm announcement or increase or decrease (open or close)
in the case of operator action. An event is the occurrence of a
given state, which can be an event of temporal duration such
as alarm messages or point-like in time such as operator
actions. For example, the description of an alarm and an
operator action can be mathematically represented as
< column inlet temperature, high alarm> and < cooling
water inlet valve, open> , respectively. 'e events are rep-
resented by < s, st, et> triplets, where s denotes the state that
occurs between st starting and et ending times. For an event
with a point-like temporal characteristic, even though the st
and et times are regarded as equal to maintain a uniform
mathematical formulation, it must be decided whether to
keep both or utilize only the st starting time for further
processing.'is question is addressed later when the XES file
is considered.

'e files of industrial alarm and event logs are usually
composed of timestamped events of alarms, operator ac-
tions, system messages, and any further temporal

information. Additional information can help us to deter-
mine which sensor generates the alarm in the process and
the priority of that alarm, e.g., the location of the event, that
is, in which part of the plant/organization it occurred. Each
event that occurs is labeled with a tag name. Every alarm and
operator action can be considered to be the state of the
process. 'e different alarms in the event log have starting
and end times. 'e starting time is when the alarm in the
process was raised, and the end time is when the process
returned to its proper operational zone.'e operator actions
are usually considered to be point-like events, i.e., their
starting and end times coincide. A series of events can be
defined as a trace. Let L denote a set of events; σ ∈ L stands
for an event trace, that is, a sequence of events; T⊆L rep-
resents an event log, i.e., a set of event traces. Besides in-
formation on the occurrence of an event, the log files usually
contain other information as previously discussed, e.g., the
location of the sensor that raised the alarm in the process,
which is possibly categorized into units or production units,
etc. 'is work demonstrates the importance of task-specific
trace definitions. 'e methodology of trace segmentation
will be discussed later.

Our goal is to identify basic patterns in the chain of
alarms to focus on frequent sequences that can help us
compile a prediction model of the alarms. In Table 1, an
example of an industrial alarm and event-log can be seen.
'e column labeled “Tag” has been added to support the
analysis and is a summarized representation of the sensor’s
name. 'e first part is the name of the tag, the second and
third are those of the unit and production unit, respectively,
while the last one is the type of event (A: alarm, O: operator
action, N: return to normal). Different “sub-logs” are
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Figure 1:'e concept of process mining-based alarmmanagement. After preparing the data, we can perform our process discovery tasks on
our sub-logs that were generated by applying the suggested trace rules.
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necessary to examine various mining tasks. 'e required
types of events are summarized in Table 2. 'e object of the
analysis indicates what information is of interest with regard
to the analysis provided in the task column. 'e event types
indicate the types of events available for analysis. Finally, the
suggested tools to process are mentioned. 'e three types of
objects are the following:

(i) Basic log: all three types of events are needed, after a
filtering/cleaning step, the log file has to be put into
a standardized format. 'is format is XES (Section
2.2).

(ii) Alarms: dotted chart, directly-follows graph, and
heuristic miner are proper tools to analyze the
different aspects of alarm propagation. By adding
operator actions to the traces, their triggering
alarms can be identified.

(iii) Operator actions: the tools and tasks are more or
less the same as in the case of alarms. 'e most
complex task is to explore the effect of the operator
actions, this needs all three types of events, as alarms
are the trigger events and return to normal events
are the consequences of operator actions.

'ere are two kinds of tools to process the data, the
preparation type and the ones responsible for the Process
Mining part itself. 'e filtering/cleaning step is a standard
data processing task; it can be tailored and automatized by
using the Python programming language, as well as its
transformation to XES standard. 'e three Process Mining
tools are also available in Python. 'is way, it is quite easy to
develop an integrated solution tailored for the actual
purpose.

2.1.1. Dotted Chart Analysis. 'e most transparent method
by which to visualize the event log is the dotted chart
analysis. In these charts, a dot represents a single event in the
log with two orthogonal dimensions, namely, time and
component types. Component types like instance, origina-
tor, task, event type, or data elements are shown on the
vertical axis. Time is measured on the horizontal axis of the
chart. Many measures related to events can be determined,
such as the average number of events occurring over a
certain time period, the maximum number of events in that
time period, the maximum and minimum time interval
between events, etc. Time can be presented factually or
relatively. 'e relative time can be used to abstract the log
file. For every component type, the first event is positioned at
time 0 and subsequent events are placed relative to the time
of occurrence of the first event. Moreover, the shape and
color of the dots can be changed depending on the examined
event attributes, adding dimensions to our chart.

From a chart like this, a lot of useful information can
be obtained, e.g., where the alarms occur more frequently
or which production units are affected more by alarm
events.

2.1.2. Directly-Follows Graph. On a directly-follows graph,
an edge is represented between two nodes when at least one
trace where the target event follows the source event is
present. In a nutshell, this method by which a DFG is ob-
tained ([22]):

(i) defines 3 parameters, namely, τVar, τact, τdf

(ii) removes cases with a frequency lower than τVar from
the log

Table 1: An example of an industrial alarm and event log file.

ID Tag name Event Start time End time Unit Prod. unit Tag
1 321 A 2018.05.01 00:01:01 2018.05.01 00:03:08 3 1 321_3_1_A
2 632 A 2018.05.01 00:01:03 2018.05.01 00:10:06 4 5 632_4_5_A
3 421 A 2018.05.01 00:01:10 2018.05.01 00:05:10 2 5 421_2_5_A
4 312 A 2018.05.01 00:01:30 2018.05.01 00:03:08 3 1 312_3_1_A
5 321 O 2018.05.01 00:02:10 2018.05.01 00:02:10 3 1 321_3_1_O
7 321 N 2018.05.01 00:03:08 2018.05.01 00:03:08 3 1 321_3_1_N
8 421 O 2018.05.01 00:04:01 2018.05.01 00:04:01 2 5 421_2_5_O
10 632 N 2018.05.01 00:10:06 2018.05.01 00:10:06 4 5 632_4_5_N

Table 2: Task oriented event types in sub-logs and suggested tools to process (A: alarm, O: operator action, N: return to normal, PM: process
mining).

Object Task Event types Tool
Basic log Data preparation for PM A, N, O Filtering and XES generator
Alarms Distribution over time A Dotted chart
Alarms Typical processes A Directly-follows graph
Alarms Spillover among units A Directly-follows graph/Heuristic miner
Alarms Trigger type events A, O Heuristic miner
Operator actions Distribution over time O Dotted chart
Operator actions Typical processes O Directly-follows graph
Operator actions Effect of operator actions A, N, O Heuristic miner
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(iii) removes events with a frequency lower than τact
from the filtered log and adds a node for each of the
remaining activities

(iv) connects the nodes where 2 activities follow on from
each other at least τdf times

On these graphs, two metrics can be represented,
namely, frequency (the number of times the target event
follows on from the source event) and performance (the
average time elapsed between the source and target events),
the decision depends on the type of required information.

2.1.3. Heuristic Miner Algorithm. 'e heuristic miner al-
gorithm explores the control-flow perspective of the process
model. 'e log is analyzed for the presence of causal de-
pendencies. If an event is always followed by another event, a
dependency relationship probably exists between these
events. 'e log should be analyzed for these causal de-
pendencies. 'e advantage compared to α-miner is that the
heuristic miner algorithm considers frequencies and can
handle skipping activities [13]. Several parameters can be
adjusted, e.g., minimumactivity count. Events that occur
under this threshold are not shown on the nets, which can be
a Heuristic net or a Petri net. Another parameter is the
minimumDFGoccurrences, which is the minimum number
of occurrences of an edge to be considered. 'is attribute
shows that the heuristic miner is based on DFG. Heuristic
mining requires a clear starting and end event, assuming that
every activity is located on a path from the starting activity to
the end activity. As is the case in DFG, frequency and
performance parameters can be entered on the net.

2.2. Goal-Oriented Definition of the Traces. 'e input of
process mining tools is a log file in a standard format; in this
work, we have chosen the XES standard. XES is an XML-
based standard for event logs. Its purpose is to provide a
generally acknowledged format for exchanging event log
data between tools, applications, and domains. 'e main
reason for choosing the XES model is the support it provides
for traces. As mentioned above, it is very important that
traces are well defined. Usually, in industrial log files, the
events are sequenced independently of one another, unlike
in the XES standard. 'e majority of process mining al-
gorithms take into consideration traces in addition to events.

For the effective mining of the alarm and event-log files,
a definition of the time window applied for the segmentation
of the alarm and event log files into traces that is dependent
on the purpose is required.

As previously mentioned, since traces play a significant
role in process mining methods, the task-dependent de-
termination of trace-defining time windows is required. As
the main event of the alarm log file is the appearance of the
alarm event itself (that is, its starting time), the basis for the
trace generation is the following:

Let α and β denote two consecutive events in log L. Let
T(α) and T(β) stand for the times of occurrence of events α
and β, respectively, and σ represents the spillover constant. If
T(β) − T(α)< σ, then α and β are located on the same trace.

However, if T(β) − T(α)≥ σ, then β is placed in the fol-
lowing trace. 'e spillover constant can be tuned based on
the knowledge about the dynamics of the system. Obviously,
it can be calculated with the help of the experience of the
operators and identification of data driven dynamical
models (Figure 2).

'ere are three areas to discuss the rules concerning
trace generation, the analysis of alarms, operator actions,
and their relations.

2.2.1. Analysis of Alarms. 'e first concept to explore in an
alarm management system is the spillover effect of the
alarms. 'ese sequences of alarms are caused primarily by
the decline in product streams, as well as the spread of
pressure anomalies or attributes (temperature and con-
centration) connected to technology streams. According to
this, probable propagation times are related to the sojourn
times of equipment, the length of pipelines, and the logic of
the control system. Hazard and operability analysis
(HAZOP) provides options to explore this malfunction
propagation, in addition, more and more attention is being
paid to dynamic HAZOP. As its automated use is chal-
lenging [23] and these methods are very resource-de-
manding (require expert engineers), it would be beneficial to
explore these potential relationships automatically from the
log files. In this case, it is practical to use a rule of thumb to
define the possible propagation times. 'is rule can be
determined by analyzing the time of occurrence of con-
secutive events originating from different production units.

2.2.2. Analysis of Operator Actions. A similar analysis can
also be performed on operator actions. Despite being a
complex troubleshooting process that can last for hours, our
primary goal is to identify the sequences of correlated op-
erator actions (similar to parent-child type alarms). One way
of achieving this is to define a time window lasting between
10 and 60 seconds (based on the cognitive model of oper-
ators and the attributes of the existing system). A new series
of actions is identified if the time gap between two con-
secutive actions exceeds this time window. Another way is to
regard alarm acknowledgements as the end of intervention
activities (if this type of event is found in our log file). 'is
way, they generate the groups of action series.

2.2.3. Connection between Alarms and Operator Actions.
'e most complex task is to analyze operator actions with
regard to the alarms that trigger them and qualify the efficacy
of the interventions.

To determine which operator actions trigger alarm
events, operator actions should be placed into our existing
alarm traces (which commence after the starting time of the
trace and finish before the end time of the trace or the
starting time of the following trace).

If the aim is to explore the effect of the operator actions,
the end times of the alarms should be put into the afore-
mentioned traces, as the Return toNormal pair of alarm
events.
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(1) Rules of Generating Traces. In the previous list, trace
generating methods were identified; now, the formalization
of these is provided. At the start, we consider one trace,
which contains all events, and with the following methods
we will split it step by step.

Aj,n, Ok,n, and Np,n are the jth alarm, kth operator action,
and pth return to normal event of the nth trace (σn), re-
spectively, where n∈ 1, . . . , |σi|􏼈 􏼉, j∈ 1, . . . , |Ai|􏼈 􏼉, k and
p∈ 1, . . . , |Ni|􏼈 􏼉. tw1 is the time window constant for alarms,
tw2 is the time window constant for operator actions, and
t(Aj,n), t(Ok,n) and t(Tn,n) are the timestamps of the related
events. 'e explanation of the rules and their mathematical
description is as follows.

Trace rule 1: t(Aj+1,n) − t(Aj,n)> tw1, Aj+1,n⟶
A1,n+1, Aj,n⟶ A|Ai|,n

: if the difference between the
timestamps of two consecutive alarms is greater than
tw1, then the alarm with the higher index will be the
first event of the next trace and the one with the lower
index will be the last event of the actual trace. 'is rule
can be applied to operator actions as well. 'ese traces
provide the input to gain the distribution of events over
time, the identification of typical event sequences and
the spillover of the alarms among production units.
Trace rule 2: From traces made by Trace rule 1, we
generate the return to normal events from the end
timestamps of the alarms. 'is means that the number
of return to normal events will be equal to the number
of alarm events (|Ai| � |Ni|) and traces will lap over
each other, as an alarm of a trace can end later, than the

start time of the next trace’s first alarm. We put an
operator action into the trace, if its timestamp is later
than the first alarm of the trace and sooner than the last
return to normal event of the trace (t(O1,n)> t(A1,n),
t(O|Oi|,n

)< t(N|Ni|,n
)). A visualized example is shown in

Figure 3. From these traces, the effect of operator ac-
tions can be gained. To identify trigger type alarms,
return to normal events have to be removed from the
traces made by Trace rule 2. Obviously, they should not
be excluded, but process mining a log without un-
necessary events results in a more clear process model.

2.3. Process Mining-Based Alarm Management Solutions.
In this section, the theoretical background of the applied
analysis methods is presented.

Different algorithms of process mining can help us to
identify patterns within the swarm of data placed in the log
files. Given the need to find a solution to this common
problem, different process mining techniques and several
software products to evaluate the data mining tasks can be
used. In this work, instead of using the well-known and usual
Process Mining tools (like ProM [24] or EMiT [25]), we have
used an open-source Python programming language-based
solution, PM4Py. 'is library provides a wide range of
process mining tools and since it is based on Python, which
is a great tool for manipulating huge data sources (like
industrial log files), PM4Py is an excellent option to develop
semi- or fully automated process discovery methods from

Event trace 1 Event trace 2

Time

Alarm
occurred in
the process

Time difference between
alarms are higher than the

malfunction spillover
constant

Figure 2: 'e segmentation of an event log database into event traces of potential propagation of error.

A1

st1 st2 st3 st4 st5

dt12 dt23 dt34

st6

A2 O1 A3 A4O2 N2 O3

st7 st8

N1

st9

Figure 3: sti denotes the start time of the event, dtij indicates the time difference between alarm start times, and dtw indicates the time
window and Ti the trace. If dt12, dt34 < dtw and dt23 >dtw and ∀st: sti < sti+1, then A1, A2, O1, N1, O2, N2 ∈ T1 and A3, O2, A4, O3 ∈ T2. It is
worth to note that operator action O2 belongs to two traces.
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scratch on one platform. 'e tasks and tools to be used are
summarized in Table 3.

3. Results and Discussion

In order to show the industrial applicability of the formerly
introduced process mining method, the alarm management
system of an industrial hydrofluoric acid alkylation plant will
be analyzed. 'e process flow diagram of the plant can be
seen in Figure 4. 'e plant consists of four production units
and more than 400 tags, the distributed control system is a
Honeywell product. 'e logic of the tag names is
X,. . .,X_YY_Z, where X. . .X is the identifier of the tag, YY is
the identifier of the production unit (where the tag is lo-
cated), and Z is the type of the event. 'e identifiers of the
production units are the following: CH: isostripper, pro-
pane-depleting and propane handling unit; U1: utility
streams; AC: reactor and acid generating unit; FD: raw
material and drying unit; 02: “virtual” unit, collection of
sensors, that cannot be assigned to a specific unit. 'ere are
three types of events, namely, alarm (denoted with A),
operator action (denoted with O), and return to normal
(denoted with N).

Even though an alarm rationalization was performed on
the plant, so the events in the log files are all considered to be
relevant by the operating personnel, the log files need to be

processed carefully, as remaining problems can be present,
which can cause issues while undertaking the process dis-
covery tasks.

3.1. Preparation of the Log File of the Alarm System. 'e log
file of the aforementioned plant contains a lot of data, in
excess of 200,000 events over a time period of four months.
As previously discussed, the log file must be filtered to ensure
only relevant and valuable data for the purpose of process
mining is retained. 'e minimum number of attributes for
process mining is three: an identifier of the event, at least one
timestamp of the event (start or complete), and an identifier
of the trace. Although not mandatory, it is useful to have
additional attributes, for example, the name of the resource
that triggered the event, the name of the organizational
group in which the resource is located, and in the case of
temporal-type events, the counterpart of the timestamp
(start or complete) and the type of the event.

Another aspect that must be taken under consideration
is what type of events to keep. Ten event types are present in
the analyzed log file, namely, alarm, return to normal, ac-
knowledge, operator action, system, operator message,
suppress, shelved, unshelved, process event. According to
our goals, first, it was decided to retain three types of events,
that is, alarm, return to normal, and operator action. Alarm

Table 3: Tasks and process mining tools (A: alarm, O: operator action).

Task Tool
Distribution over time (A and O) Dotted chart
Typical sequences (A and O) Directly-follows graph
Spillover among units (A) Directly-follows graph/Heuristic miner
Trigger type alarms Heuristic miner
Effect of operator actions Heuristic miner
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Figure 4: Schematic diagram of the plant in the case study.
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and operator action will be used to explore their number of
occurrences and the sequences in which they occur;
moreover, all three will be used to determine the causal
relations between the alarms and operator actions. As a
result of filtering out types of events, approximately 80,000
events remained.

As soon as the sub-logs with the needed types of events
are obtained, traces must be generated. Trace window
constants have to be defined for every sub-log, the object and
the contained event types of these sub logs are collected in
Table 2. 'e value of these constants depends on the actual
system, literature data, and industrial experiences.

3.2. Distribution over Time and Typical Event Chains. To
visualize the distribution of the events over time, a dotted
chart is an excellent tool to use. Formerly, time distribution
analysis has been identified as a task for both alarms and
operator actions. As it can be interesting to compare the time
of occurrence of alarms with the time of occurrence of
operator actions, both have been visualized on one dotted
chart. Figure 5 shows a one-day-long time window of

production units CH and U1; the colors represent the types
of events. It can be seen that although tags are present where
both Alarm and OperatorAction events occur, many can be
identified where this is not the case. It is not inevitable that
interventions are made at the same place where the alarm
occurs. For example, only alarms are located in production
unit U1, in production unit CH, more operator actions are
present than alarms. It can be supposed that the alarms in U1
trigger alarms in CH which in turn trigger the operator
actions.

By briefly examining the time distribution statistics, it
can be seen that either extremely long-lasting and near-to-
zero second long alarms are present. 'ese extreme values
can have a biased effect on our process mining results. 'ese
events contain little or no timely information for the op-
erators were filtered out from the log file. Only alarms that
lasted between 5 and 28,800 seconds (8 hours) were retained.
Of course, the upper and lower limits should be considered
based on the given system and task.

Now that our log file has been “normalized,” the next
step is to generate the traces. If the needed trace windows are
to be determined, the statistics regarding the time difference

EFC1_U1
ELCHL1_U1
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HNA2_U1
HNA1_U1
HNA8_U1
ET5_U1

HTCH3_CH
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Figure 5: Distribution of alarms and operator actions over time (red: alarm, blue: operator action). 'e x axis shows the time and the y axis
shows the name of the tags.
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between the starting times must be examined. According to
the statistics concerning the alarm starting times, for ex-
ploring the typical alarm chains, the trace window was
chosen to be 220 seconds (the median value). To ensure at
least two events are found in a trace (which is the minimum
to be considered in a chain), the traces consisting of one
event must be removed.

'e first tool that can be used to explore the typical alarm
chains is the directly-follows graph (DFG). 'e frequency of
both the events and nodes can be put on the graph. Figure 6
shows a portion of the DFG of the alarms, as the original
graph is too large to be presented in full here.

Suppose the typical alarm propagation time between the
units is sought, a DFG can be used once again, where the
average elapsed time between two alarms occurring in
different units is added, as is presented in Figure 7:

Although the average times are more or less identical, the
frequency at which the alarms occur in unit U1 is much
higher than in the other units. Zero seconds can be seen in
the boxes of the units because the events were regarded as
point-like, so they are dimensionless in terms of time.

Even though a DFG can provide a good overview of
typical sequences, a different tool must be used to explore
processes. One option is the heuristic miner algorithm to
obtain a so-called heuristic net, which is one form of vi-
sualizing the typical processes. As frequent event chains are
to be explored, the parameter minimum activity count was
used and set at 100 and 500, as presented in Figure 8. On a
heuristic net, the green ellipsis represents the start and the
orange one represents the end of the process.

Obviously, the biggest proportion of the alarm events
occurs in unit U1, which has a high rate of interaction with
units CH and AC. Although our assumption that alarms in
U1 trigger alarms in CH is proven, the opposite can also
occur. 'is shows the advantage of a heuristic net over a
dotted chart or a DFG.

To explore the typical series of operator actions, the
formerly presented DFG is used. Figure 9 shows the
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Figure 6: Alarm series (part of the DFG). CH: isostripper, propane-depleting, and propane handling unit; U1: utility streams.
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Figure 7: Alarm propagation times between units. CH: isostripper,
propane-depleting, and propane handling unit; U1: utility streams;
AC: reactor and acid generating unit; FD: raw material and drying
unit.
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frequency of two consecutive operator actions. It can be seen
that the most operator actions are located in unit CH, as was
presumed from Figure 5. Nodes denoted in a darker color
with thicker edges represent more frequent events and
transitions. From this graph, the group of tags where the
most of the operator actions occur can be identified, along
with information about the frequent series of operator
actions.

3.3. Correlation between Alarms and Operator Actions. To
understand the connection between operator actions and
alarms, two different questions may have to be answered:

(1) Which alarm triggers an operator action?
(2) What is the effect of the operator actions?

To answer these two questions, different log file and trace
generation rules are required. 'e first requires the event
types alarm and operator action, while the second requires
return to normal events, which can be a result of an operator
action. 'e trace generation rules were determined in
Section 2.2. First, our formerly generated alarm traces are
taken and return to normal events are generated from the
end timestamps of the alarms. Subsequently, operator ac-
tions are placed into our traces with timestamps between the
first and last events in the trace (practically speaking, the first
alarm and the last return to normal events). By considering
this method, trigger-type alarms and the effect of operator
actions can be handled in one task as the log for trigger-type
alarms would also be the one for exploring the effect of
operator actions in the absence of the return to normal
events.

Figure 10 shows the explored processes (minimum DFG
was set at 55). By closely examining the net, two main types
of processes (in addition to a third one) can be identified. For
the purpose of better readability, starting and end points of
the alarm sequences have been highlighted with colored
boxes (same color for each pair).'e boxes with dashed lines
denote those processes where no operator action occurred
between the starting and the end of an alarm sequence
(process type 1). 'e ones denoted with solid lines mark
processes containing operator action (process type 2). 'e
third type, denoted by dotted lines belongs to both, as this
alarm (HNA8_U1_A) can end either with or without an
operator action (process type 3). Furthermore, an area which
is worth examining closely is the green ellipse, as this part
definitely appears to be a typical process (this “group” can
also be seen in Figure 9). From this net, which tag is relevant
in which kind of process discovery task can be determined,
moreover, our log file can be filtered further and the mining
conducted again.

'e HLCHL9_CH_A alarm indicates problems with the
liquid level at the HF stripper bottom. It is well visible that
the operators frequently apply the HFC17_CH_O action in
this situation, which modifies the bottom inlet of the HF
stripper. Similarly, they apply the HFC18_CH_O action in
this situation, which controls the steam inlet of the re-boiler
of the stripper. In the case of the events marked by black
brackets, the HPCH2_CH_A alarm indicates problems with
the depropanizer pressure, while the action applied in this
situation, HFC15_CH_O, controls the blow off of the
technology. 'e HTSH5_U1_A and HZSHP1_U1_A alarms
(dark blue and brown dashed brackets) almost always co-
occur. As these alarms both related to the problem of the
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Figure 8: Heuristic nets of alarm propagation between production units. CH: isostripper, propane-depleting, and propane handling unit;
U1: utility streams; AC: reactor and acid generating unit; FD: rawmaterial and drying unit. (a) Minimum activity count� 100. (b)Minimum
activity count� 500.
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same pump, they tend to be redundant and their definition
should be revised by the process experts.

4. Conclusion

As industrial technologies are becoming more and more
complex, the work of operators required to ensure the safe
and optimal operation is getting increasingly challenging.
With the introduction of the Industry 5.0 approach in
progress, there is an emerging need for solutions to balance
the productivity and efficiency with the life quality (work
and home) of the workers, as well with the affection of the
industry on society. One way to achieve this is to design
alarm management systems based on tools that were de-
veloped to answer the challenges of the 4th Industrial
Revolution (Industry 4.0). A properly built alarm man-
agement system can lower the workload of the operators
significantly and reduce the probability of hazardous situ-
ations, affecting the environment (including civilians). 'e
primary goal of this paper was to explore useful information
from the historical data of industrial alarm management
systems that can support the reduction of the operator
workload and learn optimal operating strategies.

'e paper proposed a process mining-based method to
discover the fundamental relations between alarms and the
related operator actions. Standard process mining tech-
niques are not suitable for the analysis of historical process
data of similar type. 'e paper demonstrated the benefits of
the goal-oriented design of the log files that allows the ex-
traction of information available to more effective alarm
management and operator training.

'e method was applied in the alarm management
rationalization project of an industrial hydrofluoric acid
alkylation plant.'e project demonstrated that with the help
of process mining, alarm signals could be rationalized;
therefore, the work of the operators will become safer, as well
as more effective, and last but not least, the workload has
been decreased.

'e discovered process models are easy to understand
and provide some kind of improved digital visualization of
alarms and operator actions. Lee et.al. summarized the
applicability of digital twins in Industry 4.0-driven process
safety management [26]. Our process mining-based method
is also suitable to support some of the improvement actions
collected in that study as a complementary tool. 'ese
improvement actions, related to alarms are: generate alarm
signatures that can be useful in abnormal situation man-
agement, identify critical operator interventions, improve
procedural risk assessments, and reduce the time and risk of
errors during traditional risk assessment processes. 'ey can
support operator action-related tasks as well, namely, pro-
cessing of procedures and operator actions: enhancing work
design and operator performance, and representation and
assessment of people and procedure related performance
deviations and failures.

'e gained information can be used to improve control
systems, get a better insight into plant failure and behavior
(process hazard analysis), review process safety incidents
(incident investigation), and conduct what-if scenarios to

understand how the plant may continue to run during
unplanned maintenance or examining specific abnormal
operation scenarios in more depth. It also gives the ability to
assess initiating causes systematically and in an automated
way based on historical data, due to the many failure modes
of equipment that exist in a process plant. 'is is considered
a key attribute to reduce resource intensive analysis.

Traditional hazard analysis processes have some short-
comings. A data science-based approach can address some
of them, for example when there is a lack of

(i) depth of analysis
(ii) follow through to final consequences
(iii) completeness in identifying initiating causes and

scenarios

'e outcome of this study proved that the process
mining-based analysis of events, along with the goal-ori-
ented design of log files, should be added to the digital toolkit
of process safety management.
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