
Research Article
Abundant Bounded and Unbounded Solitary, Periodic,
Rogue-Type Wave Solutions and Analysis of Parametric Effect on
the Solutions to Nonlinear Klein–Gordon Model

Mohammad Mobarak Hossain,1,2 Alrazi Abdeljabbar ,3 Harun-Or Roshid,1

Md. Mamunur Roshid ,4,5 and Abu Naim Sheikh2

1Department of Mathematics, Hamdard University Bangladesh, Bangladesh
2Department of Mathematics, Dhaka University of Engineering & Technology, Gazipur, Bangladesh
3Department of Mathematics, Khalifa University, Abu Dhabi, UAE
4Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh
5Sunamgonj Science and Technology University, Bangladesh

Correspondence should be addressed to Md. Mamunur Roshid; harunorroshidmd@gmail.com

Received 21 June 2022; Accepted 23 August 2022; Published 15 October 2022

Academic Editor: Eric Campos

Copyright© 2022MohammadMobarakHossain et al.%is is anopenaccess article distributedunder theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

%is paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon (KG) model amid
quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified
simple equation (MSE) technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential,
and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw
distinct phase portraits on unlike parametric constraints. Following each orbit of all phase portraits, we originate bounded and
unbounded solitary, periodic, and periodic rogue-type wave solutions of the KG model. %ese two schemes extract widespread
classes of solitary, periodic, and periodic rogue-type wave solutions for the KGmodel jointly due to restrictions on parameters.We
also analyze the effect of parameters on the obtained wave solutions and discuss why and when it changes its nature. We illustrate
some dynamical features of the acquired solutions via the 3D, 2D, and contour graphics.

1. Introduction

Complex phenomena customarily turned into nonlinear
differential equations (NLDEs) by a youngest researcher.
Consequently, the study of NLDEs has sustained to attract
much effort in the last few years. Many scientific experi-
mental models are employed in nonlinear differential form
from the phenomena of nonlinear fiber optics, high-am-
plitude waves, fluids, plasma, solid state particle motions,
etc. Surveying literature, we realized ideas that many sci-
entists worked to disclose innovative, efficient techniques for
explaining internal behaviors of NLDEs with constant co-
efficients that are significant to elucidate different intricate
problems such as a discrete algebraic framework [1], IRM-
CG method [2], transformed rational function scheme [3],

fractional residual method [4], newmultistage technique [5],
new analytical technique [6], extended tanh approach [7],
Hirota-bilinear approach [8–10], multi exp-expansion
method [11, 12], Jacobi elliptic expansion method [13, 14],
Lie approach [15], Lie symmetry analysis techniques [16],
generalized Kudryashov scheme [17, 18], generalized ex-
ponential rational function scheme [19], MSE method
[20–22], and many more. Such or similar schemes are also
used to solve the model with variable coefficients to visualize
various new nonlinear dynamics [23–25]. Recently, the
nature of rogue waves and diverse dynamical interaction
solutions has been studied in numerous fields. %ere are
many researchers who have investigated rogue waves in
different fields of mathematical physics and engineering
branches [26–32]. Hossain explicated some natures of the
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solitary and rogue waves with interacting observable facts
[26], Ali investigated rogue wave solution from coupled
Schrödinger equations [27], and Ohta found general rogue
ripple to the discrete nonlinear Schrödinger model [28].
Zhang et al. found rogue wave envelops of (3 + 1)-D Jim-
bo–Miwa model [29], while Lu et al. established manifold
rogue wave envelops for the cKP model [30]. Rogue wave
solutions are investigated in the coupled nonlinear
Schrödinger models by Degasperis [31], while Ankiewicz
found rogue signal elucidations of integrable nonlinear
Schrödinger hierarchy [32]. Due to the sensitive effect of a
rogue wave, scholars are being highly interested in deriving
rogue and such type of colliding wave solutions in the recent
exploration [33–36]. Moreover, dynamical researchers have
investigated new rogon waves [37], optical M-shaped soli-
tons with interaction with shock waves [38], orbital stability
of solitary waves [39], and the nonexistence of global so-
lutions of the time-fractional model [40] newly.

In this survey, we shed light on the quadratic nonlinear
dynamics structure, namely, KG, a succeeding structure,
which frequently arises in optics, quantum, and solid state
physics:

utt − α2uxx + βu − cu
2

� 0. (1)

To analyze the dynamics behavior of solitons in quantum
meadow theories, solid state, and nonlinear optical physics,
this model is mostly investigated [41–44]. In the last cen-
turies, different dominant and influential schemes have been
suggested to execute solutions of the KG equation, such as
the Adomian decomposition method [41], auxiliary equa-
tion method [42], method of normal forms of Shatah [43],
exp-function method [44], and many more. All of the above
techniques took the help of an auxiliary equation. But, we
need to investigate the internal characteristics of the non-
linear model without the use of other helping equations.
Among the above integral techniques, the MSE is better as it
never takes any help from the auxiliary equation and can
easily solve any nonlinear model with fewer efforts by direct
integrations. Besides this, the dynamical system approach is
also a directed integral technique that constructs exact so-
lutions according to each energy orbit of its phase portrait.
To the best of our knowledge, this considered model was not
investigated by such direct integral schemes still now.

Due to this fact, we aim to implement modified simple
equation [20–22] and dynamical system schemes [45] on the
KG equation to search different types of bounded and
unbounded solitary, bright and dark bell envelop, periodic
wave, and periodic rouge type wave’s solutions of this model
with the adequate condition on the exit’s parameters.

%e rest of the article is organized as follows: in Section 2,
we demonstrated analytic solutions of the KG model amid
quadratic nonlinearity using the modified simple equation
method. Reduction in the dynamical system, bifurcation
analysis, and derivation of solutions according to the dy-
namical scheme is uttered in Section 3.%en, in Section 4, all
the deliberated results of the two schemes are illustrated with
numerical graphics and explained briefly. In Section 5, we

incorporated comparisons and a few remarks with other
solutions. %e main points of this study are to obtain rogue
waves, lump solution, and solitary waves according to energy
orbits which are discussed in the last conclusion section.

2. Solutions of KG Model via MSE

In this division, the acquired solutions are an abundant form
of traveling wave solutions to the KG model by means of the
MSE method [20–22], which might be caring to investigate
the different nonlinear representations of turbulence, the
wave motions, and a lot of fields such as nonlinear optic,
solid state, and plasma physics.

Let us undertake the KG equation with quadratic
nonlinearity in the succeeding system [41]. Utilizing the
wave transformation relationξ � kx − ωtand u(x, t) � U(ξ)

into Equation (1)which convert the ordinary differential
form utt � ω2U″ and uxx � k2U″. %en using the facts in (1),
it reduces as follows:

ω2
− α2k2

􏼐 􏼑U″ + βU − cU
2

� 0,

whereU″ �
d2U
dξ2

.

(2)

Now, we allow the MSE method [20–22] to set the
solution of (2) as u(ξ) � 􏽐

k�l
k�0ak(ϕ′(ξ)/ϕ(ξ))k, where

ak(k � 0, 1, 2, . . . , l) are free parameters and al ≠ 0 with
l ∈ R+ are urbanized from the balancing between the highest
order and nonlinear terms eminences in (2).

Here, the power of the series is l � 2 obtained from the
equilibrium between U″ and U2. %en, the solution of (2) is
studied as

U(ξ) � a0 + a1
ϕ′(ξ)

ϕ(ξ)
􏼠 􏼡 + a2

ϕ′(ξ)

ϕ(ξ)
􏼠 􏼡

2

. (3)

At this instant, including u(ξ) and its derivative form in
(2) and considering the coefficient of ϕ(ξ)− k

(k � 0, 1, 2 . . . . . .) equal to zero, it leads to the structure of
the algebraic system:

ϕ0(ξ): βa0 − ca
2
0 � 0,

ϕ− 1
(ξ): ω2

a1 − α2k2
a1􏼐 􏼑ϕ″′ + βa1 − 2a1a0( 􏼁ϕ′ � 0,

ϕ− 2
(ξ): −3ω2

a1S + 3α2k2
a1􏼐 􏼑ϕ′􏼐

+ 2ω2
a2 − 3α2k2

a2􏼐 􏼑ϕ″′􏼑ϕ″′

+ 2ω2
a2 − ca1 − 2α2k2

a2􏼐 􏼑ϕ″′􏼐

−2ca1a0 + βa1( 􏼁ϕ′􏼁ϕ′ � 0,

ϕ− 3
(ξ): −2ca1a2 + 2ω2

a1 − 2α2k2
a1􏼐 􏼑ϕ′

+ 10α2k2
a2 − 10ω2

a2􏼐 􏼑ϕ″ � 0,

ϕ− 4
(ξ): 6ω2

a2 − 6α2k2
a2 − ca

2
2􏼐 􏼑ϕiv

� 0.

(4)
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%e coefficient of ϕ0(ξ) and ϕ− 4(ξ) brings out two set
solutions,

Set-01: a0 � 0, a2 � 6ω2 − 6α2k2/c.
Set-02: a0 � β/c, a2 � 6ω2 − 6α2k2/c

Now, we insert the value of a0 and a2 from set-01 in the
remaining equations and resolve them with the assistance of
Maple which gives

ϕ(ξ) � c1 + c2 exp
a1cξ

−6ω2
+ 6α2k2􏼠 􏼡,A

ω � ±

������������������
−β −36βα2k2

+ a
2
1c

2
􏼐 􏼑

􏽱

6β
,

a1 � a1, k � k,

(5)

ϕ(ξ) � c1 + c2 exp
a1cξ

−6ω2
+ 6α2k2􏼠 􏼡,

a1 � 6

��������

α2k2
− ω2

c
2

􏽶
􏽴

,

ω � ω, k � k.

(6)

Case-01: while equation (4) is treated andmaking use of
the values in equation (3), acquiesce

U(ξ) �
6βc1c2e

θ

c c1 + c2e
θ

􏼐 􏼑
2, (7)

where θ � −a1cξ/6ω2 − 6α2k2, ξ � kx−������������������

−β(−36βα2k2 + a2
1c

2)

􏽱

/6βt, and a1, k, β, α, and c are arbi-
trary constant.

Whenever c1 ≠ c2, and the condition β< 0 and
a2
1c

2 < 36βα2k2 or β> 0 and a2
1c

2 > 36βα2k2, then solution (7)
can be expressed in trigonometric function solution in the
following form:

U(ξ) �
6βc1c2

c 2c1c2 + cos θ c
2
1 + c

2
2􏼐 􏼑 − i sin θ c

2
1 − c

2
2􏼐 􏼑􏼐 􏼑

. (8)

Inserting c1 � ± c2 in (8), it develops in the succeeding
form:

U(ξ) � ±
3β
2c
sec2

θ
2

􏼠 􏼡. (9)

Setting c1 � ± ic2 in (8), then the solution becomes

u(ξ) �
3β

c(i ± sin θ)
. (10)

Whenever c1 ≠ c2 and reflects on the condition β< 0 and
a2
1c

2 > 36βα2k2, the solution (7) gathers in hyperbolic form
as

U(ξ) �
6βc1c2

c 2c1c2 + cosh θ c
2
1 + c

2
2􏼐 􏼑 − sinh θ c

2
1 − c

2
2􏼐 􏼑􏼐 􏼑

. (11)

Inserting c1 � ±c2 in (11), then the solution reduces to

U(ξ) � ±
3β
2c

sec h
2 θ

2
􏼠 􏼡. (12)

Substituting set c1 � ± ic2, then (11) is

U(ξ) � ±
3β

c(1∓i sinh θ)
. (13)

Case-02: while equation (5) is treated and making use
of the values in equation (3), we acquiesce

U(ξ) �
6βc1c2e

θ

c c1 + c2e
θ

􏼐 􏼑
2, (14)

where θ � c2ξ/
��������
α2k2 − ω2

√
, ξ � kx − ωt, and c, α, k,ω are

arbitrary constant.
Making use of c1 ≠ c2 and α2k2 <ω2 in (14), then the

solution is expressed in trigonometric function solution in
the following form:

U(ξ) �
6βc1c2

c 2c1c2 + cos θ c
2
1 + c

2
2􏼐 􏼑 − i sin θ c

2
1 − c

2
2􏼐 􏼑􏼐 􏼑

. (15)

Inserting c1 � ±c2 in (15), the solution is

U(ξ) � ±
3β
2c
sec2

θ
2

􏼠 􏼡. (16)

Employing c1 � ± ic2 in (15), then the solution develops
as

U(ξ) �
3β

c(i ± sin θ)
. (17)

Making use of c1 ≠ c2 and α2k2 >ω2 in (14), then the
solution is expressed in hyperbolic function solution in the
following form:

U(ξ) �
6βc1c2

c 2c1c2 + cosh θ c
2
1 + c

2
2􏼐 􏼑 + sinh θ c

2
1 − c

2
2􏼐 􏼑􏼐 􏼑

. (18)

Inserting c1 � ± c2 in (18), the solution takes the form

U(ξ) � ±
3β
2c

sec h
2 θ

2
􏼠 􏼡. (19)

Employing c1 � ± ic2 in (18), then the solution develops
as

U(ξ) �
3β

c(i∓ sinh θ)
, (20)

where θ �
����������
β/α2k2 − ω2

􏽰
ξ,ξ � kx − ωt,α, k,ω, β, and c are

arbitrary constant.

Set-02: if a0 � β/c, a2 � 6ω2 − 6α2k2/c.
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Inserting the value of a0 and a2 from set-02 in the
enduring equations and resolving them, then we gather the
solution in the following form:

ϕ(ξ) � c1 + c2 exp(ξ),

k �

������

ω2
− β

􏽱

α
,

a1 � ±
6β
c

.

(21)

Now, the above values are placed in solution (3).

U(ξ) �
β
c

−
6β
c

c2e
ξ

c1 + c2e
ξ

⎛⎝ ⎞⎠ +
6β
c

c2e
ξ

c1 + c2e
ξ􏼠 􏼡

2

, (22)

where ξ �
������
ω2 − β

􏽰
/αx − ωt, and β,ω, c, α are arbitrary

constants.
Whenever c1 ≠ c2 and the condition ω2 < β, then solution

(22) brings out in the trigonometric form

U(ξ) �
β
c

−
6βc1c2

c 2c1c2 + cos ξ c
2
1 + c

2
2􏼐 􏼑 + i sin ξ c

2
1 − c

2
2􏼐 􏼑􏼐 􏼑

,

(23)

where ξ �
�������
−ω2 + β

􏽰
/α + iωt and β, k, c, α are arbitrary

constant.
Inserting c1 � ±c2 in (23), then the solution develops as

U(ξ) �
β
c
∓
3β
2c
sec2

ξ
2

􏼠 􏼡. (24)

Putting c1 � ± ic2 in (23), then the solution is

U(ξ) �
β
c
∓

3β
c(i ± sin ξ)

. (25)

Whenever c1 ≠ c2 and the condition β<ω2, then (22) can
be transcribed in hyperbolic form

U(ξ) �
β
c

−
6βc1c2

c 2c1c2 + cosh ξ c
2
1 + c

2
2􏼐 􏼑 + sinh ξ c

2
1 − c

2
2􏼐 􏼑􏼐 􏼑

.

(26)

Making use of c1 � ± c2 into (26) yields

U(ξ) �
β
c
∓
3β
2c

sec h
2 ξ

2
􏼠 􏼡. (27)

If c1 � ± ic2, then solution (26) is

U(ξ) �
β
c
∓

3β
c(1 ± i sinh ξ)

. (28)

3. Bifurcation Analysis and Solutions for Each
Orbit of the Phase Portraits

In this part, we shed light on bifurcating the KG model due
to the involve parameters, and various phase portraits are
derived depending on dissimilar conditions of the

parameters. We also establish diverse soliton, periodic, and
superperiodic solutions according to each energy orbit of the
phase portrait. Here, we draw this action spiting the work
into two subsections as follows.

3.1. Bifurcations and Phase Portraits of the KG Model.
Recall (2) that can be rewritten into a system of dynamical
form

U′ � V � F(U, V),

V′ � −
β

ω2
− α2k2 U +

c

ω2
− α2k2U

2
� G(U, V),

(29)

which has Hamiltonian energy states as

H(U, V) �
V

2

2
+

β
ω2

− α2k2
U

2

2
−

c

ω2
− α2k2

U
3

3
� Z. (30)

Next, we make an effort to perceive phase orbits of (29)
with various situations on the parameters α, β, c, k,ω. De-
riving critical points in an equilibrium situation, we have to
consider U′ � 0 and V′ � 0, then the prototype (29) will
provide two equilibrium points σ(0, 0) and τ(β/c, 0), if
β≠ 0 . Besides this, the dynamical archetype (29) acquiesced
only one critical point σ(0, 0) for β � 0 . %e Jacobian of
each critical points is as follows (Figure 1(a)).

Jσ(0,0) �
β

ω2
− α2k2,

Jτ(U,0) � −
β

ω2
− α2k2,

Trace(A(σ)) � 0,

Trace(A(τ)) � 0.

(31)

According to the bifurcation theorem [45] and our in-
spection, we acquire the subsequent annotations.

Cluster-1 For both β> 0, ω2 − α2k2 > 0 and
β< 0, ω2 − α2k2 < 0, we present a nature with the origin
σ(0, 0) which is a stable center point and τ(β/c, 0) is a
saddle point, whereas the corresponding bifurcations of
phase portraits of the prototype (29) are visualized in
Figure 1(a) and 1(b), respectively. Phase portraits
(Figure 1(a) and 1(b)) are drawn for α � 1,ω � 2, β �

4, c � 1, k � 1 and α � 1,ω � 2, β � 4, c � −1, k � 1,
respectively. Besides this, c> 0 and c< 0 just alter the
directions of flow.
Cluster-2: for β> 0, ω2 − α2k2 < 0 and β< 0, ω2−

α2k2 > 0, we present a nature with the origin σ(0, 0)

which is a saddle point and τ(β/c, 0) is a stable center
point, whereas the corresponding bifurcations of phase
portraits of the prototype (29) are depicted in
Figure 2(b), respectively. Phase portraits (Figures 2(a)
and 2(b)) are drawn for α � 1,ω � 2, β � −4, c � 1, k �

1 and α � 1,ω � 2, β � −4, c � −1, k � 1, respectively.
Besides this, c> 0 and c< 0 just alter the directions of
flow.

4 Complexity



(a)

Figure 1: Continued.
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(b)

P

u

v

4

4

62

2

O

0−2

−2

−4

(c)

Figure 1: (a) Phase portrait on β> 0,ω2 − α2k2 > 0, c> 0 or β< 0,ω2 − α2k2 < 0, c< 0. (b) Phase portrait on β> 0,ω2 − α2k2 > 0, c< 0 or
β< 0,ω2 − α2k2 < 0, c> 0. (c) Phase portrait from Hamiltonian for α � 1,ω � 2, β � 4, c � 1, k � 1.
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Cluster-3: for β � 0, the nature at origin Ν0(0, 0) is a
cusp point, whereas the corresponding bifurcations of
phase portraits of the prototype (29) are depicted,
respectively. In this case, both c> 0, ω2 − α2k2 > 0 and
c< 0, ω2 − α2k2 < 0 exhibit the same directions of flow,
but an opposite sign that is c> 0, ω2 − α2k2 < 0 or
β< 0, ω2 − α2k2 > 0 exhibits altered directions of flow.
Phase portraits (Figures 3(a) and 3(b)) are drawn for
α � 1,ω � 2, c � 1, k � 1 and α � 1,ω � 2, c � −1,

k � 1, respectively.

3.2. Precise Solutions for Model (1). Here, we develop a va-
riety of precise parametric representations of wave solutions
of the model (1). For facility, we first draw out the energy
stages via Hamiltonian of the model, which is identified by
equation (29) with separated various regions due to the
energy level of the critical points (Figures 2(a), 3(a), and 3(b):

Zσ � H(0, 0) � 0,

Zτ � H
β
c

, 0􏼠 􏼡 �
β3

6c
2 ω2

− α2k2
􏼐 􏼑

.

(32)

3.2.1. Solutions for Cluster-1

(i) On the parametric situation β> 0,ω2 − α2k2 > 0,

c> 0 or β< 0,ω2 − α2k2 < 0, c< 0, the linked
homoclinic orbit (see blue curve in Figure 1(a) at
τ(β/c, 0) is illustrated via H(U, V) � Zτ , which
suggests a valley type smooth solitary wave solution.
%e orbit H(U, V) � Zτ � β3/6c2(ω2 − α2k2) in
equation (29) yields

V � ±
�����������

2c

3 ω2
− α2k2

􏼐 􏼑

􏽳

U −
β
c

􏼠 􏼡

������

U +
β
2c

􏽳

. (33)

We merge the first equation of (29) and (33) with
integration; we attain a valley-type smooth solitary
wave solution

u(x, t) �
β
2c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−1 + 3 tanh2

�����������
β

4 ω2
− α2k2

􏼐 􏼑

􏽳

|ξ|⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

where ξ � k x − ω t.

(34)

(iii) On the parametric situation β> 0,ω2 − α2k2 > 0,

c< 0 or β< 0,ω2 − α2k2 < 0, c> 0 the linked
homoclinic orbit (see blue curve in Figure 1(b) at
τ(β/c, 0) is illustrated via H(U, V) � Zτ , which
suggests a valley-type smooth solitary wave solu-
tion. %e orbit H(U, V) � Zτ � β3/6c2(ω2 − α2k2)

in equation (29) yields

V � ±
�����������

2c

3 α2k2
− ω2

􏼐 􏼑

􏽳

U +
β
c

􏼠 􏼡

������
β
2c

− U

􏽳

. (35)

We merge the first equation of (29) and (35) with
integration; we attain a valley-type smooth solitary
wave solution

u(x, t) �
β
2c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
1 − 3 tanh2

�����������
β

4 ω2
− α2k2

􏼐 􏼑

􏽳

|ξ|⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

where ξ � k x − ω t.

(36)

(a) (b)

Figure 2: (a) Phase portrait on β< 0,ω2 − α2k2 > 0, c> 0 or β> 0,ω2 − α2k2 < 0, c< 0. (b) Phase portrait on β< 0,ω2 − α2k2 > 0, c< 0 or
β> 0,ω2 − α2k2 < 0, c> 0..
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(iii) On the parametric situation β> 0,ω2 − α2k2 > 0,

c> 0 or β< 0,ω2 − α2k2 < 0, c< 0, the model (1)
corresponds to a family of periodic orbits that

provide periodic wave solutions expressed by
H(U, V) � Zτ ,Z ∈ (0, Zτ) (see the green color orbit
in Figure 1(a) or phase portrait in Figure 1(c)). For

(a)

(b)

Figure 3: (a) When ω2 − α2k2 > 0, c> 0 or ω2 − α2k2 < 0, c< 0. (b) When ω2 − α2k2 > 0, c< 0 or ω2 − α2k2 < 0, c> 0.
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this situation, equation (29) of the closed domain
can be written as follows:

V � ±
�������������
2c/3(ω2 − α2k2)

􏽰 ���������������������
(U − ℓ1)(ℓ2 − U)(ℓ3 − U)

􏽰
,

(36), where (ℓ1, 0), (ℓ2, 0), and (ℓ3, 0) are the cutting points
by the orbits H(U, V) � Z,Z ∈ (0, Zτ) on the U-axis that
preserve the condition −β/2c≤ ℓ1 <U< ℓ2(≤ β/c)< ℓ3.
Merging the first equation of (28) and (36), we gain the
periodic solution as follows:

u(x, t) � ℓ1 + ℓ2−ℓ1( 􏼁sn
2

�����������

c ℓ3 − ℓ1( 􏼁

6 ω2
− α2k2

􏼐 􏼑

􏽶
􏽴

|ξ|,

��������
ℓ1 − ℓ2( 􏼁

ℓ1 − ℓ3( 􏼁

􏽳

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(37)

On the parametric situation β< 0,ω2 − α2k2 > 0, c< 0 or
β> 0,ω2 − α2k2 < 0, c> 0, similar investigation on
Figure 1(b) provide us with three intersecting points
(ℓ4, 0), (ℓ5, 0), and (ℓ6, 0) identified by the orbits
H(U, V) � Z,Z ∈ (Zτ , 0) on the U-axis that preserve the
condition ℓ4 < (β/c≤ )ℓ5 <U< ℓ6; c< 0.

We acquire the parametric formulation of the periodic
solution as follows:

u(x, t) � ℓ4 +
ℓ4 − ℓ5( 􏼁 ℓ6 − ℓ4( 􏼁

ℓ6 − ℓ5( 􏼁sn
2

��������������������

c ℓ4 − ℓ6( 􏼁/6 ω2
− α2k2

􏼐 􏼑

􏽱

|ξ|,

���������������

ℓ6 − ℓ5( 􏼁/ ℓ6 − ℓ4( 􏼁

􏽱

􏼒 􏼓 − ℓ6 − ℓ4( 􏼁

. (38)

3.2.2. Solutions for Cluster-2

(i) On the parametric situation β< 0,ω2 − α2k2 > 0,

c> 0 or β> 0,ω2 − α2k2 < 0, c< 0, the model (1)
corresponds to a homoclinic orbit (see the blue
curve in Figure 2(a)) at the point σ(0, 0) identified
by H(U, V) � Zσ � 0, where the prototype (28)
suggests itself as a smooth solitary wave solution of
valley type.%e assistance of the relation H(U, V) �

Zσ � 0 in equation (29) yields

V � ±
�����������

2c

3 ω2
− α2k2

􏼐 􏼑

􏽳

U

������

U −
3β
2c

􏽳

. (39)

%en, merging the first equation of (29) and (39)
yields the valley-type smooth solitary wave solution:

u(x, t) �
3β
2c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tanh2

�����������
−β

4 ω2
− α2k2

􏼐 􏼑

􏽳

|ξ|⎛⎝ ⎞⎠ − 1⎛⎝ ⎞⎠,

where ξ � k x − ω t.

(40)

(ii) On the parametric situation β> 0,ω2 − α2k2 < 0,

c> 0 or β< 0,ω2 − α2k2 > 0, c< 0, the model (1)
corresponds to a homoclinic orbit (see the blue
curve in Figure 2(b)) at the point σ(0, 0) identified
by H(U, V) � Zσ � 0, where the prototype (28)
suggests itself as a smooth solitary wave solution of
valley -type. %e assistance of the relation
H(U, V) � Zσ � 0 in equation (29) yields

V � ±
�����������

2c

3 α2k2
− ω2

􏼐 􏼑

􏽳

U

������
3β
2c

− U

􏽳

. (41)

%en, merging the first equation of (29) and (41)
yields the valley-type smooth solitary wave solution:

u(x, t) �
3β
2c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
1 − tanh2

�����������
−β

4 ω2
− α2k2

􏼐 􏼑

􏽳

|ξ|⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

where ξ � k x − ω t.

(42)

(iii) On the parametric situation β< 0,ω2 − α2k2 > 0,

c> 0 or β> 0,ω2 − α2k2 < 0, c< 0, the prototype (28)
has a set of smooth periodic wave solutions iden-
tified by H(U, V) � Z, which can be observed in
Figure 2(a)Z ∈ (Zτ , 0), and on situation β> 0,ω2 −

α2k2 < 0, c> 0 or β< 0,ω2 − α2k2 > 0, c< 0,
Figure 2(b) for Z ∈ (0, Zτ), respectively. For this
aspect, the formulation of the periodic solution is
identical to the solutions in equations (37) and (38),
respectively.

3.2.3. Solutions for Cluster-3

(i) On the state β � 0,ω2 − α2k2 > 0, c> 0 or β � 0,ω2 −

α2k2 < 0, c< 0, there is an unrestricted orbit with the
alike Hamiltonian at the origin σ(0, 0) (Figure 3(a)).
%is open cusp orbit (blue color) can be précised by

V � ±
�����������

2c

3 ω2
− α2k2

􏼐 􏼑

􏽳

U
3/2

. (43)

%en, by facilitation of the first equation of the
prototypes (29) and (43), we get hold of the periodic
cusp wave solution as follows:

u(x, t) �
6 ω2

− α2k2
􏼐 􏼑

c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
ξ2

,

where ξ � k x − ω t.

(44)
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(ii) On the state β � 0,ω2 − α2k2 > 0, c< 0 or β � 0,ω2 −

α2k2 < 0, c> 0, there is also an unrestricted orbit with
the alike Hamiltonian as the origin σ(0, 0)

(Figure 3(b)). Due to this condition, we also catch
out the similar periodic cusp wave solution in the
form

u(x, t) � −
6 ω2

− α2k2
􏼐 􏼑

c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
ξ2

,

where ξ � k x − ω t.

(45)

4. Results and Discussion

4.1. Solutions via Modified Simple Equation Method. For the
assorted values of the appreciate constants, we achieved
rogue wave multilump wave, dark and bright bell shape
solution, singular and antisingular soliton, and m-type and
anti-m-type periodic solutions. %ose solutions are obliging
to investigate a different nonlinear model of turmoil, the
wave motions, and a lot of fields such as nonlinear optic,
solid, and plasma state physics. We also set the parametric
conditions for which the same solutions behave dissimilarly
on the change of their parametric values.

Here are the solutions (7), (8), (9), (13), (14), (15), (22),
(23), and (24) which arrived in the form of a trigonometric
function, and the solutions (10), (11), (12), (17), (18), (19),
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Figure 4: %is is shape periodic rogue-type lump wave of the real part of the solution (7) through the value of parameters
c1 � 1, c2 � 2, k � α � 0.5,a1 � 3,c � 1,β � 1. %e periodicity exists along the t-axis: (i) 3D contour plot; (ii) density plot; (iii) 2D plot.
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Figure 5: Continued.
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(25), (26), and (27) arrived in the form of hyperbolic
function under some conditions.

Solution (7) is a complex-valued function for β< 0 and
a2
1c

2 < 36βα2k2 or β> 0 and a2
1c

2 > 36βα2k2 and it can be
expressed as the trigonometric function in equations (7)–(9).
%e solutions (8) and (9) give periodic rogue waves solution
as shown in Figure 4 for
c1 � 1, c2 � 2, k � α � 0.5,a1 � 3, c � 1 and
c1 � 1, c2 � 2, k � α � 0.5, a1 � 3, c � 1, respectively.

For β< 0 and a2
1c

2 > 36βα2k2 or β< 0 and
a2
1c

2 < 36βα2k2, the solution (7) is a real-valued function
solution, and it can be expressed as the hyperbolic function
in equations (10)–(12). %ese solutions always provide dif-
ferent types of solitary waves.

Solution (14) is complex if α2k2 <ω2 and it can be
expressed as the trigonometric function in (15) and (16). %e
profile in Figures 5(a) and 5(d) is a 2D plot and 3D control
plot of the real slice equation (14) for
c1 � c � 1, c2 � 2, k � α � ω � 0.5, β � 3 which is called a
periodic solution.%e 2D plot and 3D control plot of the real
portion of equation (14) are a stable periodic solution for
c1 � c � 1, c2 � 2, k � α � ω � 0.5, and β � 3 in Figures 5(b)
and 5(e). %e profile in Figures 5(c) and 5(d) is the peri-
odicity of the real portion of equation (14) for
β � 3. c1 � c � 1, c2 � 2, k � α � ω � 0.5, with 2D plot and
3D control plot.

For the condition α2k2 >ω2, solution (14) can be
expressed in the hyperbolic form in (18), (19), and (20). %e
solutions in (18) and (19) and the real part of (19) present
bright and dark shape solution in Figures 6(a) and 6(c) and

Figures 6(b) and 6(d) for k � α � 1, c � 0.05, β � 1,ω � 0.5,
taking the positive and negative signs of solutions,
respectively.

%e profile in Figure 7 represents density, three di-
mensional control plot, and 2D plot of the imaginary chunk
of (20) for c1 � Ic2 � 1, k � a1 � α � 1, c � −1,β � −0.05.
Figure 4

Forω2 < β, the solution (22) is a complex valued function
and it can be expressed as the trigonometric function in
equations (22), (23), and (24). Solution (24) represents
periodic rogue waves solution for ω � 0.5, α � 2, c � 1, β � 1
and has a nature like Figure 4. %e profile in Figure 8 is 3D
contour plot and density plot of multitype lump wave so-
lution of (25) for ω � 0.5, α � 2, c � 1, β � 1. Figures 5–8.

4.2. Solutions via Dynamical System Scheme. In this sub-
section, we are going to visualize the nature of the solution
that is achieved for each orbit with assorted values of the
appreciate parameters. We see from the MSE scheme that a
single solution changes into three different types of solutions
due to a change in parametric conditions. But, this method
initially bifurcated the phase orbits, and different types of
orbits provided different types of solutions. %e solutions
(33), (35), (40), and (41) are consistent with homoclinic
orbits and exhibit bell wave solutions, but (34) and (40) yield
dark bell, while (36) and (41) yield bright bell wave envelops.
%e profile of dark bell solitary wave solution via (34) is
shown in Figure 9. %e profile of bright bell solitary wave
solution via (36) is shown in Figure 10. Solutions (37) and
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Figure 5: Periodic solution of equation (14) and the periodicity exist along the x-axis: (i) dark wave: 3D (upper) and contour (lower) plots,
(iv) 2D plot of (i); (ii) bright wave: 3D (upper) and contour (lower) plots, (v) 2D plot of (ii); (iii) dark-Bright wave: 3D (upper) and contour
(lower) plots, (vi) 2D plot of (iii).
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(38) exhibit a different type of periodic wave solutions which
are depicted by Figures 11 and 12 respectively. Besides this,
cusp orbit provided us cusp type peaked wave solutions (44)
and (45) which are exploited in Figures 13 and 14, re-
spectively. %ey exhibit upward and downward peaks as
directions of orbits are opposite.

5. Remarks and Comparison

It is worth mentioning that both techniques we used here are
very simple and direct and take less computational effort
than the other methods [42, 44], and these techniques can be
handled without help of the auxiliary equation to exhibit the
internal mechanism of the model. Sirendaoreji [42] used the
auxiliary method to solve the quadratic nonlinear KGmodel

and extracted solitary, periodic, and singular solutions in
real form only by getting the help of the auxiliary equation.
Besides this, Zhang [44] solved the same model by using the
exp-function method and extracted a few solutions, in-
cluding solitary as well as periodic waves only in real form.
But, our solutions obtained by the two methods found
solitary, periodic, and singular solutions in both real and
complex forms, which cover all of their solutions. In ad-
dition, we derived our results by direct integration from its
Hamiltonian following each energy orbit of its phase por-
traits. We extracted different bounded and unbounded
periodic waves, dark and bright bell shape, dark-bright and
bright-dark kink wave, polynomial solution, disguise version
of soliton, and periodic rouge wave resolutions of the KG
model which was not reported in [42, 44].
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Figure 6: Profile of solution of equation (18): (i) 3D (upper) and density (lower) plot as bright bell wave, (iii) 2D plot of (i); (ii) 3D (upper)
and density (lower) plots as dark bell wave, (iii) 2D plots of (ii).
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Figure 7: %e profile is the single soliton as a dark-bright kink wave of the imaginary portion of equation (19) for
c1 � 1, k � α � 1, ω � 0.5, c � 0.05, β � 1: (i) 3D plot (upper) and contour plot (lower), (ii) 2D plot.
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Figure 9: Shapes of the solution of equation (33): (a) 3D shape (upper), density (lower) plots of dark bell wave, and (b) 2D shape for
α � 2, β � −2, c � −1,ω � k � 1.
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Figure 10: Shapes of the solution of equation (35): (a) 3D shape (upper), density (lower) plots of bright bell wave, and (b) 2D shape for
α � 2, β � −2, c � ω � k � 1.
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6. Conclusion

In this research, we successfully investigated the quadratic
nonlinear KG model with bifurcation analysis. %e MSE
and dynamical system schemes are employed in the model
and extracted different bounded and unbounded periodic

waves, dark and bright bell shape, dark-bright and bright-
dark kink wave, disguise version of soliton, and periodic
rouge wave resolutions of the KG model. We apply the
dynamical system to bifurcate the model and draw distinct
phase portraits on unlike parametric constraints. Fol-
lowing each orbit of all phase portraits, we originate
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Figure 11: Shapes of the solution of equation (38): (a) 3D shape (upper), density (lower) plots of periodic wave, and (b) 2D shape for
α � β � c � k � 1,ω � 2, l1 � 0, l2 � 1, l3 � 2.
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Figure 12: Shapes of the solution of equation (37): (a) 3D shape (upper), density (lower) plots of periodic wave, and (b) 2D shape for
α � 2, β � c � k � ω � 1, l4 � 0.8, l5 � 1.1, l6 � 3.
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bounded and unbounded solitary, periodic and periodic
rogue-type wave solutions of the KG model. We also
analyze the effect of parameters on the obtained wave
solutions and discuss why and when it changes its self-
nature. Numerical illustrations of the derived solutions

with 3D contour, density, and 2D plots are presented by
the arbitrary picking of parameters allied with conditions.
Lastly, we think that the realized schemes are burly and
more skilled than other schemes and the attained solutions
are reliable.
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Figure 13: Shapes of the solution of equation (44): (a) 3D shape (upper), density (lower) plots of periodic wave, and (b) 2D shape for
α � 3, β � 2, c � −4, k � ω � 1.
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Figure 14: Shapes of the solution of equation (45): (a) 3D shape (upper), density (lower) plots of periodic wave, and (b) 2D shape for
α � 3, β � 2, c � 4, k � ω � 1.
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