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We study the dynamical behavior of multiple quasi-synchronization of a type of fractional-order coupled neural networks
(FCNNs) with delay and uncertain parameters. By utilizing the pinned pulse control strategy technique, we establish a new pulse
controller, which realizes the multiple quasisynchronization of the system. Furthermore, we derive some new criteria of multiple
quasisynchronization by using the comparison principle and mathematical analysis. Eventually, simulations are carried out with
two examples to explicate the effectiveness of the conclusions.

1. Introduction

Fractional-order calculus is related to model memory,
complexity, and heritability, so it has advantages over integer
calculus (see [1, 2]). In many actual questions, we generally
first consider the fractional dynamic system because it can
better descript the actual problem than the integral order
dynamic system.*ere have been many reports on fractional-
order system dynamics. It plays an extremely significant effect
in the modeling of engineering system, power system, and
physical system (see [3, 4]). In Reference [3], Bao and Cao
combined Caputo derivatives and fractional calculus in-
equalities and sufficiency condition for projection synchro-
nization of fractional memristor-based neural networks
(FMNNs) was theoretically derived. Xu et al. in Reference [5]
studied a new fractional Hopfield neural network chaotic
system and its application in image encryption. Li et al. in
Reference [4] studied the application of neural network
fractional-order PID in the control of piezoelectric stacks.

Parameter uncertainty is caused by incomplete under-
standing of some knowledge of mathematical model, such as
constitutive law and empirical quantity (see [6]). In various
engineering discipline systems, the model parameters
studied are often uncertain, so the parameter uncertainty
needs to be considered when facing the actual system.

Fortunately, in recent years, many scholars have considered
the parameter uncertainty in the model. In Reference [7], the
author designs an appropriate event triggering mechanism
and controller to ensure the stability of randomly nonlin-
earity system of time lag with uncertain parameters.
However, with the continuous maturity of technology, the
task of designing a good controller for an uncertain frac-
tional-order neural network so that the network can achieve
the desired effect is still very arduous, and many problems
need to be further studied.

Synchronization is an extremely important dynamic
behavior in complex dynamic networks, which has a wide
range of applications in many fields. *erefore, many re-
searchers have studied it (see [8]). Moreover, the syn-
chronization behavior of fractional-order coupled neural
networks (FCNNs) is also discussed. For example, Xu et al.
designed a suitable controller in Reference [9], so that
FCNNs with time-variable delays could realize the syn-
chronization behavior in a finite time. Chen et al. [10] in-
vestigated the synchronization of FMNNs with time lag. It is
a well-known fact that time delay often exists in plenty of
complex networks; hence, it is very significant to premed-
itate time delay when studying FCNNs.

In general, the coupled neural network is not syn-
chronized without external force interference, so it is
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necessary to develop a controller to make it synchronize.
Some scholars also use various control technologies, for
example, impulse control, adaptive control, pinning control,
and feedback control to achieve synchronization. However,
if there are too many nodes in the network, the cost of
applying controller to each node is too high and difficult to
implement. *erefore, it is possible to try to control the
network by only controlling the fixed part of the time and
some nodes, so as to arrive the purpose of reducing the
control cost. But, few authors have applied the pinning
impulse control project to NNs (see Reference [11]). In
Reference [11], Wang et al. theoretically derived a few
sufficient conditions for pinning synchronization and robust
synchronization of FCNNs through the pinning control
strategy. Also, some networks can only achieve quasi-
synchronization due to external and internal interference,
and there are few studies on quasisynchronization of NNs
with couple (see [12, 13]). In Reference [12], Feng et al.,
based on the matrix-related knowledge theory and Lyapu-
nov functional method, derived several simple sufficient
optimality conditions for quasisynchronization of coupled
memristor NNs theoretically, and a suitable controller is
constructed to ensure the quasisynchronization of such
networks. In Reference [13], Lv et al. introduced a type of
activation function and a few sufficient conditions to
guarantee that each subnetwork in the time-delay coupled
neural network has multiple equilibrium states andmade the
network achieve dynamic and static multisynchronization
by constructing an appropriate impulse controller and
Lyapunov function. Based on the abovementioned phe-
nomenon, this paper will research the multiple quasi-
synchronization issue of FCNNs with uncertain parameters
and delay by pinning pulse control method.

For as much as the above discussion, the major dedi-
cations of this article involve the following: (1) *e multiple
quasisynchronization problem of FCNNs with uncertain
parameters and time delays is studied. (2) *e concept of
multiple quasisynchronization is proposed. (3) Aiming at
the problem of multiple quasisynchronization, a new
method combining pinning and pulse control is proposed.

*e rest of the main content of this article is as follows:
Section 2 mainly describes the prerequisites and models
required in this article. *e primary contribution is in
Section 3. Section 4 gives two examples that demonstrate the
validity of the conclusion. Finally, Section 5 gives the main
conclusions of this article.

2. Preliminary Knowledge and
Model Description

2.1. Fraction-Order Calculus. Firstly, existing definitions of
fraction-order calculus are given, which can be seen in
Reference [14], that are needed later.

Define the Gamma function Γ(·) as below:

Γ(p) � 
+∞

t0

t
p− 1 exp − t{ }dt, (1)

where p> 0.

Define the Caputo fractional derivative cD
p
t0 ,tg(·) of the

function g(t) as below:

c
D

p
t0 ,tg(t) �

1
Γ(n − p)


t

t0

g
(n)

(s)

(t − s)
p− n+1ds, (2)

where t0 is the initial time, t≥ t0, p is the order,
n − 1<p< n, n ∈ Z+.

Define the fractional integral I
p
t0 ,tg(·) of the function

g(t) as below:

I
p
t0 ,tg(t) �

1
Γ(p)


t

t0

(t − s)
p− 1

g(s)ds, (3)

where t0 is the initial time, t≥ t0.
Define the Mittag-Leffler function with single parameter

Ep(·) as below:

Ep(s) � 
+∞

k�0

s
k

Γ(kp + 1)
, (4)

where p> 0, s is a complex number.
Define the Mittag-Leffler function with double param-

eters Ep,p(·) as below:

Ep,p(s) � 
+∞

k�0

s
k

Γ(kp + q)
, (5)

where p> 0, p> 0, s is a complex number.

2.2.ModelDescription. A collection that makes Z+ a positive
integer. *e superscript T represents the transpose, and #I
is an element in the finite collectionI. Denote Rn is the set of
n-dimensional real-valued vectors. R+ is the group of fixed
non-negative numbers. For an arbitrary vector a ∈ Rn and
the existence of a constant σ0 > 0, we record M(a, σ0) �

x‖x − a‖< σ0  as a set of vectors, where the distance be-
tween x and a is less than σ0. *e set of n × n real matrices is
written as Rn×n. If a real matrix X> 0, then X is a positive
definite matrix. A⊗B represents the Kronecker product of
matrices A and B. For any matrix A, λmin(A), λmax(A)

denotes its minimum eigenvalue and maximum eigenvalue,
respectively, and the norm of A is defined as�����A

����� � (λmax(ATA))(1/2). In this article, we regard the fol-
lowing FCNNs with N same nodes, uncertainties, and time
delays.
c
D

α
t0 ,txi(t) � − (P + ΔP(t))xi(t) +( Q + ΔQ(t))fi xi(t)( 

+(R + ΔR(t))fi xi(t − τ)( 

+ 
N

j�1

GijΓxj(t) + J,

(6)

where i � 1, 2, . . . , N, and N≥ 2 represents the quantity of
subnetworks; τ represents the time delay in transmission;
xi(t) � (xi1(t), xi2(t), . . . , xin(t))T is the state vector of i-th
neuron; ΔP(t),ΔQ(t),ΔR(t) are the norm-bounded
parametric uncertainties; P is a diagonal matrix that
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expresses the self-feedback item of the j-th network, in
which the diagonal elements are p1, p2, . . . , pn, pi > 0. Q �

(Qij)n×n is the connection weight matrices and R � (rij)n×n is
the time lag join matrices, where i, j � 1, 2, . . . , n. fi(xi(t))

is the activation function; G � (Gij)N×N is the coupled
matrix, when there exists a connection among the i-th node
with the j-th node, i≠ j, Gij ≠ 0, if not, Gij � 0, in which the
diagonal elements are defined by Gii � − 

N
j�1,j≠i

Gij;
Γ � diag c1, c2, . . . , cn  is the internal coupling matrix; J �

(J1, J2, . . . , JN) is the input vector.
Next, we give several basic assumptions.

(A1) *e activation function fi(·) is continuous, for
any vector x, y, existsLi > 0, and the following formula
holds:

fi(x) − fi(y)


≤Li|x − y|. (7)

(A2)

% ΔP � A1
C1(t) B1,ΔQ � A2

C2(t) B2,ΔR � A3
C3(t) B3,

(8)

where Ai,
Bi(i � 1, 2, 3) are constant matrices with the

correspondingmatching dimensions and Ci(t)(i � 1, 2, 3) is
an indeterminate matrix, where C

T

i (t) Ci(t)≤ I (I is the
unity matrix with the corresponding matching dimensions).

Remark 1. #Dk � κk means that the group Dk has κk nodes
and κk ≠ 0.

For any initial state x(t) � (xT
1 (t), xT

2 (t), . . . , xT
N(t))T

where xi(t) ∈ C([− τ, 0], R), i � 1, 2, . . . , N, for any given
initial value condition, there is a solution s(t), if all the node
trajectories in the network satisfy the formula

limt⟶∞
����xi(t)− s(t)

���� � 0, i � 1, 2, . . . , N, then this network
is called complete synchronization. Furthermore, if the
margin of error σ > 0, exists T> 0, for all x(t) and ∀t>T,
‖xi(t) − s(t)‖< σ holds, then this network is called uni-
formly quasisynchronized.

Definition 1 (see [15]). For an arbitrary complex network
with N nodes, D1, D2, . . . , Dm  is a set of disjoint nodes,
that is, 

m
k�1 Dk � 1, 2, . . . , N{ }, Dk � lk1, lk2, . . . ,

Dk ∩Du � ∅ for k≠ u. *e network is called multiple
quasisynchronization with the error vector
δ � δ1, δ2, . . . , δm 

T > 0 under any initial value conditions, if
there exist a series of reference solutions
s1(t), s2(t), . . . , sm(t)  and for any constant κ> 0 small
enough, T exists, for ∀t>T, the nodes
xi(t) ∈M(sk(t), σk), i ∈ Dk holds, in which
M(sk(t), σk)≠M(su(t), σu), u≠ k.

Remark 2. It can be seen from Definition 1 that sk(t) is the
reference trajectory for all nodes in set #Dk.

*e target trajectory si(t) satisfies the following formula:
c
D

α
t0 ,tsi(t) � − (P + ΔP(t))si(t) +( Q + ΔQ(t))fi si(t) 

+(R + ΔR(t))fi si(t − τ)  + J,

(9)

where if xi(t) ∈M(sk(t), σk), then si(t) � sk(t),
i � 1, 2, . . . , N, k � 1, 2, . . . , m.

Now let’s note εi(t) � xi(t) − si(t) is the error signal,
where i � 1, 2, . . . , N, and devise a new pinned pulse con-
troller as shown below:

ui(t) �


+∞

h�1
θkεi(t)δ t − th( , i ∈ Ik th( , #Ik th(  � ωk,

0, i ∉ Ik th( ,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where δ(·) and θk represents the Dirac impulsive function
and impulsive gain, respectively, and th(h � 0, 1, 2, . . .) in-
dicates the instant of the pulse that satisfies
0 � t1 < t2 < · · · < th < · · · , limth⟶ +∞th � +∞. *e node set
on t � th is represented by 

m
k�1 Ik(th) � I1(th),I

2(th), . . . ,Im(th)} ⊂ D1, D2, . . . , Dm  ⊂ 1, 2, . . . , N{ }, and
make 0<ωk ≤ κk, k � 1, 2, . . . , m, namely, Ik(th) is a subset
of Dk, and Ik(th) represents the set of pinned nodes at
t � th. Assume the error vector εi1 ≥ εi2 ≥ · · · ≥ εin. Under the
pulse controller (10), the system of errors can be described:

c
D

α
t0 ,tεi(t) � − (P + ΔP(t))εi(t) +( Q + ΔQ(t))fi εi(t)( 

+(R + ΔR(t))fi εi(t − τ)(  + 
N

j�1

GijΓεi(t), t≠ th

εi t
+
h(  � 1 + θk( εi t

−
h( , i ∈ 

m

k�1
Ik th( ,

εi t
+
h(  � εi t

−
h( , i ∉ 

m

k�1
Ik th( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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where h � 0,1,2, . . . ,εi(t+
h ) � limt⟶t+

h
εi(t),εi(t−

h) � limt⟶t−
h

εi(th), fi(εi (t)) � fi(xi(t)) − fi(si(t)), fi(εi(t − τ)) � fi (xi

(t − τ)) − fi(si(t − τ)), and fi(0) � 0.
*e initial value condition of the above error system (11)

is as follows:

εi(s) � ϕi(s), s ∈ [− τ, 0], (12)

where ϕi(s) ∈ C([− τ, 0], Rn) and i � 1, 2, . . . , N.

Lemma 1 (see [16]). If x(t) ∈ Rn is a vector-valued function
that is differentiable and continuous for t, next for any
α ∈ (0, 1) and t≥ t0, we have the following relationship:

c
D

α
t0 ,t x

T
(t)Px(t) ≤ 2x

T
(t)P

c
D

α
t0 ,tx(t), (13)

where P ∈ Rn×n is a constant matrix that is symmetric and
positive definite.

Lemma 2 (see [17]). Let R, W, and S(t) be the real matrices
corresponding matching dimensions, then if there is
S

T
(t) S(t)≤ I, then there is the following equation:

R
T S

T
(t)W

T
+ WS(t) R≤

1
ξ

R
T R + ξWW

T
, (14)

where ξ > 0 is the constant.

Lemma 3 (see [17]). Let R and W be the real matrices
corresponding matching dimensions, then

R
TW + W

T R≤ ξ R
T R +

1
ξ
W

TW, (15)

where ξ > 0 is the constant.

Lemma 4 (see [18]). For arbitrary vector x1, x2 ∈ Rn and
Q ∈ Rn×n which is a positive definite matrix, we have the
below inequalities hold:

2x
T
1 x2 ≤x

T
1 Q

− 1
x1 + x

T
2 Qx2. (16)

Lemma 5 (see [19]). For positive definite matrix R, vector xi

with proper dimensionality and symmetric matrix W, then we
have the following:

λmin R
− 1

W x
T
i Rxi ≤x

T
i Wxi ≤ λmax R

− 1
W x

T
i Rxi, (17)

where λmax(·), λmin(·) denote the maximum and minimum
eigenvalues, respectively, and R− 1 stands for the inverse of a
matrix R.

Definition 2. *e definition of the pinning rate ηk at t � th is
as follows:

i∈Ik th( )ε
T
i t

−
h( εi t

−
h( 

i∈Dk
εT

i t
−
h( εi t

−
h( 

� ηk, (18)

here the pinning rate ηk is related to time and impulse
instants, and we can also determine the lower bound of the
pinning rate ηk.

Lemma 6 (see [20]). Consider the following system, where
the system has a time delay:

c
D

α
t0 ,tVk(t)≤ − K1Vk(t) + K2Vk(t − τ), t> 0, i ∈ Dk,

Vk(s) � Φk(s), s ∈ [− τ, 0],


(19)

and the linear fractional-order delay differential system is as
follows:

c
D

α
t0 ,tWk(t) � − K1Wk(t) + K2Wk(t − τ), t> 0, i ∈ Dk,

Wk(t) � Φk(s), s ∈ [− τ, 0],


(20)

where except for the point tk, k � 1, 2, . . ., Vk(t), Wk(t) ∈ Rn

is continuous everywhere, and Φk(s)≥ 0 is continuous in
[− τ, 0]. If K1 > 0, K2 > 0, then Vk(t)≤Wk(t), t ∈ [0, +∞].

3. Main Result

We will derive several synchronization standards in this
section. Under the action of the pinning impulsive con-
troller, Dk, i ∈ Dk, Dk ∈ D1, D2, . . . , Dm , system (7) and
reference trajectory sk(t) ∈ s1(t), s2(t), . . . , sm(t)  to
achieve multiple quasisynchronization.

Theorem 1. Let ξi > 0(i � 1, 2, 3). For any
i ∈ Dk, k � 1, 2, . . . , m, under the pinning impulsive control
(10), system (7) can achieve multiple quasisynchronization if
Assumptions (A1) and (A2) hold, there exist symmetric
matrices Mi ∈ Rn×n > 0(i � 1, 2) and positive definite matrix
P ∈ Rn×n and such that

G 0

0 PΓ
⎛⎜⎝ ⎞⎟⎠< 0, (21)

ω1 �

PP̂ + P̂
T
P + ξ1P A1

A
T

1 P +
1
ξ1

B
T

1
B1 − PQ̂M

− 1
1 Q̂

T
P − L

T
i M1Li

− ξ2PA2
A2

T
P −

1
ξ2
L

T
i

B
T

2
B2Li − PR̂M

− 1
2 R̂

T
P − ξ3P A3

A
T

3 P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥K1P> 0, (22)
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ω2 � L
T
i M2Li +

1
ξ3
L

T
i

B
T

3
B3Li ≤K2P, (23)

ω3 � 1 + θk( 
2ηk

λmax(P)

λmin(P)
+ 1 − ηk( 

λmax(P)

λmin(P)
≤ ρk ∈ (0, 1), (24)

where K1>0,K2>0,K1>
�
2

√
K2 and

�����������������
(λmax(P)κ/λmin(P))



<σk. Define the Lyapunov function as follows:

Vk(t) � 
i∈Dk

εT
i (t)Pεi(t). (25)

For t ∈ [th− 1, th), h � 0, 1, 2, . . ., from Lemma 1 we ob-
tained the following:

c
D

α
t0 ,tVk(t)≤ 

i∈Dk

2εT
i (t)P

c
D

α
t0 ,tεi(t)

� 
i∈Dk

2εT
i (t)P(− (P + ΔP(t))εi(t) +( Q + ΔQ(t))fi εi(t)( 

+(R + ΔR(t))fi εi(t − τ)(  + 
j∈Dk

GijΓεj(t))

� 2 
i∈Dk

εT
i (t)P − (P + ΔP(t)))εi(t) + 2 

i∈Dk

εT
i (t)P( Q + ΔQ(t))fi εi(t)( 

+ 2 
i∈Dk

εT
i (t)P(R + ΔR(t))fi εi(t − τ)(  + 2 

i∈Dk

εT
i (t)P 

j∈Dk

GijΓεj(t).

(26)

By Assumptions (A1) and (A2) and Lemmas 1-4, we
obtain the following:


i∈Dk

2εT
i (t)P − (P̂ + ΔP(t)))εi(t)

≤ 
i∈Dk

εT
i (t) − PP̂ + P̂

T
P + P A1

C1(t) B1 + B
T

1
C

T

1 (t) A
T

1 P  εi(t)

≤ 
i∈Dk

εT
i (t) − PP̂ + P̂

T
P + ξ1P A1

A
T

1 P +
1
ξ1

B
T

1
B1  εi(t),

(27)


i∈Dk

2εT
i (t)P(Q̂ + ΔQ(t))fi εi(t)( 

≤ 
i∈Dk

2εT
i (t)PQ̂fi εi(t)(  + 

i∈Dk

2εT
i (t)P A2

C2(t) B2
fi εi(t)( 

≤ 
i∈Dk

εT
i (t)PQ̂M

− 1
1 Q̂

T
Pεi(t) + 

i∈Dk

f
T

i εi(t)( M1
fi εi(t)( 

+ 
i∈Dk

εT
i (t)P A2

C2(t) B2
fi εi(t)(  + 

i∈Dk

f
T

i εi(t)(  B
T

2
C

T

2 (t) A
T

2 Pεi(t)

≤ 
i∈Dk

εT
i (t)PQ̂M

− 1
1 Q̂

T
Pεi(t) + 

i∈Dk

εT
i (t)L

T
i M1Liεi(t)

+ 
i∈Dk

1
ξ2
εT

i (t)L
T
i

B
T

2
B2Liεi(t) + 

i∈Dk

ξ2ε
T
i (t)P A2

A
T

2 Pεi(t)

� 
i∈Dk

e
T
i (t) PQ̂M

− 1
1 Q̂

T
P + L

T
i M1Li +

1
ξ2

L
T
i B̂

T

2 B̂2Li + ξ2PÂ2Â
T

2 P ei(t),

(28)
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i∈Dk

2εT
i (t)P(R̂ + ΔR(t))fi εi(t − τ)( 

≤ 
i∈Dk

2εT
i (t)PR̂fi εi(t)(  + 

i∈Dk

2εT
i (t)P A3

C3(t) B3
fi εi(t − τ)( 

≤ 
i∈Dk

εT
i (t)PR̂M

− 1
2 R̂

T
Pεi(t) + 

i∈Dk

f
T

i εi(t − τ)( M2
fi εi(t − τ)( 

+ 
i∈Dk

εT
i (t)P A3

C3(t) B3
fi εi(t − τ)(  + 

i∈Dk

f
T

i εi(t − τ)(  B
T

3
C

T

3 (t) A
T

3 Pεi(t)

≤ 
i∈Dk

εT
i (t)PR̂M

− 1
2 R̂

T
Pεi(t) + 

i∈Dk

εT
i (t − τ)L

T
i M2Liεi(t − τ)

+ 
i∈Dk

1
ξ3
εT

i (t − τ)L
T
i

B
T

3
B3Liεi(t − τ) + 

i∈Dk

ξ3ε
T
i (t)P A3

A
T

3 Pεi(t)

� 
i∈Dk

εT
i (t) PR̂M

− 1
2 R̂

T
P + ξ3P A3

A
T

3 P εi(t) + 
i∈Dk

εT
i (t − τ) L

T
i M2Li +

1
ξ3
L

T
i

B
T

3
B3Li εi(t − τ).

(29)

Form (21), we have the following:


i∈Dk

2εT
i (t)P 

j∈Dk

GijΓεj(t) � 2εT
(t)(G⊗PΓ)ε(t)≤ 0. (30)

Substituting (27)-(30) into (27282930) yields the fol-
lowing equation:
c
D

α
t0 ,tVk(t)≤ 

i∈Dk

− εT
i (t)ω1εi(t) + 

i∈Dk

εT
i (t − τ)ω2εi(t − τ)

+ 2εT
(t)(G⊗PΓ)ε(t).

(31)

From (21)-(24), we have the following equation:
c
D

α
t0,tVk(t)≤ 

i∈Dk

− εT
i (t)K1Pεi(t) + εT

i (t − τ)K2Pεi(t − τ)

≤ − K1Vk(t) + K2Vk(t − τ).

(32)

When t � th, from (11) and (24), Lemma 5, and Defi-
nition 2, we obtain the following:

Vk t
+
h(  � 

i∈Dk

εT
i t

+
h( Pεi t

+
h( 

� 

i∈Ik th( )

εT
i t

+
h( Pεi t

+
h(  + 

i∉Ik th( )

εT
i t

+
h( Pεi t

+
h( 

� 

i∈Ik th( )

1 + θk( 
2εT

i t
−
h( Pεi t

−
h(  + 

i∉Ik th( )

εT
i t

−
h( Pεi t

−
h( 

≤ 1 + θk( 
2λmax(P) 

i∈Ik th( )

εT
i t

−
h( εi t

−
h(  + λmax(P) 

i∉Ik th( )

εT
i t

−
h( εi t

−
h( 

≤ 1 + θk( 
2λmax(P) 

i∈Dk

εT
i th( εi th(  + 1 − ηk( λmax(P)  2

i∈Dk

εT
i th( εi th( 

≤ω3Vk th( 

≤ ρkVk th( .

(33)

Now, consider the following system with time lag:
c
D

α
t0 ,tWk(t) � − K1Wk(t) + K2Wk(t − τ), t> 0,

Wk(t) � Φk(s), s ∈ [− τ, 0].
 (34)

If limt⟶∞Wk(t) � 0,Φk(s)≥ 0, afterward through
Lemma 6, we can have limt⟶∞Vk(t) � 0,Φk(s)≥ 0.

Next, we will prove that when K1 >
�
2

√
K2(K1 > 0,

K2 > 0), there is limt⟶∞Wk(t) � 0,Φk(s)≥ 0.
In order to distinguish the subsystem subscript in this

article from the original imaginary unit, here, we change the
original inherent imaginary unit i. *e characteristic (34)
can be changed to the following form according to Corollary
3 in Reference [21].
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υαk + K1 − K2e
− υkτ � 0, (35)

If K1 >
�
2

√
K2 and (35) has no pure imaginary roots, so the

zero solution of equation (34) is globally Lyapunov as-
ymptotically stable, namely, limt⟶∞Wk(t) � 0,Φk(s)≥ 0.

Next, we will use contradiction analysis to show that (35)
does not have pure imaginary roots. *en, suppose (35) has
pure imaginary roots υk, and υk � vk

i � |vk|(cos(π/
2) +i sin(π/2)), where vk is a real number. If vk ≤ 0, then
υk � vk

i � |vk|(cos(π/2) − i sin(π/2)), and if vk > 0, then
υk � vk

i � |vk|(cos(π/2) +i sin(π/2)).
By substituting υk � vk

i into (35), we can obtain the
following:

vk
i( 

α
+ K1



2

� K2e
− τvk

i




2
, (36)

that is,

vk



2α

+ 2K1 cos
απ
2

  vk



α

+ K
2
1 � K2 cos τvk( 



2

+ K2 sin τvk( 



2 ≤ 2 K2( 

2
.

(37)

Let

hk xk(  � x
2
k + 2K1 cos

απ
2

 xk + K
2
1

− K2 cos τvk( ( 
2

+ K2 sin τvk( ( 
2

 .

(38)

So,

hk(0) � K
2
1 − K2 cos τvk( ( 

2
+ K2 sin τvk( ( 

2
 ≥K

2
1 − 2 K2( 

2
.

(39)

Because K1 >
�
2

√
K2(K1 > 0, K2 > 0), so hk(0)> 0. We

know that hk is a second-order polynomial, so we have

hk(|vk|α)> 0, which contradicts (37). *at is, (37) has no
solution, whichmeans that (35) has no pure imaginary roots,
namely, limt⟶∞Vk(t) � 0.

*erefore, there exists Tk, and for arbitrary κ> 0 and for
all t>Tk, we have the following equation:

Vk(t)< λmax(P)κ, t>Tk, (40)

where Vk(t) � i∈Dk
εT

i (t)Pεi(t), so we have the following
equation:

λmin(P) εi(t)
����

����
2 < λmax(P)κ, t>Tk, (41)

that is,

εi(t)
����

����≤

��������
λmax(P)κ
λmin(P)



< σk, (42)

where i ∈ Dk and 
m
k�1 Tk � T1, T2, . . . , TN . So there exits

T � max T1, T2, . . . , TN , for ∀t>T and any small positive
number σk > 0, such that
0< ‖xi(t) − sk(t)‖< σk, k � 1, 2, . . . , m.

If ΔP(t) � 0,ΔQ(t) � 0,ΔR(t) � 0, (2.1) will degrade
into
c
D

α
t0 ,txi(t) � − Pxi(t) + Qfi xi(t)(  + Rfi xi(t − τ)( 

+ 
N

j�1

GijΓxj(t) + J.
(43)

Corollary 1. For any i ∈ Dk, k � 1, 2, . . . , m, under the
pinning impulsive control (10), system (43) can achieve
multiple quasisynchronization if Assumptions (A1) and (A2)
hold, there exist symmetric matrices Mi ∈ Rn×n > 0(i � 1, 2),
and positive definite matrix P ∈ Rn×n such that

G 0

0 PΓ
⎛⎜⎝ ⎞⎟⎠< 0,

ω1 � PP + P
T
P − P QM

− 1
1

Q
T
P − L

T
i M1Li − PRM

− 1
2

R
T
P ≥K1P> 0,

ω2 � L
T
i M2Li ≤K2P,

ω3 � 1 + θk( 
2ηk

λmax(P)

λmin(P)
+ 1 − ηk( 

λmax(P)

λmin(P)
≤ ρk ∈ (0, 1),

(44)

where K1 > 0, K2 > 0, K1 >
�
2

√
K2, and�����������������

(λmax(P)κ/λmin(P))


< σk.

Remark 3. We give general theoretical results for multiple
quasisynchronization of FCNNs with uncertain terms and
delays in *eorem 1 Among existing references, the qua-
sisynchronization problem of FCNNs with uncertainty is
rarely discussed. Moreover, unlike the analytical method of

Reference [22], the model (7) in this article is a fractional-
order system instead of the integer-order model in Reference
[22]. *e analysis and processing method of fractional-order
system is unlike that of integer-order system, so it cannot be
applied directly.

Remark 4. Multiple quasisynchronization is the extension of
quasisynchronization. When m � 1 in reference trajectory

Complexity 7



indicates that there is only one reference track, next, the
multiple quasisynchronization is reduced to
quasisynchronization.

Remark 5. Corollary 1 gives the sufficient conditions for
multiple quasisynchronization of DFCNN when the un-
certainty term is zero.

Remark 6. In Reference [23], the author solved the syn-
chronization problem through adaptive control method. In
this article to reduce the control cost and realize the pinned
pulse control, only some nodes need to be controlled to be in
the bounded field where they share the reference trajectory.

Remark 7. Compared with Reference [20], the difference of
this article is that we consider parameter uncertainty

satisfying bounded conditions in the model, and the ad-
vantage is that the model considered in this article is more
practical in practical systems and applications. In particular,
our model is fractional-order, and parameter uncertainties
and coupling terms are taken into account in the model.

4. Examples

In this section, we give two numerical simulation examples
to illustrate the abovementioned theoretical values.

Example 1. We design the FCNNs with uncertain terms and
delays (7), where fi(xi(t)) � tanh(xi(t)), i � 1, 2, m � 1, 2,
time-delay τ � 1, and α � 0.96, and the parameter matrix of
the network is as follows:

P �
5.2 0

0 5.2
 , Q �

4.8 − 2

− 3 2.5
 , R �

0.25 0

0 1.5
 ,

ΔP � cos(t)
1 1

1 1
 ,ΔQ � sin(t)

1 1

1 1
 ,ΔR � cos(t)

1 1

1 1
 ,

G �
− 5 0.2

0.4 − 1
 , J �

0

0
 .

(45)

Two corresponding reference trajectories (9), where
k � 1, 2, α � 0.96, τ � 1, fi(si(t)) � tanh(si(t)).

We select Γ � diag(1, 1), pulse gain θ1 � − 0.2, θ2 � − 0.6,
η1 � 0.7, η2 � 0.4, ρ1 � 0.84, and ρ2 � 0.74. It can be proved
that the conditions (21)-(24) in *eorem 1 are established
and can be obtained by the following calculation:

P �
1.0017 0.0022

0.0022 1.0945
 , (46)

at the same time, (λmax(P)/λmin(P)) � 10/9, σ1 � 0.08, and
σ2 � 0.12, after that we can get

ω1 �
173.0088 − 0.0003
− 0.0003 21.0120 ,ω2 �

2.4908 0
0 4.4362 ,ω3 �

0.8311
0.3271  through the abovementioned formulas (22)-(24).

*en, the uncertain fractional-order neural network can
realize multiple quasisynchronization, and the convergence
of its error signals e1m(t), e2m(t), and m � 1, 2, under the
fixed pulse controller is shown in Figure 1.

Example 2. We design the FCNNs with uncertain terms and
delays (6), where fi(xi(t)) � tanh(xi(t)), i � 1, 2, m � 1, 2,
time delay τ � 1, and α � 0.98, and the parameter matrix of
the network is as follows:

P �
6 0

0 6
 , Q �

5 − 5

− 5 3.8
 , R �

0.25 0

0 1.5
 ,

ΔP � sin(t)
1 1

1 1
 ,ΔQ � cos(t)

1 1

1 1
 ,ΔR � sin(t)

1 1

1 1
 ,

G �
− 5 0.2

0.4 − 1
 , J �

0

0
 .

(47)

Two corresponding reference trajectories (9), where
k � 1, 2, α � 0.98, τ � 1, fi(si(t)) � tanh(si(t)).

We select Γ � diag(1, 1), pulse gain θ1 � − 0.3, θ2 � − 0.7,
η1 � 0.5, η2 � 0.6, ρ1 � 0.83, and ρ2 � 0.51. It can be proved

that conditions (21)-(24) in *eorem 1 are established and
can be obtained by the following calculation:

P �
1.0017 0.0022

0.0022 1.0945
 , (48)
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at the same time, (λmax(P)/λmin(P)) � (10/9), σ1 � 0.06,
and σ2 � 0.18. After that we can get

ω1 �
135.2047 − 0.0012
− 0.0012 74.7350 ,ω2 �

3.0918 0
0 1.1362 ,ω3 �

0.8278
0.5044  through the abovementioned formulas (22)-(24).

*en, the uncertain fractional-order neural network can
realize multiple quasisynchronization, and the convergence
of its error signals e1m(t), e2m(t), m � 1, 2, and under the
fixed pulse controller is shown in Figure 2.

5. Conclusion

In this article, the multiple quasisynchronization problem of
FCNNs with uncertainty and time-delay is studied. Firstly,
our main theoretical method is to construct an impulse
controller to control some nodes and then divide the nodes
into several disjoint subsets, so as to make the system achieve
multiple quasisynchronization. Secondly, using the relevant
knowledge of the comparison principle and the method of
constructing the Lyapunov function, we obtain the sufficient
conditions for the system to realize multiple quasisynch-
ronization. Finally, two examples are given to carry out

simulation operations to demonstrate the validity of the
theoretical results in this article.
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