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+is study develops an adaptive dynamic programming (ADP) scheme for uncertain systems to achieve the robust trajectory
tracking. In this framework, the augmented state is first established via combining the tracking error and reference trajectory,
where the robust tracking control problem can be resolved using the regulation control strategy.+en, the robust control problem
of uncertain system can be represented as an optimal control problem of nominal system, which provides a new pathway to
address the robust control problem. To realize the optimal control, the derived Hamilton–Jacobi–Bellman equation (HJBE) is
solved by training a critic neural network (CNN). Finally, two innovative critic learning techniques are suggested to calculate the
unknown NN weights, where the convergence of NN weights can be guaranteed. Simulations are carried out to demonstrate the
effectiveness of the proposed method.

1. Introduction

Considering the various and complex working conditions,
some systems cannot avoid suffering from the uncertainties
and nonlinearities, which brings challenge for higher control
performance of these systems [1, 2]. Designing a robust
controller for uncertain systems that can accommodate such
uncertainties has always been an important yet challenging
problem. To retain the robustness property, various robust
control methods have been developed against model un-
certainties [3–8]. Conventional robust control methods,
however, were studied mainly via offline means. Moreover,
the majority of existing robust control designs were devoted
to addressing regulation issues [9], while the tracking
problems of dynamic systems are even more difficult to be
tackled. Although some satisfactory results have been
yielded, the developed optimal control is implemented
offline [10, 11].

Adaptive dynamic programming (ADP) [12] is a new
subject formed by the development of artificial intelligence
and control. One of the well-known merits of the ADP
method is that it can yield an approximation solution
[13, 14] due to the employed critic neural network (CNN).

Hence, it has been widely tailored and applied to solve the
unknown cost function for optimal control. However, it is
worth mentioning that the classical ADP framework re-
quires an extra actor NN [12] to estimate the optimal control
action, which results in a more complex ADP structure. To
further reduce the computational burden, an innovative
identifier-critic-based ADP structure was reported in [15],
where only one CNN is used, and a new adaptive law is
introduced to retain the convergence of CNN weights.
Owing to its learning ability, recent work has also been
carried out to solve specific robust control problems [16, 17].
Nevertheless, most existing ADPmethods aim at the optimal
or robust control regulation problem only.

In fact, the trajectory tracking performance of uncertain
systems is an important index to realize the stable and re-
liable work such as robotic systems. +e tracking control of
the robotic systems is mainly reflected in the tracking ref-
erence signal of each joint, so as to realize the end tracking to
the desired trajectory. +erefore, it is necessary to design an
appropriate controller for the uncertain nonlinear system to
ensure the optimal tracking performance. Recently, some
ADP-based tracking control results have been studied. In
[18], an optimal tracking controller designed by the ADP
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was incorporated into steady-state control, by which the
steady-state tracking response can be guaranteed, but the
suboptimal control problem was obtained. In [19], an op-
timal tracking control scheme with an iterative learning
method is introduced. Nevertheless, the aforementioned
results are devoted to realizing the optimal tracking control
without considering the uncertain system dynamics.

Inspired by the above discussions, we will develop a
novel ADP-based online adaptive critic method for robust
trajectory tracking of systems with uncertain dynamics. To
realize this purpose, the augmented state is established in
terms of the tracking error and reference trajectory simul-
taneously, such that we can design the tracking controller
from the perspective of regulation control problem. +en,
the robust control problem is represented as an optimal
control problem of the nominal systems with an appropriate
index function; thus, a Hamilton–Jacobi–Bellman equation
(HJBE) can be derived. Furthermore, two critic learning laws
are presented to online calculate the unknown CNNweights;
thus, the solution of HJBE can be resolved and the con-
vergence of the CNN weights can be retained simulta-
neously. Finally, simulation results are provided to
exemplify efficiency of the proposed method.

+e main contributions of this study are summarized as
follows:

(1) Different from the classical robust control synthesis,
the robust trajectory tracking problem is represented
as an equivalent optimal regulation problem. +en,
we can obtain the online solution using the critic
learning algorithms based on ADP scheme.

(2) Based on the ADP framework, a simple CNN is used
to reconstruct the cost function on the premise of
ensuring convergence, by which the actor NN ap-
plied in the existing ADP structure is eliminated.

(3) A new adaptive critic learning law driven via CNN
weights error is extracted to online training the
CNN weights, where the convergence of the updated
CNN weights can be guaranteed.

+e rest of the study is arranged as follows. In Section 2,
the system dynamics and problem formulation are de-
scribed. Section 3 gives the robust tracking control design
using the ADP scheme. Simulation results are provided in
Section 4. Section 5 summarizes the main content of this
study.

2. Problem Description

Consider the following system with uncertain dynamics:

_x � f(x) + g(x)(u + k(x)u) + g(x)d(x), (1)

where x ∈ Rn denotes the state variables, u ∈ Rn is the
control input, f(x) and g(x) are the differentiable functions
with f(0) � 0, and k(x) and d(x) are the uncertain terms
with k(0) � 0 and d(0) � 0. In this study, we presume the
uncertainties k(x)≥ 0 and with fmax(0) � 0 [10, 11].

+e objective of this study is achieving the trajectory
tracking control of uncertain system (1); hence, the tracking

error ex between the system output x and the reference
trajectory xd ∈ Rn is designed as

ex ≜x − xd, (2)

where the reference trajectory xd is Lipschitz continuous.
According to system (1) and reference trajectory xd, the

time derivative of ex is calculated as

_ex � _x − _xd

� f(x) + g(x)(u + k(x)u) + g(x)d(x) − _xd.
(3)

Furthermore, define augmented state Y � [eT
x , xT

d ]T ∈
R2n, and then, an augmented system can be derived along
with (3):

Y
.

�
f(x) − _xd

_xd

  +
g(x)

0
 u +

g(x)

0
 k(x)u,

+
g(x)

0
 d(x),

� A(Y) + B(Y)u + B(Y)K(Y)u + B(Y)F(Y),

(4)

where

A(Y) �
f(x) − _xd

_xd

 ,B(Y) �
g(x)

0
 ,

K(Y) � k(x), F(Y) � d(x).

(5)

+en, we have new uncertainties K(Y) and F(Y) as

‖K(Y)‖≜ ‖k(x)‖≥ 0,

‖F(Y)‖≜ ‖f(x)‖ ≤fmax(x)≜ λd(Y).
(6)

According to the above development, one can find that
the original tracking control problem can be transformed
into a regulation problem of system (4) [20]. Different from
the existed result [20], there exists the uncertain terms K(Y)

and F(Y) in (4), making a robust control problem. Inspired
by [10, 21], we will further exploit the robust trajectory
tracking control action via the optimal equation.

Now, the nominal plant of system (4) can be defined:

Y
.

� A(Y) + B(Y)u. (7)

+en, the following cost function (8) should be mini-
mized via an optimal control u∗ [20, 22, 23]:

V(Y(t)) � 
∞

t
e

− c(s− t)
F(Y) + Y

T
(s)QTY(s)

+ u
T
(s)Ru(s)ds,

(8)

where c〉0 is the discount factor; this can guarantee the
boundedness of the cost function even if the reference
trajectory and the embedded feedforward control action do
not converge to zero. QT � diag Q, 0n×n , where Q ∈ Rn×n

and R ∈ Rm×m denote the appropriate symmetric matrices.
+e cost function, defined byV∗, is the optimal value of

V denoted in (8), i.e.,
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V
∗
(Y(t)) � min

u
V(Y(t)). (9)

Using Bellman’s optimality principle to V∗(Y) in (9),
we know the derivative V∗Y(Y) of V∗(Y) satisfies

0 � min
u

H Y, u,VY  � H Y, u
∗
,V
∗
Y , (10)

with

H Y, u
∗
,V
∗
Y  � F(Y) + Y

T
QTY + u

∗T
Ru
∗

+ V
∗T
Y A(Y) + B(Y)u

∗
(  − cV

∗
(Y).

(11)

Applying the optimal control theory, the control solu-
tion of the optimization problem is

u
∗
(Y) � −

1
2
R

− 1
B

T
(Y)V

∗
Y(Y). (12)

To implement the tracking control, we choose the utility
function F(Y) ∈ as

F(Y) �
1
4
V
∗
YB(Y) 

T
V
∗
YB(Y)  + λ2d(Y). (13)

Remark 1. As discussed in [22], this study constructs an
equivalence between the robust trajectory tracking problem
and an optimal control problem of system (4) with the cost
function (9), which gives a novel idea to resolve the robust
trajectory tracking problem.

3. Solving Robust Tracking Control via ADP

+is section will find an optimal solution forV∗Y(Y) in (12).
Within the ADP framework, a CNN is first constructed to
update the optimal cost function; then, a CNN self-learning
is proposed to learn robust tracking control solution. To
improve the convergence of the CNN weights and transient
performance, an adaptive learning scheme based on the
estimated CNN weight error is developed to approximate
the CNN weights; thus, the robust tracking control policy
can be obtained.

3.1. CNN Design. Applying the universal approximation
property, the estimated cost function is constructed via an
CNN given in (14), which can be considered as a continuous
function:

V
∗
(Y) � W

Tσ(Y) + εv(Y), (14)

where W ∈ Rl is the ideal CNN weight, σ(Y) ∈ Rl denotes
the activation function, l is the number of hidden neurons,
and εv(Y) is the construction error. Its derivative along Y

gives

V
∗
Y(Y) � (∇σ(Y))

T
W + ∇εv(Y), (15)

with ∇σ(Y) � zσ(Y)/zY ∈ Rl×2n and ∇εv(Y) �

zεv(Y)/zY ∈ R2n.
Generally, the optimal CNNweight W is to resolve; thus,

the approximated W involved in cost function is expressed
via

V(Y) � W
Tσ(Y), (16)

with W being the approximated CNN weight. Its derivative
is

VY(Y) � (∇σ(Y))
T W. (17)

Based on (14) and (15), we can rewrite (12) as

u
∗
(Y) � −

1
2
R

− 1
B

T
(Y) (∇σ(Y))

T
W + ∇εv(Y) . (18)

+e practical optimal controller becomes

u(Y) � −
1
2
R

− 1
B

T
(Y)(∇σ(Y))

T W. (19)

From (19), one can claim that the tracking perfor-
mance (i.e., x⟶ xd) heavily relies on the estimation
performance of W. Nevertheless, most of the traditional
learning algorithms based on ADP cannot make the CNN
weights converge to the true values. +erefore, an actor
NN needs to be introduced to stabilize the system. To
overcome this issue, we will present a novel self-learning
algorithm to online learn the CNN weights without using
the actor NN.

3.2. Self-Learning Robust Tracking Control. +is section will
develop a self-learning algorithm to online learn the CNN
weights, so as to obtain the robust tracking control. To this
end, based on Section 2, we have the estimated Hamiltonian
function as

H(Y, u, W) � F(Y) + Y
T
QTY + u

T
Ru + W

T∇σ(Y)Y
.

− c W
Tσ(Y) � ec.

(20)

To realize the self-learning for CNN weights, we define
the objective function Ec � 1/2eT

c ec. +en, based on the
standard steepest descent algorithm, the critic learning law
can be designed as

_W � − δ
zEc

z W

⎡⎣ ⎤⎦, (21)

with δ〉0 being the learning gain.
From (20), we rewrite Hamiltonian function as

H(Y, u, W) � F(Y) + Y
T
QTY + u

T
Ru

+ W
T∇σ(Y)Y

.

− cW
Tσ(Y) � eci,

(22)

where eci � − (∇εv(Y))TY
.

+ cεv(Y) is the residual error
due to the neural network approximation.

Denote W � W − W; then, recalling (20) and (22), we
have eci − ec � W

T
(∇σ(Y) − cσ); let Θ � ∇σ(Y) − cσ;

then, we have eci − ec � WΘ with ‖Θ‖≤ΘM,Θ≥ 0. +us, the
weight estimation error dynamic can be given as
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_W � − _W

� δ eci − W
TΘ Θ.

(23)

+en, we include some results as follows.

Theorem 1. Consider system (7) with the learning law (21);
the CNN weights’ error is uniform ultimate boundedness
(UUB).

Proof. One chooses a Lyapunov function as J1 �

1/δtr( W
T W); then, we can derive its time derivative:

_J1 �
2
δ

tr W
T _W 

�
2
δ

tr W
Tδ eci − W

TΘ Θ .

(24)

Applying some mathematical operation on (24), we have

_J1 ≤ − (2 − δ) W
TΘ

�����

�����
2

+
1
δ
e
2
ci. (25)

Consider the Cauchy–Schwarz inequality and assump-
tion ‖Θ‖≤ΘM; we can claim that _J1〈0 for 0〈δ〈2 and

‖ W‖〉

����������

e
2
ci

δ(2 − δ)Θ2M




. (26)

From the Lyapunov theory, we can obtain the CNN
weights error is UUB.

In this case, using the same Lyapunov method, we can
get ‖u − u∗‖≤ κ with κ〉0. +is UUB stability can refer to
[24]. □

3.3. Adaptive Learning Robust Tracking Control. To realize
the fast convergence of CNN weights, this section will de-
velop a novel adaptive learning algorithm. To this end, we
first substitute (15) into (10) as

F(Y) + Y
T
QTY + u

T
Ru

+ W
T

− cσ + ∇σ[A(Y) + B(Y)u]  + εHJB � 0,

(27)

with εHJB � ∇εT
v [A(Y) + B(Y)u] − cεv being the HJBE

approximate error.
To approximate the CNN weight W with the novel

adaptive critic learning algorithm, we first introduce two
variables to redefine (27), such that

X � ∇σ(Y)[A(Y) + B(Y)u],

G � F(Y) + Y
T

QTY + u
T
Ru.

 (28)

+en, based on (28), we rewrite (27) as

G � − W
T
X − εHJB. (29)

According to (29), the unknown CNN weights W are
involved. +us, the adaptive critic learning law can be

designed to online approximate the CNN weights W. For
this purpose, two auxiliary matrices U ∈ Rl×l and W ∈ Rl

are denoted as

U
.

� − ℓU + XX
T
, U(0) � 0

W
.

� − ℓW + XG, W(0) � 0,

⎧⎨

⎩ (30)

with ℓ〉0 being the positive constant. +us, the solution ofU
and W can be calculated based on (30) as

U � 
t

0
e

− ℓ(t− s)
X(s)X

T
(s)ds,

W � 
t

0
e

− ℓ(t− s)
X(s)G(s)ds.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

Furthermore, another auxiliary vector M ∈ Rl is defined
along with U and W as

M � U W + W· (32)

Based on (29) and (31), one can derive W � − UW + v

with v � − 
t

0 e− ℓ(t− s)εHJB(s)X(s)ds a bounded variable, i.e.,
‖v‖≤ ε1v for a positive constant ε1v〉0. +en, the auxiliary
vector M ∈ Rl from (30)–(32) can be rewritten as

M � − U W + v, (33)

where W � W − W is the estimation error of NN weights.
+erefore, an adaptive critic learning law can be

designed via (33) as
_W � − TM, (34)

where T〉0 is the learning gain.
It is noted that the critic learning law (34) contains the

weights W, which can drive the estimate W toward to its true
values, i.e., W⟶ W. +is helps to achieve x tracking xd.

Before proving the convergence property, the property
of matrix X is examined:

Lemma 1 (see [25, 26]). If the variable X given in (28)
satisfies the persistent excitation (PE) condition, then the
matrix U presented in (31) is positive define.

We can include the advantage of the designed learning
technique as follows.

Theorem 2. For (29) with critic learning law (34), the
weights error W will exponentially converge to a compact set
around zero provided that the vectorG is persistently excited.

Proof. According to Lemma 1, we have the minimal ei-
genvalue of U as λmin(U)〉ϱ〉0. One chooses a Lyapunov
function asV1 � 1/2 W

T
T− 1 W; then, its time derivative can

be calculated as

V
.

1 � W
T
T _W � − W

T
U W + W

T
v≤ − ‖ W‖ ϱ‖ W‖ − ε1v( .

(35)

From (35), we can conclude that the estimation error W

converge to Ω: W|
���� W|≤ ε1v/ϱ , and the magnitude is
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decided by the construction error εv and the excitation level
ϱ. Ideally, εHJB � 0; we have that the convergence of esti-
mated error W can be guaranteed, i.e., W � 0. +is com-
pletes the proof.

Consider system (7) with practical optimal control (19)
and critic learning law (34); the error W and augmented
system state Y are uniformly ultimately bounded (UUB)
provided that the vector G satisfies the PE condition. +en,
the practical optimal control u in (19) is convergent to its
optimal solution u∗ given in (18), i.e., ‖u − u∗‖≤ εu. □

3.4. Analysis for Robust Trajectory Tracking Performance.
+is section will show the tracking performance of con-
trolled system.

Theorem 3. Considering the augmented plant (7) and cost
function (8), the optimal control action (19) can guarantee the
tracking error is UUB.

Proof. Based on (10) and (12), we have

V
∗T

(Y)A(Y) � − F(Y) − Y
T
QTY

− u
∗T

Ru
∗

− V
∗T
Y B(Y)u

∗
+ cV

∗
(Y)

� − F(Y) − Y
T
QTY + u

∗T
Ru
∗

+ cV
∗
(Y).

(36)

Using (36), we apply the optimal control (19) to the
uncertain system (4). Because we can consider the cost
function V∗(Y) as a Lyapunov function and the fact
K(Y)〉0, then its time derivative can be derived as

V
. ∗

(Y) � V
T
YY

.

� − F(Y) − Y
T
QTY + u

∗T
Ru
∗

+ c

V
∗
(Y) − 2u

∗T
Ru − 2u

∗T
RK(Y)u

+ V
∗
YB(Y)F(Y)

≤ − F(Y) − Y
T
QTY + u

∗T
Ru
∗

+ c

V
∗
(Y) − 2u

∗T
Ru + V

∗
YB(Y)F(Y).

(37)

+en, we have

V
. ∗

(Y)≤ − Y
T
QTY + u

∗T
Ru
∗

+ cV
∗
(Y) − 2u

∗T
Ru

−
1
2
V
∗
YB(Y) − F(Y) 

T 1
2
V
∗
YB(Y) − F(Y) 

− λ2d +(F(Y))
T
(F(Y)).

(38)

Consider the fact YTQTY � eT
xQex, and u∗TRu∗−

2u∗TRu≤ (u − u∗)TR(u − u∗). We denote λmin(·) and
λmax(·) as the minimal and maximal eigenvalues of a matrix,
respectively. From the fact ‖F(Y)‖≤ λ2d(Y) and the optimal
cost function being bounded by Bv〉0, we can finally derive
(38):

V
. ∗

(Y)≤ e
T
xQex + u − u

∗
( 

T
R u − u

∗
(  + cV

∗

≤ − λmin(Q) ex

����
����
2

+ λmax(R)Λ2 + cBv.
(39)

To obtain V
.

(Y)〈0, the tracking error ex

should satisfy the following condition

ex: ‖ex‖≤
���������������������

λmax(R)Λ2 + cBv/λmin(Q)



� Bex
  with Bex

〉0
being the constant. Moreover, we denote Λ � εvorκ. +en,
we have that applying the optimal action (19) to the un-
certain system (4), the tracking error is UUB.+is completes
the proof. □

4. Simulations’ Verification

+is section will first present numerical simulations to show
the effectiveness of proposed method and then apply pro-
posed methods to the 2-DOF robotic system to illustrate the
applicability.

4.1. Numerical Simulations. In this section, we will pro-
vide numerical simulation results to illustrate the ef-
fectiveness of the developed method in terms of an
uncertain system [27]:

_x �
x2

− 0.5 x1 + x2(  + 0.5x
2
1x2

  +
0

1
 (1 + k)u +

0

1
 d,

(40)

where x � [x1, x2]
T ∈ R2 is the system state, u ∈ R denotes

the system input, and the terms k(x) � p1x
2 with p1 � [0, 1]

and d(x) � p2x1 sin(x2 + p3) with p2 � [− 1, 1] and
p3 � [− 1, 1] are the uncertain parameters.

+e system initial state is set as x0 � [− 0.5, 0.5]T and the
desired trajectory is chosen as xd1 � 0.5 sin(t) and
xd2 � 0.5 cos(t). +en, from the fact ex � x − xd and
xd � [xd1, xd2]

T, we can construct the augmented system as
(4). Hence, we can obtain

Time (s)
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Figure 1: Profiles of CNN weights with (34).
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‖K(Y)‖≜ ‖k(x)‖≥ 0

‖F(Y)‖≜ ‖d(x)‖ ≤fmax(x)≜ λd(Y) � x1
����

����.
(41)

To obtain the optimal control solution, we set matrices
QT � diag 8I2, 02×2 , R � 1. Moreover, the discounted factor
in cost function (8) is set as λ � 0.05.

+e other parameters in this simulation are selected as
Γ � 18.5 and ℓ � 15.8; the parameters in uncertain terms are
selected as p1 � 1, p2 � 0.5, and p3 � 1.

To obtain the optimal control action, we apply a single
NN to reformulate HJBE (27), i.e., estimate V∗; its con-
vergence of weights can be guaranteed using the learning law
(34). In the process of simulation, we set the activation
function of CNN as σ � [Y2

1,Y1Y2,Y1 Y3,Y1Y4,Y
2
2,

Y2Y3,Y2Y4,Y
2
3,Y3Y4,Y

2
4]

T and the initial values for the
CNN weights are chosen as W(0) � 0. After the online
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learning of t � 25s, the CNN weights are convergence to its
certain values, which are displayed in Figure 1. +en, the
online updated CNNweights are applied to robust trajectory
tracking implementation. Figure 2 gives the tracking per-
formance of uncertain system (44). To better show the ef-
fectiveness of the developed method, the tracking error
between practical system output x and desired trajectory xd

is provided in Figure 3, which can converge to zero, and the
proposed tracking control action is also displayed in Fig-
ure 3, which is bounded and smooth.

To show the effectiveness of the proposed single critic
NN-based ADP, a critic-actor NN-based ADP method [18]
is proposed to use for comparison. +e critic-actor weights
can be found in Figure 4, and the corresponding control

performances are given in Figure 5. We have that the
proposed single critic NN-based ADP has the advantages of
fast convergence speed and high control accuracy.

To further show the robustness of the suggested control,
we will give other two cases: (1) p1 � 1, p2 � 1, and p3 � 1
and (2) p1 � 0.5, p2 � 1, and p3 � 0.5. +en, the tracking
performance and control action can be yielded in
Figures 6–9, where we have that even under different un-
certainties, the system can effectively track the reference
trajectory; i.e., the robustness of the designed controller can
be guaranteed.

Finally, some simulations for (21) are given in Figures 10
and 11. From these results, we have that the convergence of
CNN weights in Figure 10 is more than that in Figure 1 and

ex1
ex2

u

-1

0

1
Tr

ac
ki

ng
 er

ro
r

Time (s)

Time (s)

-1

0

2

1

Co
nt

ro
l a

ct
io

n

0 5 10 15 20 25

0 5 10 15 20 25

Figure 7: Tracking error and proposed control action with (34)
(case 1).
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(case 2).

0 20 40 60 80 100
Time (s)

-1

0

1

2

3

Cr
iti

c N
N

 w
ei

gh
ts

W1
W2
W3
W4

W5
W6
W7

W8
W9
W10

Figure 10: Profiles of CNN weights with (21).
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used adaptive learning 34; this lead to a poor tracking
performance, as shown in Figure 11.

4.2. Application to Robotic Systems. In this section, com-
parative simulations are tested out via a 2-DOF robotic
system, to illustrate the feasibility of the presented adaptive
robust tracking control method. We first give the dynamics
of the robotic system as [28]

H(q)€q + C’(q, _q) + F( _q) + G(q) � τ, (42)

where q ∈ Rn denotes the join variables, τ ∈ Rn is the
generalized forces, H(q) ∈ Rn×n is the inertia matrix,
C0(q, _q) ∈ Rn represents the Coriolis/centripetal vector,
G(q) ∈ Rn is the gravity vector, and F( _q) ∈ Rn is the friction
vector. +is study denotesN(q, _q) � C0(q, _q)+ F( _q)+ G(q).
H(q) andC0(q, _q) are uncertain because the unknown load
and unmodeled frictions. +e inertia matrix is

H(q) �
H11 H12

H21 H22
 , (43)

where H11 � J1 + J2 + m1 r21 + m2l
2
1 + m2r

2
2 + 2m2l1r2

cos(q2) + mLl21 + mLl22 + 2mLl1l2 cos(q2).
H12 � J2 + m2r

2
2 + m2l1r2 cos(q2) + mLl22 + mLl1l2 cos(q2),

and H22 � J2 + m2r
2
2 + mLl22.

+e centripetal vector is

C’(q, _q) �
C’ 1

C’ 2
 . (44)

where C0 1 � (m2l1r2 + mLl1l2)(2 _q1 − _q2) _q2 sin(q2) and
C0 2 � (m2l1r2 + mLl1l2) _q21 sin(q2).
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Figure 11: Tracking error and proposed control action with (21).
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Figure 12: Profiles of CNN weights.

Table 1: Dynamic parameters of 2-DOF robot.

Symbol Meaning Values
J1 +e moment of inertia of link 1 0.0856
J2 +e moment of inertia of link 2 0.0707
b1 _q1 +e friction at joint 1 0.014 _q1
b2 _q2 +e friction at joint 2 0.035 _q2
m1 Mass of joint 1 4.467
m2 Mass of joint 2 1.694
l1 Length 1 0.250
l2 Length 2 0.250
r1 +e center of mass 0.079
r2 +e center of mass 0.085
mL Mass of load [0, 3]
g Gravitational acceleration 9.8
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Figure 13: Tracking performance for q1 and q2.
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+e friction vector and gravity matrix denote

F( _q) �
b1 _q1

b2 _q2
 ; G(q) �

G1

G2
 , (45)

where G1 � (m1gr1 + m2gr1 + mLgr1)sin(q1) + (m2gr2 +

mLgl2)sin(q1 + q2) and G2 � (m2gr2 + mLgl2)sin(q1 + q2).
Based on the above facts, we can define the state equation

of system (42) as

x � f(x) + g(x)(u + k(x)u) + g(x)d(x), (46)

where x � [x1, x2, x3, x4]
T � [q1, q2, _q1, _q2]

T, f(x) �

[x2, 0]T, g(x) � [0, I]T, k(x) � H(x1)
− 1H0(x1) − I≥ 0,

and d(x) � H− 1(q)(N0(q, _q) − N(q, _q)).

To realize experimental verification, the dynamic pa-
rameters of this 2-DOF robot are given in Table 1.+e upper
bound of uncertainty d(x) is given:

‖d(x)‖ � H
− 1

x1(  N0 x1, x2(  − N x1, x2( ( 
����

����

≤ H x1( 
����

����
− 1

N0 x1, x2(  − N x1, x2( ( 
����

����

≤ Hmin x1( 
����

����
− 1

nmax x1, x2( 

� fmax(x).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(47)

To compete the tracking control, the sinusoidal signals
q1 d � 0.5 sin(

�
5

√
t), q2 d � 0.5

�
5

√
cos(

�
5

√
t), _q1 d � q2 d, and

_q2 d � − 5q1 d are chosen as the desired trajectories. +e
regressor vector of CNN is designed as σ � [Y2

1,Y
2
2,Y

2
3,

Y2
4,Y

2
5,Y

2
6,Y

2
7,Y

2
8]

T. Because the uncertainties in H(q)

and C0(q, _q) are existed due to issues such as the different
load to be picked, then we consider the following cases.
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Figure 14: Tracking performance for _q1 and _q2.
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Case 1. In this case, we will test the tracking response under
the load mL � 0.5kg. +e control parameters are selected as
λ � 0.05, ℓ � 0.011, Γ � 0.019, Q � 1, and R � 1.

Figure 12 shows the learning results of the online
updated weights W using the proposed method (34). +en,
based on the solved results, the profiles of the tracking
performance are given in Figures 13 and 14, in which one
can find that both the proposed control method (34) can
make both q1, q2 and _q1, _q2 track the given command
perfectly. +is can be further found in Figure 15, where the
tracking errors are given. Figure 16 shows the control action,
which is bounded.

Since the robotic system uncertainty mostly comes from
the uncertainty of end load, then we set a Case 2; the
maximum end load is given in this case.

Case 2. In this case, we will test the tracking response under
the load mL � 3kg, i.e., maximum end load. +e control
parameters are given as: λ � 0.05, ℓ � 0.011, Γ � 0.019,
Q � 1, and R � 1.

Based on the learning results in Figure 12, the tracking
response in this case is given in Figures 17 and 18, and the
corresponding tracking errors are given Figure 19. From
Figures 17–19, we have that even if the end load of the robot
becomes larger, axis 1 and axis 2 of the robotic system can
track accurately on the basis of previous learning.

Finally, we give some results for proposed learning (21),
as shown Figures 20 and 21, in which we have that although
the accurate tracking of the robot can finally be realized,
compared with the learning law (34), the learning time of
neural network weight is too long, which will reduce the
transient of tracking.
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+e above simulation results show the effectiveness of
the proposed control method and the feasibility of the
learning algorithm.

5. Conclusion

+is study aims at resolving the robust trajectory tracking of
uncertain systems, which adopts the ideas of ADP presented
for optimal control. +e basic concept is to represent the
robust control problem as an equivalent optimal control
problem for the nominal system, where the augmented state
is considered. +us, we can resolve this robust tracking
control problem using an optimal control method. To obtain
the optimal control solution, two adaptive critic learning
techniques are developed via ADP scheme, where the pa-
rameter estimation method is adopted. +e closed-loop
system stability and robust tracking performance are rig-
orously proved; simulation results are given to exemplify the
feasibility of the developed method. In our future work, we
will extend the proposed idea to address the robust tracking
control problem with several unmatched dynamics cases,
which allows to carry out practical experimental validations
based on existing test rigs in our lab.
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