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Following a dynamic nonlinear perspective, this study explores the relationship between urban innovation capability and energy
utilization efficiency by employing the Panel Vector Autoregression (PVAR) and Dynamic Panel +reshold Regression (DPTR)
methods. Using the 2003–2020 panel data of 281 prefecture-level cities in China, this study confirms that energy utilization
efficiency improves owing to the improvement of urban innovation capability. Depending on the characteristics of the city, such as
population density, industrial structure, and environmental pollution, high energy utilization efficiency in the early stages of city
development may help or hinder the improvement of energy utilization efficiency in the later stages. +e enhancement in urban
innovation capability has failed to improve energy utilization efficiency and has adversely affected cities with a low population
density or weak secondary industrial foundation. However, in cities with a high population density or proportion of secondary
industry, the improvement in innovation capability significantly increases the efficiency of energy utilization. In addition, the
positive effect that urban innovation capability has on energy utilization efficiency is higher in low-pollution cities than in high-
pollution cities.

1. Introduction

Energy consumption is an important factor in the economic
development and social progress of China. Given the in-
creasing total economic scale, the demand for and depen-
dence on energy in China are rising [1]. +e latest data from
the BP World Energy Statistics Yearbook highlights that in
2018, the total primary energy consumption in China is
equivalent to 3273.5 million tons of oil, the highest in the
world. Moreover, according to the “China Energy Supply
and Demand Report,” the total energy consumption of
China amounts to 4.64 billion tons of standard coal, ac-
counting for 23.6% of the total global primary energy
consumption, and has ranked first worldwide for 10 con-
secutive years. +e environmental deterioration in China
owing to excessive energy consumption coexists with the
energy tension caused by economic development. In

addition, the increasingly severe energy situation entails a
greater need for energy utilization efficiency, and improving
the efficiency of energy utilization has become the focus of
economic development in China at this stage [2]. However,
compared with the top countries regarding economic ag-
gregate, energy consumption per unit of the Gross Domestic
Product (GDP) is 2.14 times in the United States, 2.63 in
Japan, 2.97 in Germany, 3.53 in the United Kingdom, and
2.75 in France.+is implies that the economy in China is still
supported by a large amount of energy consumption, and
there is still a large gap between China and the developed
countries regarding energy utilization efficiency [3].

+e exponential growth of the economy and the limited
development of resources have elevated the transformation
of the “factor-driven” to the “innovation-driven”. +us,
technological innovation has become a vital means for
countries and cities to solve economic problems and occupy
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development opportunities under the wave of the new
technological revolution [4, 5]. Recent findings have con-
firmed that the city serves as the main location for scientific
and technological innovation activities, and the increase in
innovation capability is helpful in improving energy effi-
ciency [6]. Improving energy utilization efficiency can also
improve urban innovation capabilities [7]. However, does
this conclusion apply to Chinese cities? Does energy utili-
zation efficiency affect urban innovation capability in China?
Does urban innovation capability affect energy utilization
efficiency? Or do they interact? Is the relationship between
the two forced or driven? Will this relationship change with
the changes in urban population density, industrial struc-
ture, environmental pollution, and other factors? +ere are
numerous questions that are not yet settled. Against this
background, clarifying the dynamic relationship and
mechanism between urban innovation capability and energy
utilization efficiency in China is not only beneficial to en-
suring national energy security and transforming the mode
of economic growth, but also conducive to the sustainable
and coordinated development of scientific and technological
innovation and new urbanization.

As an important issue in the field of energy economics,
energy utilization efficiency has been widely concerned by
numerous scholars [8].+e connotation of energy utilization
efficiency gradually extends, from the initial single-factor
energy utilization efficiency to the total-factor energy uti-
lization efficiency based on the traditional DEA model [9],
from the static energy utilization efficiency to the dynamic
total-factor energy utilization efficiency based on the
Malmquist index model [10], and from only focusing on
economic development to considering environmental pol-
lution [11] and energy utilization efficiency at the enterprise
level [12]. Similarly, urban innovation capability, as an
important issue in regional economics, also attracts atten-
tion. Previous studies have discussed the definition and
related concepts of urban innovation capability from the
perspectives of innovation environment and resource in-
tegration [13, 14]. Moreover, the measurement standards
and evaluation systems of urban innovation capability are
extensively and fully discussed [15, 16], which triggers a
dispute between a single indicator and an indicator system.
However, Huang et al. [17] put regional innovation capa-
bility and energy utilization efficiency in China into a re-
search framework and examined the coupling relationship
between them from the perspective of spatial and temporal
coordination. However, following the extant literature, most
discussions on energy utilization efficiency and urban in-
novation capability exist independently, and few studies
have investigated the relationship between the two, espe-
cially the dynamic nonlinear relationship.

+e main contribution of this study is reflected in the
following three aspects: first, from the perspective of dy-
namic nonlinearity, the dynamic correlation andmechanism
between urban innovation capability and energy utilization
efficiency are discussed. Second, the combined method of
the Panel Vector Autoregression (PVAR) and the Dynamic
Panel +reshold Regression (DPTR) is helpful in accurately
identifying the dynamic causal relationship between urban

innovation capability and energy utilization efficiency and
clarifying the mechanism of action, as well as examining the
dynamic nonlinear relationship between urban innovation
capability and energy utilization efficiency under different
constraints. Finally, this study uses nighttime lighting data,
which have been widely used in the field of economic re-
search recently; it measures the energy consumption of
various prefecture-level cities following the idea that the
brighter the night light is, the greater the total energy
consumption is, solving the shortcomings of existing re-
search in time span and urban measurement.

+e remainder of the paper is structured as follows:
Section 2 explains the research design and method; Section 3
introduces the data source and variable definition; Sections 4
and 5 discuss the PVAR system and DPTR analyses, re-
spectively; and Section 6 concludes the study.

2. Methodology

2.1. PVAR System. PVAR can treat all variables as endog-
enous systems and examine the lagged terms of each vari-
able, reflecting the interaction between variables. +is
method can capture individual differences and common
shocks to different cross-sections by introducing individual
effect and time-point effect variables, respectively, adding to
the advantages of Vector Autoregression (VAR) models and
panel data models. It can not only solve the problem of
endogeneity but also effectively characterize the shock re-
sponse and variance decomposition among system variables.
We can explore the dynamic relationship between urban
innovation capability and energy utilization efficiency as well
as the direct, strengthening, feedback, and other dynamic
interaction effects by constructing the PVAR system.

+e PVAR system for analysis comprises the following
main steps: (1) construct a Generalized Method of Moments
(GMM) estimation to obtain the regression relationship
between variables; (2) determine the influence of orthogo-
nalization on other variables in the system by analyzing the
impulse-response function; and (3) obtain the variance
decomposition results in the prediction period and measure
the contribution of each variable using the variance analysis.
Because the estimation of the PVAR system is based on the
fixed-effect dynamic panel model, the intragroup mean
difference method should be used before the GMM esti-
mator to eliminate the time effect. Subsequently, to eliminate
the individual effect, the onward mean difference method
should be employed. +e PVAR system is expressed as
follows:

Yit � Yit−1A1 + Yit−2A2 + · · · + Yit−p+1Ap−1 + Yit−pAp

+ XitB + fi + μt + εit,
(1)

where i ∈ 1, 2, . . . , N{ } represents the prefecture-level cities
in China; t ∈ 1, 2, . . . , T{ } indicates the year; Yit is a (1 × k)

vector of dependent variables; Xit is a (1 × l) vector of
exogenous covariates (control variables); fi represents an
unobservable intercept effect, and this fixed effect can be
eliminated using the forward difference Helmert transfor-
mation method (the forward difference Helmert
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transformation method avoids the orthogonality between
the lag regression and difference terms of the instrumental
variable by removing the forward mean, so that the mea-
surement test results can be more accurate); μt denotes the
time effect; and εit is the random error term, which has the
following characteristics: Ε(εit) � 0 and Ε(εit

′εit) � Σ, and
Ε(εim
′εin) � 0.

2.2. DPTR. Traditional panel threshold regression focuses
on static effects and requires strong exogenous control
variables [18]. However, strong exogenous conditions are
often difficult to meet in the real world. +erefore, Seo and
Shin [19] extended the traditional panel threshold model to
the dynamic model, and the First Difference Generalized
Method of Moments (FD-GMM) is employed to estimate it
in solving the endogenous problem in the DPTR model. +e
specific form of the DPTR model is as follows:

yit � 1, xit
′( 􏼁ϕ1 · I qit ≤ c􏼈 􏼉 + 1, xit

′( 􏼁ϕ2 · I qit > c􏼈 􏼉 + εit. (2)

+e first-order difference form of (2) can be expressed as
follows:

Δyit � β′Δxit + δ′Xit1it(c) + Δεit, (3)

where β
k1×1

� (ϕ12, . . . ,ϕ1,k1+1)′, δ
(k1+1)×1

� ϕ2 − ϕ1, Xit
2×(1+k1)

�

(1, xit
′)

(1, xi,t−1′)
􏼠 􏼡, and 1it(c)

2×1
�

1 qit > c􏼈 􏼉

−1 qi,t−1 > c􏽮 􏽯
􏼠 􏼡. Making θ �

(β′, δ′, c′), and supposing θ is a compact set, Θ � Φ×

Γ ⊂ Rk, where k � 2k1 + 2. Making Γ � [c, c], c and c

represent two percentiles of the threshold variables, re-
spectively. Owing to the correlation between the regression
element and individual effect, the parameter estimation
obtained using the ordinary least squares regression
directly on (3) is biased. +erefore, we need to find a l × 1
dimensional tool variable ( zit0

′, . . . , ziT
′)′ that satisfies

E( zit0
′Δεit0

, . . . , ziT
′ΔεiT)′ � 0 for any 2< t0 ≤T and l≥ k.

Because the model allows the endogeneity of threshold
variable qit, it is E(qitΔεit)≠ 0. +erefore, qit does not belong
to the set of instrumental variables zit􏼈 􏼉

T
t�t0

, and the sample
moment conditions of the following one-dimensional col-
umn vectors are considered:

gn(θ) �
1
n

􏽘

n

i�1
gi(θ), gi(θ)

l×1

�

zit0
Δyit0

− β′Δxit0
− δ′ Xit0
′1it0

(c)􏼐 􏼑

⋮

ziT ΔyiT − β′ΔxiT − δ′XiT
′1iT(c)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4)

Suppose that if and only if θ � θ0, E(gi(θ)) � 0.
+us, making gi � gi(θ0) � ( zit0

′Δεit0
, . . . , ziT

′ΔεiT)′ andΩ �

E(gigi
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, (5)

θ estimates can be derived from θ
∧

� argmin
θ∈Θ

Jn(θ). For fixed

c, let g1n � 1/n 􏽐
n
i�1 g1i, g2n(c) � 1/n 􏽐

n
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then for given c, β, and δ, the estimators are expressed as the
following equation:

β
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(6)
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Returning β
∧
(c) and δ

∧
(c) to the objective function yields

an estimate of θ: c
∧

� argmin
c∈Γ

J
∧

n(c), (β
∧′

, δ
∧′

)′ � (β
∧
(c)′,

δ
∧
(c)′)′.

3. Data

+is study uses panel data from 281 prefecture-level cities
in China from 2003 to 2020. +e relevant data on the
regional economy, industrial structure, and urban envi-
ronmental pollution in various prefecture-level cities stem
from the annual “China Statistical Yearbook” and “China
Urban Statistical Yearbook.” +e data on the invention
patent authorization in various prefecture-level cities are
obtained from the official websites of the State Intellectual
Property Office. +e energy consumption of prefecture-
level cities is calculated based on the nighttime light data
that have been widely used in recent economic research
[20–22]. +e idea is that the brighter the night light is, the
greater the total energy consumption. +e nighttime
lighting data are obtained from the “Global Night-time
Light Database.” +is database was developed based on the
Defense Meteorological Satellite Program (the DMSP
global nighttime lighting data are available at “https://ngdc.
noaa.gov/eog/dmsp/downloadV4composites.html”). +e
nighttime light data include cloudless observation fre-
quency, average light image, and stable light image.
Because the stable lighting image data contain relatively
stable lighting in cities and towns, this study selects the
stable lighting image data as the basic data night-light
image data and the Visible Infrared Imaging Radiometer
Suite (VIIRS night lighting data are available at “https://
ncc.nesdis.noaa.gov/VIIRS/”). night light image data of
the National Oceanic and Atmospheric Administration
of the United States. +ese data reflect the nighttime
lighting data of the cities and counties in China (+e
National Geophysical Data Center (NGDC) of the
United States conducts a series of noise processing on the
basic data, such as eliminating the influence of nighttime
clouds, short-term fires, aurora, and lightning, so the
processed data can truly reflect the energy consumption
of human beings). We average the nighttime light data
for each year in the research window period to ensure
that nighttime light data cover all prefecture-level cities
in China from the time and space dimensions. In ad-
dition, we convert the brightness of the light into a digital
number (DN). +e DN value range of each raster is 0–63
(63 is the saturation value of the data). +e spatial di-
mension covers the longitude from 135°degrees east to
73°degrees west and the latitude from 3°degrees north to
54°degrees north.

+e core variable energy utilization efficiency (energy)
is measured by the logarithm of the per capita GDP of a
prefecture-level city divided by the total energy con-
sumption of the prefecture-level city (i.e., the reciprocal of
energy consumption per unit GDP).+e higher the value is,
the higher the energy utilization efficiency is. +e main
variable, urban innovation capability (inno), is measured by
the total number of invention patents in the prefecture-
level cities. Moreover, the urban population density

(density) is obtained by dividing the population of the
prefecture-level cities by administrative area, thereby
characterizing the differential impact of the scale of urban
human activities. +e industrial structure (struc) is mea-
sured by the proportion of the added value of the secondary
industry in the regional GDP, thereby characterizing the
overall industrial structure of the city. +e degree of urban
environmental pollution (pollu) is measured by the sulfur
dioxide emissions of the prefecture-level cities. +e de-
scriptive statistics of the aforementioned variables are
presented in Table 1.

4. PVAR Analysis

4.1. Model Estimation. +e nonstationary problem of the
variables often leads to the phenomenon of “pseudore-
gression” in the analysis, making the regression results
deviate or even invalid. +erefore, we use Levin–Lin–Chu
(LLC), Harris–Tzavalis (HT), and Fisher-ADF methods to
examine whether the core variables have panel unit roots to
ensure the robustness of the test results. Table 2 reports that
the test results of the threemethods reject the hypothesis that
the variables are nonstationary, and it can be considered that
the two core variables of energy utilization efficiency and
urban innovation capability are stationary, which is suitable
for the PVAR system analysis.

+e orthogonal transformation between variables and
lagged regression coefficients with the help of the Helmert
method and the optimal lag order of the PVAR system is
selected according to the information criteria, including the
Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC), and the quasi-information criterion
(QIC). When the lag term is 1, the BIC reaches the mini-
mum, and when the order of the lag term is 2, the AIC and
QIC reach the minimum (Table 3). Following the principle
of “minority obeys majority,” a PVAR system with lag order
2 is constructed.

In Table 3, the energy equation estimation results (Col-
umn 1) suggest that the early energy utilization efficiency
significantly affects the later energy utilization efficiency, and
the early urban innovation capability is also conducive to
improving the later energy utilization efficiency. However, the
estimation results of inno equation (Column 2) reveal that the
estimation coefficient of energy utilization efficiency lagging
one period is negative and does not exhibit aboriginality,
indicating that the urban energy utilization efficiency of the
previous period cannot significantly improve the urban in-
novation capability of the latter period and may even inhibit
the urban innovation capability. +e early urban innovation
capability will be beneficial to the later innovation capability,
which has certain “inertia” characteristics.

4.2. Impulse Response and Variance. +e stability of the
PVAR (2) model is first tested before analyzing the impulse
response function and variance decomposition. Table 4 and
Figure 1 demonstrate that the absolute values of the real and
imaginary parts of the eigenvalues are all within the range of
[0, 1]. +erefore, the PVAR model is considered stable.
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+e impulse response function describes the response of
an endogenous variable to an error; that is, the trajectory of
the impact of a standard deviation of the random distur-
bance term on the current and future values of other var-
iables. It can intuitively describe the dynamic interaction
between energy utilization efficiency and urban innovation
capability and determine the time lag relationship between
variables. To intuitively describe the dynamic delay rela-
tionship between the variables in the system, we give each
variable a standard deviation of the impact and use the
Monte Carlo method to simulate 300 times, obtaining the
impact of each variable on the 0–20 periods after each
variable. +e curve of the impulse response function of two
variables is illustrated in Figure 2. +e horizontal axis
represents the response period of the shock response, and
the maximum lag period is 20. +e vertical axis represents
the corresponding degree of the variable to the shock. +e
shadow part represents the 95% confidence interval, and the
middle real line represents the size of the shock response in
each period.

+ere are three kinds of dynamic interaction effects in
the PVAR system: direct, reinforcement, and feedback

effects. First, the direct effect, which is the lag term of urban
innovation capability variables on energy efficiency, can be
concerned with the first line and the second column of the
impulse response in Figure 2. In the face of an orthogonal
impact of urban innovation capability (inno), the overall
response of energy utilization efficiency shows an inverted
“U-shaped” trend. In the first three periods, improving
urban innovation capability can quickly improve energy
utilization efficiency, whereas, from the fourth period, the
positive effect gradually decreases and approaches 0. +is
implies that urban innovation capability has a positive
effect on energy utilization efficiency, and it will signifi-
cantly improve energy utilization efficiency in the early
stages. However, its effect will gradually weaken with the
continuous renewal of urban development and techno-
logical innovation. Second, the strengthening effect is the

Table 1: Descriptive statistics of variables.

Name Symbol Mean SD Min Max Obs
Energy utilization efficiency energy 0.1259 0.8483 −2.1271 4.1374 5058
Innovation capability inno 3.7893 1.9326 0 10.7377 5058
Population density density 572.1839 313.0527 5.2016 2666.9483 5058
Industrial structure struc 0.4850 0.1099 0.0900 0.9097 5058
Environmental pollution pollu 56458.8437 58015.8401 1.9756 683170.7138 5058

Table 2: Unit root test for core variables.

Variable
Method Conclusion

LLC HT ADF LLC HT ADF

energy −9.1795
∗∗∗

0.5182
∗∗

1140.7838
∗∗∗ Steady Steady Steady

inno −9.3768
∗∗∗

0.7563
∗∗∗

684.5540
∗∗∗ Steady Steady Steady

Note. ∗∗∗, ∗∗, and ∗ represent the significance levels at 1%, 5%, and 10%,
respectively.

Table 3: Estimated results of the PVAR system.

(1) energy (2) inno
Coefficients
L.energy 0.5594∗∗∗ (0.1523) −0.4483 (0.5282)
L2.energy 0.3021∗∗∗ (0.1031) 0.2933 (0.2772)
L.inno 0.0010∗∗∗ (0.0002) 0.7452∗∗∗ (0.0273)
L2.inno 0.0036∗ (0.0020) 0.0409∗∗∗ (0.0154)
Control variables Yes Yes
Lag order AIC BIC QIC
1 19.2748 −101.4501 −18.1671
2 16.5196 −80.0603 −24.0836
3 19.3278 −53.1073 −6.6874
Note. ∗∗∗, ∗∗, and ∗ represent the significance levels at 1%, 5%, and 10%,
respectively; “L” and “L2” represent lag order 1 and lag order 2, respectively;
standard error is presented in parentheses.

Table 4: Stability test of the PVAR (2) model.

Eigenvalue
Module

Real Imaginary
0.6744 0 0.6744
0.2816 0.4673 0.5456
0.0.2816 −0.4673 0.5456
0.0670 0 0.0670

Roots of the companion matrix

−.5 0 .5 1−1
Real

−1

−.5

0

.5

1
Im

ag
in

ar
y

Figure 1: Roots of the companion matrix.
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lag effect of two variables on the current period. Although
the strengthening effect of energy utilization efficiency
displays a “U-shaped” trend of “positive first and then
negative” and gradually converges to zero, the impulse
response diagram on the diagonal can be observed. Finally,
the feedback effect is the lag of energy utilization efficiency
on urban innovation capability. +e impulse response in
Figure 2 (Row 2 and Column 1) describes the response of
the urban innovation capability to energy utilization effi-
ciency’s orthogonal impact. Given an orthogonal impact on
energy utilization efficiency, urban innovation capability
presents a “U-shaped” change of “positive first and then
negative” and converges to zero in the 10th phase.

Variance decomposition means the decomposition of
the prediction mean square error of any endogenous
variable into the contribution made by random shocks to
each variable in the system. It calculates the percentage
size of the contribution made by shocks to each variable
shock, evaluating the impact of one variable on another.
On the basis of the analysis of impulse response (Figure 2),
we use variance decomposition to further examine the
degree of interaction between urban innovation capability
and energy utilization efficiency and obtain the contri-
bution of the impact response of each equation to the
fluctuation of each variable in the PVAR (2) system. +e
error variance decomposition results of the two core
variables of energy utilization efficiency and urban in-
novation capability in the 1st–20th forecast periods are

reported in Table 5. +e test results prove that the variance
decomposition of the 8th period is basically stable, and the
conclusion is meaningful.

Moreover, it can be inferred that the variance of the
prediction error of energy utilization efficiency comes from
itself in the first period, which is unrelated to urban in-
novation capability (Table 5). However, the contribution rate
of urban innovation capability to the change in energy use
efficiency has increased over time and finally been main-
tained at approximately 9.09%, whereas the contribution
rate of energy use efficiency to the change in urban inno-
vation capability remains at approximately 4.28%. Com-
pared with the contribution rate of energy utilization
efficiency to the change of urban innovation capability, the
latter has a greater explanation than the former.

4.3. Granger Causality Analysis. A Granger causality test is
conducted on the two core variables in the PVAR system to
examine whether there is an obvious causal relationship
between urban innovation capability and energy utilization
efficiency. +e results are reported in Table 6.

Combining the Granger causality analysis results in
Table 6 and the variance decomposition results in Table 5, it
can be observed that the improvement of urban innovation
capability is the reason for the improvement of energy
utilization efficiency. +e increase in energy utilization ef-
ficiency is not the reason for the increase in urban

inno : inno

energy : inno

inno : energy

energy : energy

impulse : response
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5 10 15 200 5 10 15 200
step

95% CI
Orthogonalized IRF

Figure 2: Impulse response. Note: the transverse axis represents the lag period of the impact; the middle curve is the impulse response
function curve; and the shadow part is the 95% confidence interval.
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innovation capability, and whether it is energy utilization
efficiency or urban innovation capability, the fluctuation of
its prediction error is mainly due to itself. +is conclusion
provides a basis for using the dynamic threshold regression
model to test the nonlinear effect of urban innovation ca-
pability on energy utilization efficiency.

5. DPTR Analysis

+e threshold variables are set as the population density,
industrial structure, and environmental pollution of the
prefecture-level cities, and the DPTR model is established in
this section to analyze the differences in the impact of urban
innovation capability on energy utilization efficiency under
different population density, industrial structure, and en-
vironmental pollution levels. +e specific forms can be
expressed as follows:

energyit � c0 + ϕ1energyi,t−1 + θ1innoit􏼐 􏼑Ι qit ≤ c􏼈 􏼉

+ ϕ2energyi,t−1 + θ2innoit􏼐 􏼑Ι qit > c􏼈 􏼉 + αi + υit,

(7)

where energyit is a time-varying dependent variable; innoit
and lag-dependent variable energyi,t−1 are explanatory
variables; Ι ·{ } represents an indicator function, which is
equal to 1 when the conditions in brackets are satisfied,
otherwise 0; qit denotes the three threshold variables that
describe the urban population density, industrial structure,
and environmental pollution; c represents the threshold
value; ϕ1, ϕ2, θ1, and θ2 represent the relevant slope pa-
rameters corresponding to the different intervals. Because
the explanatory and threshold variables in the model may
have endogenous problems, the error term of the model is
set to εit � αi + υit, which is composed of two parts by Seo
and Shin [19]; αi is an unobservable individual fixed effect;
and υit is a zero mean heterogeneous random disturbance
term (υit is assumed to be a martingale difference sequence,
namely, Ε(υit|χt−1) � 0, where χt−1 is the natural filtering in
period t, and it is not assumed that innoit or qit is measurable
relative to χt−1, namely, Ε(υitinnoit)≠ 0 or Ε(υitqit)≠ 0. +is
setting allows the endogeneity of the explanatory variable
innoit and the threshold variable qit in the model). +e
estimation results of the impact of urban innovation ca-
pability on energy utilization efficiency based on DPTR are
summarized in Table 7. Population density, industrial
structure, and environmental pollution level are used as
threshold variables to represent the population, industry,
and environmental constraints of the city to a certain extent.

We use the bootstrapmethod proposed by Hansen [23] to
simulate the asymptotic distribution and p value of the sta-
tistics to test the validity of the estimation results of the DPTR
model shown in Table 7.+e nonlinear test results show that p
values are close to zero and the model does have a nonlinear
relationship (Table 7). Consequently, a dynamic threshold
model with population density, industrial structure, and
environmental pollution level as threshold variables can be
established. First, from the parameter estimation results with
population density as the threshold variable, the threshold
value is 263.9851, which divides the sample into two intervals
of low population density (qpop ≤ 263.9851) and high pop-
ulation density (qpop > 263.9851), and the coefficients of
variables in these two intervals are significantly different.
When the urban population density is lower than approxi-
mately 264 people/km2, the estimated value of the coefficient
passes the 1% aboriginality test and demonstrates a positive
“inertia” effect. +is indicates that early energy utilization
efficiency has a positive role in promoting later energy uti-
lization efficiency under this threshold.+e estimated value of
the coefficient θ1 is significantly negative, which indicates that
the improvement of the innovation capability of cities with a
low population density cannot improve their energy utili-
zation efficiency but will inhibit it. However, in the urban
population, the density is higher than 264 people/km2, and
the result is exactly the opposite. +e energy utilization ef-
ficiency in the early stage is not conducive to improving
energy utilization efficiency in the later stage, and improving

Table 6: Granger causality test.

Variable Granger test (null
hypothesis)

χ2
value

Degree of
freedom

P
value

Energy

+e increase in urban
innovation capability is
not the reason for the
increase in energy

utilization efficiency.

14.131 2 0.001

Inno

+e increase in energy
utilization efficiency is not
the reason for the increase

in urban innovation
capability.

1.167 2 0.558

Table 5: Variance decomposition of the prediction error of core
variables.

Variance decomposition
energy inno

energy inno energy inno
1st 100% 0% 5.17% 94.83%
2nd 95.99% 4.01% 3.59% 96.41%
3rd 93.27% 6.73% 3.67% 96.33%
4th 91.56% 8.44% 4.20% 95.80%
5th 90.92% 9.08% 4.33% 95.67%
6th 90.91% 9.09% 4.31% 95.69%
7th 90.90% 9.10% 4.29% 95.71%
8th 90.91% 9.09% 4.28% 95.72%
9th 90.91% 9.09% 4.28% 95.72%
10th 90.91% 9.09% 4.28% 95.72%
11th 90.91% 9.09% 4.28% 95.72%
12th 90.91% 9.09% 4.28% 95.72%
13th 90.91% 9.09% 4.28% 95.72%
14th 90.91% 9.09% 4.28% 95.72%
15th 90.91% 9.09% 4.28% 95.72%
16th 90.91% 9.09% 4.28% 95.72%
17th 90.91% 9.09% 4.28% 95.72%
18th 90.91% 9.09% 4.28% 95.72%
19th 90.91% 9.09% 4.28% 95.72%
20th 90.91% 9.09% 4.28% 95.72%
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urban innovation capability will significantly promote the
improvement of urban energy utilization efficiency. Second,
from the parameter estimation results with industrial struc-
ture as the threshold variable, the threshold value is 0.4026
and is significantly indigenous at the level of 1%, which in-
dicates that when the proportion of the added value of the
secondary industry in the GDP of a prefecture-level city is
higher than this threshold, the improvement of urban in-
novation capability is conducive to the improvement of its
energy utilization efficiency. On the contrary, it will damage
the improvement of energy utilization efficiency. Finally, from
the results of parameter estimation with environmental
pollution as the threshold variable, the threshold value is
36285.2104 and shows aboriginality at 1% level.+e threshold
value divides the samples into high-pollution (pollu>
36285.2104) and low-pollution (pollu≤ 36285.2104) cities.
However, the improvement of urban innovation capability is
beneficial to the improvement of energy utilization efficiency
for high- and low-pollution cities. Notably, compared with
high-pollution cities, the improvement of innovation capa-
bility in low-pollution cities will have a stronger effect on
improving energy utilization efficiency.

6. Conclusion

From the dynamic nonlinear perspective, this study
discusses the relationship between urban innovation ca-
pability and energy utilization efficiency by using the
PVAR and DPTR methods. Using the 2003–2020 panel
data samples of 281 prefecture-level cities in China, we
discussed the dynamic correlation and mechanism of
energy utilization efficiency and urban innovation capa-
bility. +e results reveal that the improvement in urban
innovation capability is the reason behind the improve-
ment in urban energy utilization efficiency, and the im-
provement in energy utilization efficiency is not the
reason behind the improvement in urban innovation
capability. +e level of energy utilization efficiency in the
early stages of the city may be both a boost and an obstacle

to the improvement of energy utilization efficiency in the
later stages, depending on the situation of the city in terms
of population density, industrial structure, and environ-
mental pollution. For cities with low levels of population
density, industrial structure, and environmental pollu-
tion, energy utilization efficiency has certain “inertia”
characteristics. By contrast, for cities with high levels of
population density, industrial structure level, and envi-
ronmental pollution, the high efficiency of early energy
utilization will hinder the improvement in energy utili-
zation efficiency in the later period. From the perspective
of urban innovation capability, enhancing urban inno-
vation capability can not only improve energy utilization
efficiency but also adversely affect cities with a low
population density or weak secondary industrial base.
Whereas for cities with a high population density or
proportion of secondary industry, improving innovation
capability will significantly improve urban energy utili-
zation efficiency. Furthermore, the promoting effect of
urban innovation capability on energy utilization effi-
ciency in low-pollution cities is significantly stronger than
that in high-pollution cities.

Some shortcomings remain in this study, which is un-
avoidable. First, the measurement of urban innovation ca-
pability is rather rough without considering the differences
in patents (for example, patents for invention, patents for
utility models, and patents for industrial design).+e follow-
up research can make a more detailed division of innovation
capability according to Chinese patent classification stan-
dards so as to reflect the difference in quantity and quality of
urban innovation capability. Second, this paper only con-
siders the influence of urban population density, industrial
structure, and environmental pollution on the relationship
between urban innovation ability and energy utilization
efficiency. A future study can further investigate the possible
nonlinear relationship between urban innovation ability and
energy utilization efficiency caused by economic develop-
ment, urban infrastructure, policy implementation effi-
ciency, etc.

Table 7: Estimated results based on DPTR.

Explained variable: energy
Model 1 Model 2 Model 3

+reshold
variable

Population density
(density)

Industrial structure
(struc)

Environmental pollution
(pollu)

+reshold value c 263.9851∗∗∗ (13.3842) 0.4026∗∗∗ (0.0004) 36285.2104∗∗∗ (2190.5583)
Explanatory
variable Coefficient

Low
energyi,t−1 ϕ1 0.9086∗∗∗ (0.0019) 0.9665∗∗∗ (0.0045) 0.9794∗∗∗ (0.0046)
innoit θ1 −0.0528∗ (0.0281) −0.0029∗∗∗ (0.0007) −0.0095∗∗∗ (0.0022)

High
energyi,t−1 ϕ2 −0.2038∗∗∗ (0.0201) −0.0241∗∗∗ (0.0032) −0.0408∗∗∗ (0.0068)

innoit θ2 0.0275∗∗∗ (0.0032) 0.0044∗∗∗ (0.0007) 0.0005 (0.0024)
Constant c0 0.5829∗∗∗ (0.0554) −0.1812∗∗∗ (0.0069) −0.1540∗∗∗ (0.0108)

Nonlinear test (p value) 0.00 0.00 0.00
Percentage of samples in high interval (%) 65.27% 59.84% 56.71%
Note. ∗∗∗, ∗∗, and ∗ represent the significance levels at 1%, 5%, and 10%, respectively; standard error is presented in parentheses.
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