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In this paper, we study the uniqueness and existence of the solutions of four types of non-singular delay difference equations by
using the Banach contraction principles, fixed point theory, and Gronwall’s inequality. Furthermore, we discussed the
Hyers-Ulam stability of all the given systems over bounded and unbounded discrete intervals. The exponential stability and
controllability of some of the given systems are also characterized in terms of spectrum of a matrix concerning the system. The
spectrum of a matrix can be easily obtained and can help us to characterize different types of stabilities of the given systems. At the
end, few examples are provided to illustrate the theoretical results.

1. Introduction

In mathematics, we usually observed that many of the bi-
ological systems and models can be resolved by using dif-
ferential equations. Differential equations have a lot of
applications in various fields of natural sciences, economics,
statistics, and engineering (see [1-4] and the references
therein). Although differential equations are too useful,
when we discuss a real-life problem, we need to take the
sample in discrete form and show the model in a form of
difference equations (for details, see [5, 6]). The applications
of difference equation have appeared recently in many fields
of sciences and technology, mathematical physics, and bi-
ological systems. The theory of difference equations will
continue its role in mathematics as a whole because during
the period of development of mathematics together with
information revolution, there are many difference equations
to describe the real problem such as the monographs and
wind flow. Similarly, many models were described by

fractional-order differential equation (FODE), in which the
order of derivative is in fraction form rather than an integer
form. These types of differential equations have a lot of
applications in real life [7, 8]. In [7], the theoretical study of
the Caputo-Fabrizio fractional modelling for hearing loss
due to mumps virus with optimal control was discussed
which is useful contribution in natural science. Also in [8]
some novel mathematical analysis of fractal-fractional model
of the AHIN1/09 virus and its generalized Caputo-type
version was explained.

Any type of system has some properties (qualitative
properties), in which the stability is more important. Every
differential system has some qualitative properties, in which
the stability plays a vital role. Using this, the system per-
formance can be checked. A differential have various types of
stabilities, but here we are interested in Hyers-Ulam sta-
bility, because nowadays many researchers wants to know
about this stability. The idea of Hyers—Ulam stability started
in 1940 [9]. Ulam in a seminar, in his presentation he
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pointed out some problems associated with the stability of
group homomorphism. After a year in [10], Hyers gave a
positive answer to the Ulam's question by considering
Banach Space in place of that group. The general approach of
this stability was given in 1978, by Rassias [11]. He also used
this idea in the Cauchy difference system. Obloza [12] used
this idea in differential equations, and later Jung [13] and
Khan et al. [14] used it in the difference equations. This
stability was also discussed in fractional differential equation
by Gao et al. [15], and some results on Ulam-type stability of
a first-order non-linear delay dynamic system were dis-
cussed by Shah et al. in [16]. Recently, the Hyers-Ulam
stability of second order differential equations by using
Mahgoub transform and generalized Hyers-Ulam stability
of a coupled hybrid system of integro-differential equations
involving ¢-caputo fractional operator was studied in
[17,18]. The existence and Hyers-Ulam stability of solution
for almost periodical fractional stochastic differential
equation was discussed in [19]. Also in [20], the existence
and Hyers-Ulam stability of random impulsive stochastic
functional differential equations with finite delays was dis-
cussed, which showed that the Hyers-Ulam stability have a
lot of contribution in fractional calculus.

Controllability is one of the fundamental concepts in
modern mathematical control theory. Kalman’s result [21]
on controllability assumes that controls are functions on
time having values on some non-empty subset of R”. This is a
qualitative property of control systems and is of particular
importance in control theory. Systematic study of control-
lability was started at the beginning of 1960s and theory of
controllability is based on the mathematical description of
the dynamical system. Many dynamical systems are such
that the control does not affect the complete state of the
dynamical system but only a part of it. On the other hand,
very often in real industrial processes, it is possible to ob-
serve only a certain part of the complete state of the dy-
namical system. Therefore, it is very important to determine
whether or not control of the complete state of the dy-
namical system is possible. Roughly speaking, controllability
generally means that it is possible to steer dynamical system
from an arbitrary initial state to an arbitrary final state using
the set of admissible controls. Controllability plays an es-
sential role in the development of the modern mathematical
control theory. There are important relationships between
controllability, stability, and stabilizability of linear control
systems [22, 23]. Controllability is also strongly connected
with the theory of minimal realization of linear time-in-
variant control systems. Moreover, it should be pointed out
that there exists a formal duality between the concepts of
controllability and observability [24].

The delay difference system can be used in the charac-
terization of automatic engine, control theory, and physi-
ology system. Khusainov et al [25] solved the linear
autonomous delay-time system with commutable matrices.
Diblik and Khusainov [26] gave the description about the
solutions of discrete delayed system using the idea [25].
Then, Wang et al. [27] studied relative controllability and
exponential stability of non-singular systems. Recently, the
generalized Hyers-Ulam-Rassias stability of impulsive
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difference equations was demonstrated by Almalki et al.
[28]. Kuruklis [29] and Yu [30] studied the asymptotic
behavior of the variable type delay difference equation.
Kosmala and Teixeira [31] provided a good insight and
discussed the behavior of solution of the difference equation
of the type Uy, = (A+U,_;)/ (BU, +U,_,). Liu et al [32]
designed the exponential behavior of switch discrete-time
delay system. Marwen and Sakly [33] discussed the stability
techniques about the switched non-linear time-delay dif-
ference equations. Yuanyuan [34] described the stability
techniques of high-order difference systems. The stability of
higher-order rational difference systems was studied by
Khaliq [35].

Our present study is focused on the Hyers-Ulam sta-
bility and exponential stability of non-singular delay dif-
ference system of the form

{Evn+1 =AV,+BV, ;,n>0,k>0, 0
V,=®,-k<n<0,
EV,,,=AV,+BV,  + f(nV,),n>0,k>0, 2)
V,=¢,-k<n<o0,
and
{ EV,., = AV, + BV, ; + [F(n, \/n_k),l’lZ 0,k>0, 3)
V, =vy,,—-k<n<0,

where the commutable constant matrices are E, A, B € R™"
and E is non-singular. ¢ € B(Z,,X), the space of bounded
sequences, and F € CS(Z, x X, X), the space of convergent
sequences, where J={-k,-k+1,...,0}, Z, ={0,1,2,...},
and X = R". Also, our focus is on relative controllability of
the system

{ EV,,=AV,+BV,  +y(nV,)+CU,nel k>0,
V,=V¥,-k<n<o0,
(4)

where 1=1{0,1,2,...,n},n>0,C € R,y € CS(Z,,xx)
and the control function U (-) takes values from L? (I, R").
The continuous form of this work is given in [27]. The
Hyers-Ulam stability of (3) was recently presented in [36].

2. Preliminaries

Here, we discuss some notations and definitions, which will
be needed for our main work. By R” and R™", we will
denote the n-dimensional Euclidean space with vector norm
|l - | and n x n matrices with real-valued entries. The vector
infinite-norm is defined as ||v| = max,_;_,|v;| and the matrix
infinite-norm is given as ||A| = max,_;, Z;‘:l |a;;| where
v € R"and A € R™"; also, v; and a;; are the elements of the
vector v and the matrix A. B (I, X) will be the space of all
bounded sequences from I to X with norm
Ivlic = sup,llv,ll. We will use R, Z and Z, for the set of real,
integer, and non-native integer numbers, respectively. Also,
we define B' (I,X) = {v e B(L,X);v' € B (I,X)}.
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Lemma 1. The non-singular delay difference systems (1)-(4)
have the solutions:

k
V,=A"E"®,+BA"'E"Y ATEQ,,
i=0

n
+BA"'ET" Y ATEV,,,

i=k+1

k
V,=A"E "¢y + A" ET"Y ATE (B4 + f (i, V)
i=0

+ATIET Y ATE BV + (i, V),
i=k+1

k
V, = A"E "y + ATET"Y ATE By + F (i viy)
i=0

+A"IET Y ATE BV + F(i, Vi),

i=k+1
(5)
and
k
V,=A"E"Y + AETY ATE(BY,  + y(i,V)) + CU)
o7 (6)
+A"ET Y ATE BV + y (i, V) + CUY),
i=k+1

respectively, where AE = EA,AB = BA, and EB = BE. The
proofs can easily be obtained by successively putting the values
ofne{-k,—k+1,...}.

Definition 1. The solution of system (1) is said to be ex-
ponentially stable if there exist positive real numbers A, and
A,, such that

[Vl < Aie ", vn 0. (7)

Definition 2. For a positive number ¢, the sequence y,, is said
to be an e-approximate solution of (1)-(3) if the following
holds:

{ |EV,1 — Ay, - By, | <e,n>0,k>0

>

”er _®n||S€;—kSnSO

{ ”Ev/rﬁl _AWn_BWn—k_f(n’ l7”71)”S€’7120’k20 (8)

|v, - ¢ <& -k <n<o

{ ”EV/nJrl - Al//n - BWn—k - [F(I’l, ll/n—k)” senz O’kZO

|v, - ¥,|<e.—k<n<o.

Definition 3. Systems (1)-(3) are said to be Hyers-Ulam
stable if for every e-approximate solutions y, of systems
(1)-(3) there are exact solutions Y,, of (1)-(3) and a non-
negative real number K such that

||Yn - 1//,1" <Ke,nel 9)

Definition 4. System (4) is said to be relatively controllable,
if for initial vector function ¥ € B’ (J,X) and final state of
the vector function v; €X, there exists a control
u € Z?(1,X) such that (4) has a solution v € B {-v,...om},
X) which satisfies the boundary condition v, = v,.

Remark 1. It is clear from (5) that Y € B’ (I, X) satisfied (5)
if and only if there exists f € B(I, X) satistying

(| fucener

) Eyn+1 szn+Byn—k+fn)n€ Z+)

L v, =D,,-k<n<0.

(| fu|cener

1 EYnn = Ay, + By, +f(n,yn_k) +fn’n €z, (10)
l v, =¢,,—k<n<O.

(| fulsenel

A Eyn+1 = A)’n + B)/n,k + [F(n, y,,,k) + fn,n € Z+,

L v, =V¥,,-k<n<O.

3. Existence and Uniqueness of Solutions

Here, we will discuss the existence and uniqueness of the
solution of system (1). For this, we need the following
assumptions:

A;: the linear system AG,,; = MG, + NG,_; is well
modelled.

Ay A YIET"IL < 1.

Theorem 1. If assumptions A, and A, hold, then system (1)
has a unique solution V € B(I, X).

Proof. Define T: B(I,X) — B(I,X) by

k
(TV), = A"E""®y+ BA" 'E™" Y ATE'®,,
) =0 (11)
+BA"'ET" Y ATEV,,.

i=k+1

Now, for any V,V' € B(I,X), we have



[ (V) =(TV"), ] =

This implies that

~av)Jsisifar ] S A BV v

i=k+1

<tBifa™ e nzafv - v'||

lv),

(13)

Thus, T is contraction if ||A"[||[E""|L <1, so (by BCP) it
has a unique fixed point and will be the solution of system
(1). Similarly, we can show the existence and uniqueness of

solutions of systems (2)-(4). For (3), we also refer to
[36]. O

4. Hyers—Ulam Stability over Bounded
Discrete Interval

In this part of the paper, we will discuss the Hyers-Ulam
stability over bounded discrete interval. Before the result, we
will put the following assumptions:

A the linear system EV,,, = AV, +BV,_ . is well
posed.

A,: there exists a constant # such that

z ¢, <nforeachn € L (14)

Theorem 2. If A, and A, and Remark 1 are satisfied, then
system (1) is Hyers-Ulam stable over bounded interval.

Proof. The solution of difference system (1) is

k
V,=A"E"®,+BA"ET"Y ATED,,

) i=0 (15)
+BA"ET Y ATEV,
i=k+1
From Remark 1, the solution of
{EUM =AU, +BU, , + f,,n20,k>0, (6
U,=0,,-k<n<0,

is

n
-BA"'ET" Y ATEV,,.

Complexity
k . . n . .
A'E"® + BA"'ET"Y ATE'®,  +BA"'ET" Y ATEV,,
i i=k+1
—A"TET"®) -BATIET Y ATEQ 4+ . (12)

i=k+1

i=k+1

k
U,=A"E""®+BA"'ET" ) ATE'D,
=0 (17)
n . .
+A"ET" Y ATE (BU g + fiy).
i=k+1

Now, we have

k
A'ET"®y + BA"'ET"Y ATE'D,,

i=0

n
BA"'ET" Y ATED, +
i=k+1

U, - V.| =[|A""E"®, -

n
BA"'ET" Y ATEU

i=k+1

n
AE Z AT'E'(BY  + fik)

i=k+1

n
-BA"'ET Y ATEV,,
i=k+1

|3 nHuE 105U, - BV,

<fa™ e

(18)

HlaE Z lA e el

o, - vl =la W] S a1

i=k+1

e D I

i=k+1

k+r

=e||A"*||||E*"||;||A+f 7,

n-k
=el' ) ¢,
r=1
< eL4r1
=le,
where [ = L*#. Hence, system (1) is Hyers-Ulam stable over
bounded discrete interval.

Next, we will show that system (2) is Hyers—Ulam stable.
Again, we need one more assumption:

Aj: the map F: I x X — X satisfies the Carathéodory
condition

[F9 - Fno=kifo-o] 9

for some K>0 and for all 9,9 € B(I,X). O
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Theorem 3. If A,-A; along with (2.6) and Remark 1 are EU,,, = AU, +BU, , + f(n,U,) + f,,n>0,k>0,
satisfied, then system (2) is Hyers-Ulam stable over bounded { a P (21)
interval. U,=¢,-k<n<0,
is
Proof. The solution of delay difference system (2) is .
o e , U, =A"E "¢y + A" 'ET"Y ATE (B + £ (i,U)))
V, = A"E "+ ATIET" Y ATE (Bgi i+ f (V) ; ’ 22)
noo 1A=0 (20 + ATET" Zn: ATE'(BU 4 + f(L,U) + fix)
+ ATUE Y ATE BV + £ (V). L= PR Tk
i=k+1
Now, we have
Also, from Remark 1, the solution of
k . .
A'ET"¢y + AT ETNY ATE (B + £ (5,U;))
i=0
U=Vl =] ATET Y ATE(BU i+ £ (U + fik)
i=k+1
ATVET Y ATE BV + £ (5, V)))
i=k+1
=A"'ET" Y ATE BV + f(i,V)))
i=k+1
=[A"'ET™" Y ATE'(BU, + f(i,U,-))H
i=k+1
n o L .
+HATIE" Y ATEf - ATET Y ATE (BVik+f(i,Vi))|
i=k+1 i=k+1
<faE] X 1A ENI(BU . - BV (23)

i=k+1

+|fGU) = £V fikl)

U, -Vl < | E] Y, A EN([BU .~ BV, + LU, - Vi + i)

i=k+1

1 S 1L

<[ E] X 1A E egi

i=k+1

n-k
_ e"An—IHHE—n" Z‘i"A—k—r Ek+r ¢r
n—k
=1') ¢,
r=1
< L411



Thus, system (2) is Hyers-Ulam stable.
The Hyers-Ulam stability of system (3) over bounded
discrete interval is discussed in [36]. O

5. Hyers—Ulam Stability over an Unbounded
Discrete Interval

Here, we discuss the Hyers-Ulam stability of systems (1)-(3)
over an unbounded discrete interval; we have some
assumptions:

A,: the operator family |L*| <Ne ", n>0,v>0, N > 1.

A,: the linear system AG,,; = MG, + NG,_; is well
posed.

Aj: also, assume that

n-1
> 6.<n, (24)
r=1

for each n € Z,, and for =0 .

Theorem 4. If A,-A; along with (2.6) and Remark 1 are
satisfied, then system (1) is Hyers-Ulam stable over an un-
bounded intervall.

Proof. The exact solution of non-autonomous difference
system (1) is

k
V,=A"E"®,+BA"ET"Y ATED,,
=0 (25)

n
+BA"ET" Y ATEV, .

i=k+1

Let Y be the approximate solution of system (1); then,
clearly, for a sequence f,, with | f,ll <e, we have

{ EY,., =AY, +BY, ; + f,,n>0,k>0, 6
Y, =®,-k<n<o,
and
k
Y,=A"E"®)+ A" ET"Y ATEO,,
i=0 (27)

+AIETT Y ATE (BY,  + fig).

i=k+1

Now, we have

Complexity

k
A"ET"®y + BA"'ET"Y ATEQ,
i=0

¥, -u,l \

n
+ATIET Y ATE(BY y + fiy)
i=k+1

n
~A"'ET"® - BA"'ET" ) ATEQ i+

i=k+1

n
-BAT'ET" Y ATEU,
i=k+1

n
—-BA"'ET" Y ATEU

i=k+1

n
ATETY AVE(BY o+ f)

i=k+1

>

L . .
<fa e X |ATENBY ik~ BY i+ fid

i=k+1

n . .
<[ ME| Xl ENBY k- BY i

i=k+1

HATNE 2 A4 E N ]

7 . .
<[ ME] X JaTEN

i=k+1

<[a™ lE] X 1A E legi

i=k+1
n-k
S [ by e 2
r=1
n-k
=el' ) ¢,
r=1
< eL411
<Ne "ne
=1L,

(28)

where L = Me™"*. Thus, system (1) is Hyers-Ulam stable
over an unbounded interval.

To prove the Hyers—Ulam stability of system (2), we have
to add one more assumption:

A,: the continuous function H: Z, x X — X satisfies
the Carathéodory condition

|||]-|](n,w)—[H](n,w')"llSKH"w—w'",KZO, (29)
for every n € Z,w, 0’ € X. O
Theorem 5. If A-A, along with (2.6) and Remark 1 are

satisfied, then system (2) is Hyers-Ulam stable over an un-
bounded interval.
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Proof. The solution of delay difference system (2) is

k
V, = AE gy + ATUEY ATE (B + £ (V)

i=0

. (30)
+ ATUET" Y ATE BV + £ (i, V))).
i=k+1
Also, from Remark 1, the solution of
{ EU,,, =AU, +BU, , + f(nU,) + f,,n>0,k>0, (31)
U,=¢,-k<n<o,

[V =Vl =

i=0

k
A'ET ¢y + ATIETNY ATE (B + £ (,U))

ATET Y AE (UL f(U) + fi)-

i=k+1

k
A"E™"¢ - AT BN Z AT (B + f (i, V3))-

i=0

n
ATIET" Y ATE BV + £ (V)

i=k+1

i=k+1

AET Y ATE (BUL+ f (U + fi)

n
ATET" Y ATE BV + £(i,V)))

i=k+1

i=k+1

ATET Y ATE(BU . + £ (,U)))

ATIE" Y ATEf - ATET Y ATE(BV 4+ (i, V)

i=k+1

7
is
k . .
U,=A"E"¢y+ A" 'ET" Y ATE (Bgy + £ (i,U,))
) i=0 (32)
+A"ET" Y ATE (BU + f(LU;) + fig):
i=k+1
Now, we have
+
+
i=k+1 (33)

<l ] Y B [BU - BV

i=k+1

+||f(i7 U;) - f (i, Vi)” +||fi—k"’

<[ ME| X JATENBU = BV + LU = Vill +] £

i=k+1

“Ja e 3 A E ]

i=k+1
n

<A E lelA‘ E¢is

i=k+

-l g

n—k
=1') ¢,
r=1

<Ne ™y

¢



where K =Ne ™#. Thus, system (2) is Hyers-Ulam
stable. O

Theorem 6. System (3) is Hyers-Ulam stable over an un-
bounded interval.
For the proof, see [36].

6. Exponential Stability

In this part of the paper, we will present the exponential
stability of system (1). First, we recall that a discrete system is
said to be exponentially stable if there exist two positive
constants M and « such that [V, [|[<Me * for allne Z,.
Before going to the result, we will consider the following
assumptions:

(1) Let 0 (AE™") = {A;,A;,...,1,} be the eigenvalues of
AE"! with

A<yl < | < e (0,1). (34)

(2) |A"E~"|| < Ne™ *" for some positive number « and for
alneZ,.

V.l =

k
A"ET"®y+BA"'ET"Y ATEQ,  +BA'ET" ) ATEV

i=0

Complexity

(3) N?|IB|| - a<0.

(4) There exists L>0, such that [f(G V)<
L[| V;lfori > 0andV; € R".
(5) There exists M>0, such that [F@G V)<

M|V, fori > 0OandV; € R".
(6) N?|B|IL?> - «<0.
(7) N2M|B| — a<0.

Theorem 7. Assume that (1)-(3) are satisfied. Then, system
(1) is exponentially stable.

Proof. The solution of system (1) is

k
V,=A"E"®,+BATET" Y ATED,
) i=0 (35)
+BA"'ET Y ATEV,

i=k+1

Now,

n

l

i=k+1

<[A"E " || BI]A™ E| §||A‘iEilF|lVi-k||

+IBIA™ B Y [ATE]

i=k+1

<Ne “|@,| +IBI

k
Ne~ an Z Ne~ an
i=0

Vil (36)

k n
V.l sNe“"(”CDO" +|B|l ZNe*““”cD,._k" +||B| Z Ne‘m"Vi_k“),
i=0

i=k+1

k n
|Vl < NJ@o| +1B1 Y N[0, +1BI 3. N*e [V,
i=0

i=k+1

=M (¢, ¢) +IBI Y ae” |V,

i=k+1

where M (¢,¢;) = N|@y|l + Bl X5 N2 ®,_J; now,
using the Gronwall inequality, we have
eIV < 2 (4, )1 37)
From this, we have

[Vl < M (8, g)e 1" (38)

Using definition of stability and assumption (3), the
result follows. U

Theorem 8. Assume that (1), (2), (4), and (6) are satisfied.
Then, system (2) is exponentially stable.

Proof. The solution of (2) is in the form of

k
V, = A"E"¢,+ A" ET" Y ATE (Bg g + £ (i, V)))
i=0 (39)

+ATET" Y ATE BV + £ (5, V).

i=k+1
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Now,

k
A'ET ¢y + AIETNY ATE (B + £ (i, V)

i=0

IVl =

ATIET" Y ATE BV + £ (,V)))

i=k+1

k .
[Val < 4" [lgol + 4™ E7"| ;l|A_lEl||“B¢i—k +f(@ V)

A E] Y ATV 1Y)

i=k+1

k k
<Ne ™| ¢o| + Ne™ Y Ne ™| Bg, || + Ne ™ Y Ne™*|| £ (i, V)|
i=0 i=0

n n
FNE Y N BV + Ne Y N ] £V,

i=k+1

k k
[Val e <N [0l + 2 N[ Bgii + 2 N | £ (1. Vi)
i=0

i=0

n

Using (4), we have

k k
e [Val < Nlgol + 2 N'e " IBl¢ii]| + ) N'e "LIVI;
i i=0

i=0

(41)
Y NI - Y N L)
i=k+1 i=k+1
Using the Gronwall inequality, we have
e |Val <M (g9 )e VI, (42)

where M (¢, ¢;) = Nld,ll + Z:;O NZ2e= | Bl|ll$;_ |l > 0. From
this, we have

[Vl < M (g, ¢ )e V1B (43)

From (50), the desired result holds. O

Theorem 9. Assume that (1), (2), (5), and (7) are satisfied.
Then, system (3) is exponentially stable.

Proof. The solution of (3) is in the form of

k
V, = A"E "y + A ET" Y ATE (By o + F(i v y)
i=0

n
+A"IET Y ATE (B, + F(, V).
i=k+1
(44)

IVl =

¥ NIV Y NV

i=k+1 i=k+1

9
(40)
i=k+1
Now consider
k
A"E My, + A" 'ET" z ATE (Byii + F (i, ;)
i=0
+ATET Y ATE BV +F(i, Vi)
i=k+1
<[a"E™"|[vol
+|A"ET| Y AT E | By, + F (i vy
i=0
A E Y |aE BV, +F(i,V.y)
B Y A E Y F Vi "

k
<Ne |y + Ne™™ Y Ne™ ™| By, + F (i, v )|

i=0

n
+Ne @ Z Ne™™|BV; i+ F(i. Vi)
i=k+1

k
:e-“"(Nu%n LN By EG ‘””"”)
i=0

n n
+ Z Nzefan||BV,>k“+ z Nzeian"F(i’V"*k)“'

i=k+1 i=k+1

This implies that
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n

k
e Val < Nlyoll + 2 N°e By + F(iyi) |+ ), Ne IBI|Vi
i=0

n

+ Z Nle— an

i=k+1

=M (y, w1)+z Nze*“"||B||||\/,._k||+'Z Ne “|F (i, Vip)|

i=k+1

Using (5), we have
eIVl <My yi) + Y N IBIV,
i=k+1 (47)

+ Y N2 UM|V ],
i=k+1
where M (v, y,) = Nlly,ll + Zf;o Nze“"”||Bwi,k +F Gy )l
Using again the Gronwall inequality, we have

e[V, | < M (s ) D", (48)
That is,
[V, < M (e (NI, (49)
From (51), the desired result holds. O
7. Controllability

In this portion, we will discuss the controllability of system
(4). First, we will discuss the linear problem and then the
non-linear problem.

Linear Problem. We assume that y = 0; then, (4) reduces to
the linear system

i=k+1
(46)
n
i=k+1
{ EV,, =AV,+BV, , +CU,,neLk>0, (50
V,=v,,-k<n<O0.
We define a delay Gramian matrix
- i T T T
W [0m]= ) (A'E) (A" 'E")CCT (A" ET) ((A’IE)) .
i=k+1
(51)

Theorem 10. The linear system (6) is relatively controllable,
if and only if W _[0,n,] is non-singular.

Proof. Sufficiency: since W_[0,#,] is non-singular, then its
inverse is well defined. So, we select a control function as
follows:

U,= CT(A""IE_”)T<(A"1E)i>TWC_1 [0,m]y,  (52)

where

k
n=v, - A"E"W, - A" E" Y ATE'(BY, ; + CU,).
i=0
(53)

Then,

k
v, = A"E""W,+ A" 'ET" Y AT'E'(BY,, + CU)

i=0

n
+ATET Y ATECU;

i=k+1

k
= A"E"Y, + A" 'ET") ATE (BY, . + CU,)

i=0

n

(54)

+ATETY (A*IE)’CCT(A”*IE*”)T<(A*HE)’)TVVQ1 [0,m,]%

i=k+1

=,

Clearly, from Definition 4, we have that (6) is relatively
controllable.
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Necessity. We will prove by contradiction; assume that
W_[0,n,] is singular, i.e., there exists at least one non-zero
state V €eX such that

VW [0,n,] v =0. (55)

So, we obtained
0= vW_[0,nm]v

(A ey (4 e (4 ) (a7 ) )

(56)

DM I

i
o

2
>

v (4 'E) (A" 'E)|

which implies that

V(ATE) (AT EC=(0,...,0) =0"Vnel (57

n

Since (6) is relatively controllable, from Definition 4,
there exists U, (n) that drives the initial state to zero at n;,
that is,

k
v, = A"E""W,+ A" 'ET" Y AT'E' (B, + CU)
) =0 (58)
+A"'ET" Y ATEICU, (n) = 0.
i=k+1
Similarly, there also exists a control U, (n) that drives the
initial state to the state \mathringy at n;:

k
v, = A"E"Wo+ A" 'ET" Y AT'E'(BY, , + CU)
) i=0 (59)
+A"ET Y ATEICU, (n) = .

i=k+1

From the above, we have

v=A""E" Y ATEC[U,(n)-U,(n)]. (60)

i=k+1

11

Multiplying both sides of (60) by v and via (8), we have

Viv=A"TET" Zn: vTATE'C[U, (n) - U, ()] = 0. (61)

i=k+1

This implies that ¥ = 0, which contradicts the fact that v
is non-zero. So, the delay Gramian matrix W [0, n,] is non-
singular, which completes the proof.

Non-Linear Problem. To discuss the controllability of a non-
linear system (4), consider the following conditions:

(1) The operator W: L?(I,X) — X defined by

w,= Y (AE) (4" B, (62)

i=k+1

has inverse operator W~!, which takes values from
L* (1, X)/kertW and the set M, =
W= L, (%12 (1X)/kerw)- FOr the next result, we put
another assumption.

(2) The map u: I xX — X is continuous and there
exist a constant p>1and L, (-) € L? (1, X) such that

lu(n,6) - u(mbI| <L, (m)|Ib - all b,a € X. (©)

Theorem 11. Let us suppose that (1)-(3), (8), and (9) are
satisfied. Then, system (4) is relatively controllable if

nm—-1p-—n _mam
b[1+NM1||C|I||A E"|(1-e )]<1,

1-¢* (64)

where b= ||AME""|N[1 -e %/1 - e“"q]l/qIILy||Lp(1,x)
and 1/q+1/p=1,9,p> 1.

Proof. Using (8), for an arbitrary v, € B(L X), we define a
control function u, by

k
u, = wl[v1 —A'ET"W, - ATET" Y ATE (BYy + y (i, V)

=0 (65)

n
ATET" Y ATE BV + y (i, Vi))] ,nel

i=k+1

We show that the operator P: B(I,X) — B(I,X) de-
fined by
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k
(Pv), = A"E""¥, + A" 'ET" Y ATE'(BY,  + y (i, V}))
i=0

+ATET" Y ATE BV, + y (i, V)
i=k+1
+ATET"Y ATE'CU;
i=0
(66)

has a fixed point, which is the solution of (4), by using the
above control function.

M=

]
o

and Y7 e ¥y (i,0)|<FYl e =F(l-e ™/1-e™).

uvn
i=0

<w™ “5/’»«1 (X2 (1LX)/kerW) < i +AmE | + 4™

i=k+1

n . .
da e 3 el )

Complexity

We need to check that (Pv), =v; and (Pv), = vy, which
means that u, steers system (4) from v, to v, in finite n, and
this implies that system (4) is relatively controllable on I.

Foe every real number 7, let B, = {v € B(L X): |lv||. <r}.
Set F =sup,lly(n,0)]. We will prove this theorem in
following three steps. O

Step 1. We claim that there exists a positive real number r
such that P(B,)<B,.
Note that

n lq n Up 1 — e ™4 l/q

—ai . - aiq Py ~

e "L, () <Zoe ) <%Ly(l)> S(ﬁ) L . (67
i= i=

Now using (1), (2), (8), and (60), we have

k n
= HW_I[vl —AMETY - AMTIET Y ATE (BYy + y (i, V) - AMTIET™ Y ATE BV + v (i V,))]”
i=k+1

k . .
E| LA E B+ y (V)

i=0

k n
<M, <||v1 |+ Ne™ || +]|a™'E™ Z Ne “||BY,_; + y (i, V;)|| +]A"'E™™| Z Ne “||BV,_ + y (i, vi)||>
i=k+1

i=0

k . L .
<M, <Ilv1 |+ Ne ol +fa™ B 3 Ne B +an T E | 3 Ne |y (i Vi)
i=0 i=0

a3 Ne“iqu,-_kn)

i=k+1

k n
s ( vl + Nem e [wo +a™ T ET Y Nem [ BY i +]A"TTET | Y Nem [y (i, Vi) - G, 0) + y G, 0)
i=0 i=0

qaen) 3 Ne“"qui_kn>

i=k+1

k . n .
<M, [||v1 |+ Ne™ e |, || +[|A™ BT Z Ne “|BY,_| +|A™'E™™| Z Ne~ “‘(Ly OVl +1y G, 0)||)

i=0

n
At 3 e
i=k+1

i=0
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1 £ i 1 - i
- [Hvl |+ Nem ™ o+ ET | 3 NeT B AT ET | 3 Nem L, (Vi)
i=0 i=0
+|Aam T ET| ZNe‘“"u y Q0| +|A" T ET Y Ne_“i||BV,»_k||:|
0 (68)
—an n-1p—n & —ai n-1p—n 1—e "1 v
<M, [||v1 |+ Nem ||+ a™E | ;Ne |BY, | +]A"E lnN( T ) 120 7
i 1-e UL R
A B ”NF( e ) ] Y Ne "”||BV,~_k||:| _ M|+ Mya+ M,bll.
i=k+1
where
1 . i 1 1- e_ o
1 B vl [ A B Rl i | T P I ey
i=0
(69)
n .
At Y Ne i),
i=k+1
and From (57) and (60), we have
1 n 1 — e *m4 l/q
o=l e IN(T) [oda 00
k . .
A'E"W,+ AETT Y ATE (BY + y (V)
i=0
| Pyl =
n n
+A"IET Y ATE BV +y(i,V,) + ATIETTY ATEICU, (71)
i=k+1 i=0
n-1p—n _,an
N [1 . |a"'E ||||C||M}ofv(1 e ™) Wil<r
l-e
where Step 2. Now, we define a map P, on B, and we will show that
|: ||A"_1E_"||||C||M1N(1 _ e_‘m):| it is a contraction mapping.
r=al|ll+ —&
l1-e k o
[ A B ICIM,N (1 - &) (Pv), = A"E"¥, + A" 'ET"Y ATE'(BY, )
+ b[l + - e—la ]”V”c (72) =0 (73)

. +[1 eI N (1 - e )
1-¢*

v

So, we obtain P(B),CB,.

+ A"IET Y ATE'CU, (i),
i=0

Let p, 0 € B,. Using (57) and (60) for each n € I, we have
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k n
W [ CAE, - AVE Y AT (BY, + y(ip) - AVET S ATE BV, 4 y(i,p,-»]

i=0 i=k+1

s () = g )] =

k n
-w! |:v1 —AME"Y, - AMTTET Y ATE (BY  + y(ie)) - A"TET™ Y ATE BV + y (i, g,.))]

i=0 i=k+1

(74)
e T )y O R | BV P D AT PR O
=0 i=0
—emma\
<M, A" E ||N<1l _ee_aq ) "Ly“LP(LX)"p ~oll. <M,bllp - ol..
Thus,
A'ET" + ATETTY ATE (BY, )+ AT ETTY ATEICU, (i)
i=0 i=0
” (Plp)n - (Ple)n" = B "
—A'ET", + ATETTY ATE (BY, )+ AT ET" Y ATE'CU, (i)]
i=0 i=0
=A™ EY ATEC(U, () - U, ()| <A E| Y |ATE] ||C||||Up (i) - U, (i)" (75)
i=0 i=0
n .
<A™ 'ETMINY e “ICIM, blip - oll,
i=0
1-e ™
<l E i - e (=5 ) = Mip- o
where . (P,v),= A" 'E™" Z ATE (y (V) (77)
_ A" E"INTICIM, b (1 - ") (76) i=0
1-¢™ . . forn e I. Let v, € B, with v, — vin B, as n — c0. Using
From (10), M < 1, so P, is contraction. (57), we have ;(.) V,,r) " yn(-, e (I,rX) e
Step 3. Here we define a map P,: B, — B(I, X) and will thus
show that it is a compact and continuous operator.
[P~ e = 7 5 A B (o) - 4 S AR )
i=0 i=0
n— —n c —ai . . (78)
< ||A 'g || NYe y(z, Vn,») - y(z,Vi)”
i=0

— Oasn — 00,

which implies that P, is continuous on B,.
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To show that P, is compact on B,, we have to prove that

P, (B,) is equicontinuous and bounded. For any v € B,,n; >
n+ h>0, note that

n+h o n L

PV~ (P), = A B ATE (y(i0)) - A7 B Y ATE (3(iw)
i=0 i=0
h-1 W i
N R W)
i=0
ATIET Y ATE (5 (i),
; (79)
h-1 W i
I (e <S8 )
i=0
_ A”_IE_”ZA_iEi(y(i,vi))’
i=0
<. -1 -
Lo el a3 4 )|
i=0
n+h
Sl — An+h—1E—n+h ZA—iEi ()/(i> vi))’ (80) " ‘
= <[ ETIN DY e L, )| +1y GOl
i=0
and (84)
1 c i i n-1p-n 1—e ™ v
S, = A"E ”Z(;A 'E (y(i,v,)). (81) <A™ E™| N<71 - eaq)

Now, we have to check &, — &, as h — 0. Now,

Is:] =

n+h
An+h— IE—n+h Z A—IEI ()/ (i, Vi))‘l’
i=0

An+h— IE— n+h

<| ] +1ly G, o)l

n+h )
—ai .
N % e "L, (7)
-

1- e—zx(n+h)q l/q (82)
n+h—1 p—-n+h
win () Ty

1- e LP (LX)

1- —a(n+h)
NF(%)
1-e

— &,ash — 0,

<|

+‘ An+h— IE— n+h

which implies that
| (P, = (Py7),|| — Oash — 0. (83)

Therefore, P, (B,) is equicontinuous.
Next, we show that P, (B,) is bounded, and we have

"Ly" I L x)|A" ' E"

—an
NF(1 —e ) .
1-e

Hence, P,(B,) is bounded. From the Arzela-Ascoli
theorem, P, (B,) is compact in B(I,X). Thus, P,(B,) is a
compact and continuous operator.

Now, Krasnoselskii’s fixed point theorem guarantees
that P has a fixed point v in B,.. Clearly, v is a solution of (4)
satisfying v, =v,, and the boundary condition

v, =V¥,,—k< n<0 holds from the solution of system (4),
which completes the proof.

8. Numerical Examples

In this section, we give some examples on Hyers-Ulam
stability and controllability for the theoretical results.

Example 1. Consider the following non-singular delay
difference equation:

{ EV,., =AV,+BV, ,,V,=1n€{0,1,2,3}, 55

V,=®,,-3<n<0,

with inequality
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|EV 1 — AV, - BV, 4| <0.8,V, = 1,n € {0,1,2,3},
[V,-®,|<1,-3<n<0,
(86)

where k = 3.
If we fixed

-5 =2 4 1 20
A—<_4 _3), B_(2 3), E—(O 2>, and
¢, = [cos(n + m/2)cos (n+ n/2)]', obviously, ¢, = [00],
when n = 0. Then, we get that

-24 -11 -10 —4
AB-(_22 _13)—BA, AE—(_8 _6>—EA,

_(82)_ 1_[05 0
BE‘(4 6)_EB’ E ‘(0 0.5)’

25 -1\ _ ., a_(205\_
(_2 _1'5)—E A, and BE _<1 1.5)_13 B.

AE™ ! =

Moreover, if V satisfied (86), then there exists f, such

that || £, <0.8, and
EV,..=AV, +BV, s+ f,V,=1n¢€{0,1,2,3} (87)
V,=®,-3<n<0.

Also, the solution of (85) is
k
V,=A"E"®,+BATET" Y ATED,,
. =0 (88)
+BATET Y ATEV,

i=k+1

Let € = 0.8, and f: Z, — X be as given below.
£, =106 cos(n+m/2) 0.6 sin(n+mn/2)]".
Then, clearly

5.0 = J(m cos(m+ ) +(06 s+ )

= [ (0.6)2(3052(;1 + g) + (0-6)251n2(n N g)] (1/2)

= 1(0.6)?

=0.6

(89)

< =08

Now, the perturbed delay difference systems (11)-(13)
have the solution

k
H,=A"E""®,+BA"'E" Y AE'D,
. =0 (90)
+BA"IET Y ATE (Vi + fiy).
i=k+1

The plots of exact and perturbed solutions obtained
using Mathematica are shown in Figure 1.

Complexity

'
\S}
T
I

e Exact
Perturbed

FiGure 1: The plots of exact and perturbed solutions.

Example 2. Consider the following non-singular delay
difference equation:

EV,.,.=AV, +BV, ;+ f(nV),
V,=1n€{0,1,2,3}, (91)
V,=¢,-3<n<0,

with inequality

|EV,.1 — AV, = BV, 5 - f(n, V)]
<0.8,Vy=1L,ne€{0,1,2,3}, (92)
V.- ¢.|<1,-3<n<0,

4 -3 2 -3
fixed A—(2 3), B_<2 1),

E= (3 0 ), and ¢, = [cos(n + n/2)cos (n + 71/2)]", obvi-

where k = 3.
If again we

03

ously, ¢, =[00]', when n=0. Then, we get AB=
2 -15 12 -9

(10 _3)—BA, AE—<6 9)—EA, BE =
6 -9\ (0333 0 o

(6 3 )‘EB’ E _( 0 0.333)’ AR =

1332 -0.99\ _ ., (0666 —0.999 _
(0.666 0.999 )‘E A and BE"" = (0.666 0.333 )‘

E"'B.
Moreover, if V satisfied (15), then there exists f, such
that ||, <0.8, and

EVn+1 = AVn + BVn—3 + f(?’l, V) + fn’
V,=1Ln¢€{0,1,2,3}, (93)
V, =¢,-3<n<0.

Also, the solution of (91) is
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Kk
V, = A"E"¢,+ A" ET" Y ATE By + f (i, V)))

i=0

. (94)
+ ATIET" Y ATE BV + £ (V).
i=k+1
Lete=0.8, and f: Z, — X be as glven below.
fn=10.7 cos(n+ 71/2) 0.7 sin(n + 71/2)]
Then, clearly
T\ \2 I\ 2
"fn” = (0-7 COS(n + —)) +<0.7 sin(n + —))
2 2
(1/2)
= [ (0-7)2C082<n + g) + (0.7)Zsin2<n + g)]
(95)
=(0.7)
=0.7
< =0.8.

Now, the perturbed delay difference systems (91)-(93)
have the solution

k
H, = A"E™"¢+ A" 'ET" Y ATE' (Bg . + f (i, V}))
i=0

SATE Y ATE (B, + (V) + i),

i=k+1

(96)

The plots of exact and perturbed solutions obtained
using Mathematica are shown in Figure 2.

Example 3. Set n, = 3. Consider the following delay dif-
ference controlled system:
EV,.,=AV,+BV, s +y(nV,)
+CU,,ne1={0,1,2,3}, (97)
V, =V, -3<n<0,

which has the solution

k
V,=A"E",+ A" 'ET" Y ATE(BY, 5 + y (i, V,) + CU;)

i=0

n
+AIET Y ATE BV, + y (i, V;) + CU)),

i=k+1

(98)

Whe{;":j\'_ 73\ g (1 -1 po (40
“\64) “\-2 2 /) “\04)

(10 [ 0.2nV,
C= <0 ] ), and y(n,V,) = (O.anl )

17
1 -1

28 12
Note that AB—(_2 5 4 16>_
(4 -4 S, (025 0 O
EA, BE—( 3 8) EB, E! ( 0 0'25), AE " =

1.75 0.75 . . 0.25 —0.25 |
(15 1) A, and BE™! (05 05)EB

Now ||C|| = 1. Also, |A"E~"||< Ne * with N = 1, = 2,
and n € {0, 1,2, 3}.
Now consider

=BA, AE=

W, [0,m] = i(A’lE)i(A”I_lE_"‘)

i=0
ccT(am g™ )T<(A’ 1E)i>T

-3 () (e

i=0

((a5)
( 9.31767 -14.8336 )

4.38789 -6.31446

NocT (B2 (99)

o { -1.00997 2.37257 ~
Then, W[0,m,] 0701824 1.49032 ) 204 M1 =

VW, [0,7,]7 || = 0.399932. Further for any v, p € X, we
have

ly(m,v)— y(n,wl = max{O.Zn"v1 - y1||,0.1n||v2 - y2||}

< o.2nmax{||v1 -t ”, “7/2 - Mz"}
= 0.2nv — .
(100)

Now we set L, (n)—OZnELZ(I X) with p=¢g =2, so

1Lz ) = (T Ly(z))”2 = (37,0.2i)* = 1.09545.

RN e N3

12 (LX)

_ 12\ 12 101
1B () (109545) (on
1- e
= 0.3546,
and
“Am—l —n ""C”M N(l _ e‘“”l)
1-¢e“
AE|(M)(1-¢°
— (0.3546) [" ”1(_ ;22( ¢ )] (102)
= 0.8573
<l
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o
T

e Exact
Perturbed

0

N
o~

FiGure 2: The plots of exact and perturbed solutions.

Example 4. Consider the following non-singular delay
difference equation:

1 EV,,, =AV, +BV, 5n€{0,1,2,3,.. },

(103)
v, =(0.3,0.2)",-0.3<n<0,

-5 -2 41
where k=0.3 and we set A—(_4 _3), B—(2 3),

E= ( 3 (2)>’ and ¢, = [cos(n + n/2)cos (n + 71/2)]"; obvi-

ously, ¢, = [00]', when n=0. Then, we get that AB =
=24 -11 -10 -4

82 . {05 0 (25
(58)=m = o= (3

2 0.5
-1 -1 _ _ -1
E~'A, and BE —<1 1.5)_E B.

Now,
lfos 1 \(os 0| o _
1Bl = (0.6 0.34>( 0 0.5)“‘0'47<Ne -

0.656101, choosinga = 1.4048, N = 1.
Also, [|¢]| = 0.3; now,

_1 _
-15 )~

k
M (¢, ¢;) = N[ @] +IIBIl Y N*e™ | @, = 0.4324,
i=0

(N?IB]l - a) < - 03725 <0,
HVn” <M (¢, ¢;)e (NB1-a)n 0, asn — 0.
(104)

Hence, system (1) is exponentially stable.

9. Conclusion

In recent years, the qualitative behavior of delay difference
equations has a significant contribution in real life. Espe-
cially, the discussion regarding the Hyers-Ulam stability,
exponential stability, and controllability of delay difference

equations has been considered as one of the important topics
of the literature, in which different types of conditions have
been used in the form of inequalities and mostly results have
been obtained through discrete Gronwall inequality. In this
paper, we have investigated the existence and uniqueness of
the solution through Banach contraction principle,
Hyers-Ulam stability over bounded and unbounded discrete
interval, exponential stability, and controllability of the delay
difference system with the help of Gronwall inequality and
Carathéodory condition.
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