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Bus bunching is ostensibly regarded as a detrimental phenomenon in bus systems. We study a bus loop with two bus stops, one
regular bus stop and one spike bus stop, where bunched buses can outperform staggered buses. )e spike bus stop models a bus
stop connected to a train or metro service, where passengers arrive in groups at periodic intervals (spikes). We introduce the
configuration of synchronised bunched buses, where bunched buses wait for the spike in demand. For a wide range of parameters,
synchronised bunched buses outperform perfectly staggered buses in terms of minimising the waiting time of commuters. We
present an analytical formulation of the average waiting time in the case of bunched buses, synchronised bunched buses, and
perfectly staggered buses with the consideration of different passenger demands, number of buses, and bus capacity. We
demonstrate the validity of our analytical results through an agent-based simulation of the bus loop system.

1. Introduction

Bus bunching is generally regarded as undesirable in bus
systems [1–13]. As explained in References [14–16], waiting
time for passengers is reduced by a staggered bus config-
uration when passengers arrive continuously at bus stops. A
common technique used to achieve a staggered configura-
tion is holding [2, 4, 6, 16, 17]. As the headway between two
buses is diverging from the ideal staggered condition, the bus
approaching holds at its current bus stop after all of the
passengers board until the ideal headway is restored. Dy-
namically controlling buses is challenging as instructions
need to be given in real-time to drivers, and specific in-
frastructure, such as tracking devices on buses, are needed
for the system to work. It is therefore important to explore
alternative nondynamical techniques that can reduce
waiting time without the complications of dynamically
adjusting bus behaviour. Important results are achieved in
the context of route and service planning. A common
strategy is stop-skipping [18–21] where buses do not board
or let people alight at certain bus stops. Another solution is

having a demand-responsive transit system [22–24] where
passengers make a request for a transportation service from
their location to their destination. Such techniques require
assumptions regarding passengers’ behaviours and knowing
the origin-destination pattern of commuters. A recent result
by our group [25] shows a significant reduction in waiting
time using a bus assignment technique that does not require
any assumption regarding passenger behaviour. In this
work, we want to focus instead on an alternative strategy in
bus deployment that leverages the time periodicity of spikes
in demand and does not require dynamic controlling nor
changing the assignment of buses to bus stops. In the
transportation literature, the common assumption regarding
passenger arrival is that the number of passengers arriving at
a bus stop grows continuously and linearly with time
[12, 16, 25] or according to a Poisson process [11]. Here, we
want to study the case of a system with a spike bus stop.

Passengers arrive at a spike bus stop in batches of p at a
time at periodic intervals of Ts unit times. A real-world
example of a bus stop having this property is a bus stop
connected to a rapid transit system or a train station with
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periodic service. Passengers waiting at the bus stop are still
increasing with time, as in the cases examined by the lit-
erature, but they increase periodically in groups of p, rather
than one by one or continuously. To the knowledge of the
authors, this kind of bus stop has not been studied before in
the literature. Allowing p to be stochastic makes the model
more realistic, however, for analytical tractability and to give
physical insights, we consider p as a constant in this paper.

In the literature, spikes in demand have been studied in
terms of seasonal variations [26, 27] in the context of net-
work planning.

In this work, we study the case of a bus loop with one
spike bus stop and one regular bus stop, as defined in Section
2. )e regular bus stop is analogous to the bus stops ex-
amined [2, 14, 25]. )rough analytical models, we compute
the average waiting time for three configurations: bunched
buses, synchronised bunched buses (as defined in Section
2.2), and fully staggered buses. For the bunched configu-
rations, we consider the steady state where buses are already
bunched and we ignore the transient. )e calculations are
performed for the case of unlimited bus capacity in Section 2
and by explicitly considering buses with limited capacity in
Section 3. We compare the three bus configurations in
Section 4 and we show that bunched buses synchronising
with the spike in passenger demand can outperform per-
fectly staggered buses in the regime of high demand in the
spike bus stop and when bus capacity is limited. We also
briefly generalise the results for a loop with multiple regular
bus stops in Section 2.4 and for higher frequency spikes in
Section 2.5. In Section 4.4, we validate the theoretical results
with a simulation. In Section 5, we summarise the results
obtained and draw the conclusion and final remarks.

2. Three Scenarios with a Spike Bus Stop

)e systemwe set to study is a bus loop with two bus stops. At
the first bus stop, passengers arrive at a constant rate of s per
unit time. )e second bus stop is called spike bus stop and
passengers arrive in spikes of p people every Ts unit time. We
aim to build an idealised system that can be solved analytically
to draw insights from the bus interactions. We do not include
important factors such as traffic as we focus on understanding
the underlying mechanism of the interactions between pas-
sengers and buses when a spike bus stop is present. None-
theless, this scenario is inspired by a real bus system: the
shuttle buses in Nanyang Technological University (NTU)
that serve the residential part and the academic side of the
campus in a loop. As classes usually finish at the hour or half
an hour mark, the few bus stops at the academic buildings get
very crowded at regular intervals, while the demand is more
constant at the bus stops towards the residential part of the
campus. Another scenario of interest is modelling a bus loop
serving a town or a district connected to the rest of the
transportation network via a low-frequency train service. We
also briefly explore the case of high-frequency spikes in the
system. )e first kind of bus stop, which we call regular bus
stop, is modelled in the conventional way
[1, 2, 6, 7, 12, 14, 16, 25, 28–33]. Passengers arrive at a constant
rate s: defining Δt as the time elapsed since that bus stop was

lastly served by a bus, the number of passengers waiting is
s × Δt. While it is more realistic to model passenger arrival as
a stochastic process [6–8, 10, 11, 28], however, for analytical
tractability, in this work, we consider deterministic passenger
arrivals at a constant rate s. In reference [25], we test with
simulations how the analytical results obtained under the
assumption of a constant rate of arrival s also apply in the case
of Poisson arrivals with the same rate s. In the analysis
presented in this paper, we fix the rate at which passengers
board as l passengers per unit time and we assume passengers
alight instantaneously at the opposite bus stop, not affecting
the dwelling time. To simplify the expressions, it is convenient
to work with the quantities k � s/l and P � p/l to represent
passengers arriving at bus stops.Without loss of generality, we
set l as one passenger per unit time (which effectively defines
the unit of time) and refer to k � s/l as the arrival constant of
the regular bus stop and to P as the number of passengers at
the spike bus stop. We use nondimensionalised units. In this
section, the capacity of the buses is unconstrained, while
Section 3 explicitly considers the implications of limited
capacity. All of the buses move at the same speed and take
time T to complete the loop without counting the dwelling
time at bus stops. If more than a bus is at the same bus stop,
such as in a case of bus bunching, the load of passengers is
equally shared, effectively multiplying the boarding rate.
Notation wise, we use the square symbol □ to refer to the
regular bus stop and the triangle symbol Δ for the spike bus
stop. Wemeasure distances in units of time, as the speed of the
buses is fixed.

)e following three sections explore the three configu-
rations of buses tested in the bus loop defined above:

A: Bunched buses
B: Synchronised bunching
C: Perfectly staggered buses

Case B, “Synchronised bunching,” is a novel approach
that aims at being easier to implement compared with
dynamic control techniques, exploiting the periodicity of the
arrivals at the spike bus stop. )e definition of this tactic is
given in Section 2.2.

In the following sections, we calculate analytically the
average waiting time for passengers at bus stops as a function
of the crowdedness of the regular bus stop k � s/l, the
number of people arriving at the spike bus stop P � p/l, and
their period of arrival Ts for N buses. We consider spikes
with a relatively long period Ts, such that at most one spike
occurs during a revolution.

2.1. Bunched Buses. It is well known that uncontrolled buses
bunch [3, 12, 14, 33], so this is a natural baseline and an
important case to consider as bus bunching is not an un-
common occurrence in real-world bus systems.

)e general idea to compute the average waiting time is
to separate the contribution of the regular □ and spike Δ bus
stops.

For the regular bus stop, using the fact that passengers
board in a FIFO way (the first to arrive is the first to board),
the average waiting time at the regular bus stop is half the
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waiting time of the passenger who waited for the longest,
who is the first to arrive at the bus stop after the last platoon
of buses left the bus stop in the previous revolution. Pas-
sengers arrive and board in a linear fashion, and the last
passenger to board is the one who arrives just before the
platoon of buses leaves, giving a waiting time of zero; hence,
the average is half the longest waiting time. )e same idea is
also used to compute the average waiting time in reference
[25]. )e linear nature of passenger arrival also implies that
for a longer average waiting time at a regular bus stop, more
passengers will be waiting, and the range of waiting times,
from the longest to the shortest, is twice the average waiting
time. )e waiting time at that bus stop is

W
□
A �

1
2

TA − τ□A􏼐 􏼑 �
TA

2
1 −

k

N
􏼠 􏼡. (1)

)e quantity TA represents the effective time taken for
the buses to complete the loop, including dwelling time. It is
defined in equation (5). )e time spent dwelling at the bus
stop is τ□A and it is proportional to the total passengers
arrived, hence proportional to the time it takes to complete a
revolution TA, times the arrival constant k � s/l. Having N

buses bunching, the dwelling time is reduced by a factor 1/N
as passengers can board in parallel the N buses speeding up
the process. To compute the waiting time for the whole bus
loop, the waiting time at each bus stop has to be weighted by
the passengers boarding. To keep a consistent notation with
k, we use the number of passengers boarding per revolution
divided by the constant boarding rate l:

Ppl
□
A � kTA. (2)

Our calculations are in the steady state. However, it is
possible to compute the waiting time dynamically for un-
controlled buses before they bunch. In reference [14], we
present an analytical framework that allows us to compute
waiting times dynamically for regular bus stops.

In the case of the spike bus stop, passengers arrive in a group
of P � p/l. )ey all wait for the buses to arrive. At every
revolution, the waiting time will be different, unless Ts and TA

happen to be exactly in resonance (in this work, we do not
cover this possibility), so it is a reasonable assumption to
consider an average value. Assuming that the buses are already
in a bunched state, and for analysis purpose we have the
platoon of buses distributed uniformly around the bus loop
when the spike happens with the arrival of the passengers at the
spike bus stop, the average time until the buses reach the bus
stop is δΔ � TA/2. On top of δ

Δ time towait, passengers need to
board. )e first passenger to board does not need to wait any
longer, but the last passenger to board has to wait P/N units of
extra time, as boarding is conducted in parallel with N buses,
so, on average, the extra waiting is 1/2 × P/N:

W
Δ
A � δΔ +

P

2N
�

TA

2
+

P

2N
. (3)

Considering that passengers arrive at the spike bus stop
every Ts, the average number of passengers boarding from
this bus stop over a revolution is

Ppl
Δ
A � P

TA

Ts

. (4)

)e final equation needed is for TA, the average time
taken to complete a revolution, which comprises of the time
T needed to drive, and the time spent at the bus stops
boarding passengers τ□A and τΔA:

TA � T + τΔA + τ□A � T +
PTA

NTs

+
kTA

N
�

T

1 − P/NTs − k/N
.

(5)

From the denominator of equation (5), we see the two
conditions of maximum crowdedness at which the bunched
buses get stuck at one or the other bus stop. For the regular
bus stop, N buses can board N passengers per unit time,
hence if passengers arrive at a rate ≥N per unit time
(k≥N), the buses cannot finish boarding and TA⟶∞.
For the spike bus stop, as buses require P/N unit times to
board all the passengers from the spike, if P/N≥Ts a new
spike arrives before the spike bus stop is cleared, blocking the
buses and causing TA to diverge.)e average waiting time in
the bus loop is computed combining equations (1)–(5):

WA �
Ppl
Δ
A × W

Δ
A + Ppl

□
A × W

□
A

Ppl
Δ
A + Ppl

□
A

�
P
2

+ NTA(P + k(1 − k/N))Ts

2N P + kTs( 􏼁
.

(6)

2.2. Synchronised Bunched Buses. In this section, we intro-
duce a novel approach to bus control. As dynamic control
often requires specific infrastructure, complex algorithms,
and nonlocal information such as the position of other buses
[1–13, 20, 32–40], we propose a much simpler yet effective
technique: hold the platoon of bunched buses at the spike bus
stop until the spike happens. It is well known that buses tend
to bunch, but bunched buses have a distinct advantage: they
can distribute the load of passengers among them, speeding
up boarding and reducing dwelling time. Another advantage
is that N buses can accommodate N times as many pas-
sengers, although the problem of limited bus capacity is
analysed in Section 3.2. )is technique, which we call
synchronised bunching, synchronises the effective time taken
by buses to complete a loop (including dwelling time) TB

with the period of the spike Ts.
To calculate the waiting time in this scenario, we

compute the waiting time at each bus stop and weight them
by the number of passengers boarded from there. With the
regular bus stop, the waiting time is computed in the same
way as in equation (1), with the added condition that
TB � Ts:

W
□
B �

1
2

Ts − τ□B􏼐 􏼑 �
Ts

2
1 −

k

N
􏼠 􏼡. (7)

Following the same idea as in equation (2),

Complexity 3



Ppl
□
B � kTs. (8)

)e waiting time at the spike bus stop is very simple, as
the passengers can start boarding immediately because the
platoon of buses is waiting for the spike, so the only time to
wait is the time it takes to board, which is equivalent to the
second term in equation (3) as boarding happens in parallel
for bunched buses.

W
Δ
B �

P

2N
. (9)

Given that the buses effectively take Ts time to complete
a revolution, the number of passengers boarding per rev-
olution is P.

Ppl
Δ
B � P. (10)

Combining the equations above, the average waiting
time for passengers of the loop when the synchronised
bunching technique is employed is

WB �
Ppl
Δ
B × W

Δ
B + Ppl

□
B × W

□
B

Ppl
Δ
B + Ppl

□
B

�
P
2

+ kT
2
s (N − k)

2N P + kTs( 􏼁
. (11)

2.3. Perfectly StaggeredBuses. )e calculations in this section
are performed under the assumption of perfectly staggered
buses. As uncontrolled buses inevitably bunch, active con-
trol is necessary to keep buses staggered. )ere are several
methods described in the literature to avoid bunching and
keep a staggered configuration
[1, 2, 4–8, 8–13, 17, 19, 35, 41–48].)e final result in terms of
the average waiting time depends on the specific dynamic
control technique used, so the average waiting time deter-
mined here is an approximation. In Section 4.4, we compare
the analytical calculations with a time-based simulation,
employing a headway-based holding control. We see very
similar results in terms of waiting times in all but the most
extreme cases with very high k where this approximation is
less valid. In reference [14], we show that bunching can
happen within a single revolution if the value of k is high
enough that n∗ < 1, where n∗ is the number of revolutions
needed for buses to bunch, hence invalidating the as-
sumption that buses can stay staggered. Two buses starting
from a perfectly staggered position in a loop with a single
regular bus stop bunch in n∗ � log(k/2)/(2 log(1 − k))

revolutions, according to reference [14]. For k≥ 0.5, un-
controlled buses bunch within the first revolution as n∗ ≤ 1.
In this regime, keeping the buses staggered is very chal-
lenging, if not impossible. In Figure 1, the mismatch between
a numerical simulation with dynamic control and the an-
alytical results for the average waiting time is very significant
when kT approaches 0.5T, as buses cannot avoid bunching
in the simulation.

)e waiting time at the regular bus stop is computed as
half the longest waiting time, in the same way as it was
mentioned in Sections 2.1 and 2.2, but here the buses are
assumed to be staggered, hence the bus stop is served N

times every revolution.

W
□
C �

1
2

TC

N
− τ□C􏼠 􏼡 �

1
2

TC

N
(1 − k). (12)

While boarding passengers from a bus stop, if other
buses move, the system shifts away from a staggered con-
figuration. To compute the average waiting time, we need to
decide when the buses are considered perfectly staggered:
either before or after they serve a bus stop. If buses are
considered perfectly staggered before serving the bus stop,
the expression for W□C is the one in equation (12). However,
if buses are considered staggered after serving the bus stop,
the average waiting time is τ□C/2 longer than equation (12).
We choose the first option, as it leads to lower waiting time.
Different techniques of dynamic control to keep the buses
staggered could be better described by either of the two
choices of buses staggered before or after serving a bus stop.
)is difference is significant in the regime of high τ□C �

kTC/N where the assumption that buses can be staggered
also fails. Each revolution will take TC as defined in equation
(16). )e number of passengers boarding from the regular
bus stop during a revolution is computed as

Ppl
□
C � kTC, (13)

similarly to cases A and B in equations (2) and (8).
)e average waiting time at the spike bus stop is cal-

culated under the assumption that buses are fully staggered
and uniformly distributed around the bus loop, hence the
closest bus to the bus stop, when the spike arrives, is at an
average distance (in units of time) δΔclosest � TC/(2N) since
each bus is separated by TC/N unit times.

W
Δ
C � δΔclosest +

P

2
�

TC

2N
+

P

2
. (14)

)e last term P/2 accounts for the time it takes to board
the P passengers, since the last one to board has to wait an
additional P units of time. )e quantity WΔC has to be
weighted by the average number of passengers boarding
from the spike bus stop:

Ppl
Δ
C � P

TC

Ts

. (15)

Finally, the average total time taken to complete a loop
TC is the sum of T and the average dwelling time at the bus
stops:

TC � T + τΔC + τ□C � T +
PTC

Ts

+
kTC

N
�

T

1 − P/Ts − k/N
.

(16)

)e dwelling time at the spike bus stopτΔC is counted, even
though only one of the N buses boards passengers there.)e
reason for including τΔC is to account for active corrective
actions by other buses, such as holding or slowing down, to
maintain the perfectly staggered state. If that is not com-
pensated for, the bus boarding at the spike bus stop would
have a slower revolution as compared with the other buses,
causing buses to not be staggered anymore. )e average
waiting time for passengers in the bus loop is computed as
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the weighted average of the waiting time at the two bus stops,
equations (12) and (14).

WC �
Ppl
Δ
C × W

Δ
C + Ppl

□
C × W

□
C

Ppl
Δ
C + Ppl

□
C

�
NP

2
+ TC P + k(1 − k)Ts( 􏼁

2N P + kTs( 􏼁
.

(17)

2.4.Generalisation forMoreBus Stops. In Section 2, so far we
have considered a scenario with only two bus stops for
simplicity. It is possible to study a system with multiple
regular bus stopswith our technique.)e general formula for
the average waiting time with Mregular bus stops and one
spike bus stop is

W �
Ppl
Δ

× W
Δ

+ 􏽐
M
i�1 Ppl

□i × W
□i

Ppl
△

+ 􏽐
M
i�1 Ppl

□i
. (18)

)e quantities to compute are the average waiting time at
bus stop i for all the M regular bus stopsW□i and the people
boarding from there Ppl□i . Moreover, stopping in multiple
bus stops means that the total time taken to complete a loop,
T, will need to take into account the extra time taken to
board from more than one regular bus stops, except for the
case of synchronised bunched buses in Section 2.2 where the
total time to complete a loop is the period of the spike Ts. In
the following part, we present the general expressions for the

waiting time at the M regular bus stops, each of which with
demand si � ki × l for the three cases examined: bunched
buses, synchronised bunching, and perfectly staggered
buses.

2.4.1. Bunched Buses. Using the same reasoning as in
equation (1), the waiting time at each regular bus stops in the
case of N bunched buses is

W
□i

A �
1
2

TA − τ□i

A􏼐 􏼑 �
TA

2
1 −

ki

N
􏼠 􏼡. (19)

)e passengers boarding at each bus stop are

Ppl
□i

A � kiTA. (20)

)e total time taken to complete the loop is

TA � T + τΔA + 􏽘
M

i�1
τ□i

A � T +
PTA

NTs

+ 􏽘
M

i�1

kiTA

N
. (21)

)e waiting time at the spike bus stop is indirectly af-
fected by TA. )e average waiting time of passengers in a
loop with M regular bus stops and one spike bus stop is
computed via equation (18) by combining equations
(19)–(21) along with WΔA and PplΔA from equations (3) and
(4).
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c = ∞, N = 2, P = 200, Ts = 3 T c = 66, N = 2, P = 200, Ts = 3 T

Figure 1: Comparison of the average waiting time of passengers computed with analytical formulas and with a numerical simulation. )e
plot on the left considers the case of unlimited capacity described in Section 2, while the plot on the right considers a limited capacity of
c � ⌊P/3⌋ and uses the formulas from Section 3.)e circles, triangles, and crosses represent the results from the simulation for the cases A, B,
and C, respectively. Discrepancies are caused by simplified assumptions, discretisation of variables in the simulation, and limited running
time. )e percentage of mismatch in the legend is the median of the difference between the simulation and the analytical result across the
range kT, rounded to the closest integer. As explained in Section 2.3, the hypothesis of perfectly staggered buses C fails at high values of k, as
we see from the plot. In this example, there are two buses (N � 2), the period of revolution is T � 1000 time units, the period of the spike is
Ts � 3T, and P � 200.
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2.4.2. Synchronised Bunched Buses. Following the idea used
in Section 2.2, the waiting time at each regular bus stop in the
case of N synchronised bunched buses is

W
□i

B �
Ts − τ□i

B

2
�

Ts

2
1 −

ki

N
􏼠 􏼡. (22)

)e passengers boarding at each bus stop are

Ppl
□i

B � kiTs. (23)

)e total time taken to complete the loop is still Ts,
provided that the extra dwelling time does not slow down the
revolution of the buses below the period of the spike Ts. )e
waiting time at the spike bus stop is not affected by the extra
bus stops. By combining the equations in this section with
equations (9) and (10) and substituting them in equation
(18), we can compute the average waiting time of passengers
in a loop with M regular bus stops and one spike bus stop in
the case of synchronised bunched buses, generalising the
result in Section 2.2.

2.4.3. Perfectly Staggered Buses. Analogously as how it is
calculated in equation (12), the waiting time at regular bus
stops in the case of N perfectly staggered buses is

W
□i

C �
1
2

TC

N
(1 − k). (24)

)e passengers boarding at each bus stop are

Ppl
□i

C � kiTC. (25)

)e total time taken to complete the loop is

TC � T + τΔC + 􏽘
M

i�1
τ□i

C � T +
PTC

Ts

+ 􏽘
M

i�1

kiTC

N
. (26)

)e waiting time at the spike bus stop is indirectly affected
by TC but takes the same functional form as in equation (14).
Combining the equations in this section along with equation
(15) and substituting them in equation (18), it is possible to
compute the average waiting time of passengers in a loop with
M regular bus stops and one spike bus stop in the case of
perfectly staggered buses, generalising the result in Section 2.3.

2.5. Generalisation for High-Frequency Spikes. We have
considered low-frequency spikes Ts >T where T is the total
time taken to complete a loop. However, there are realistic
cases where spikes can occur at high frequency, such as next
to a “Mass Rapid Transit” line (MRT). In this section, we
briefly generalise the results for bunched buses (case A) and
perfectly staggered buses (case C) for Ts <T. As the fre-
quency of the spikes is higher than the frequency of the
buses, the synchronised bunched buses (case B) solution
does not work in this setting as buses cannot synchronise
with the spikes.

2.5.1. Bunched Buses. When buses are bunched, and more
than one spike occurs during a loop, the resulting waiting

time at the spike bus stop has to be corrected from the result
in equation (3). )e waiting time in equation (3) has two
terms, the first, TA/2, is the waiting time due to the spike
arriving when the buses are not at the spike bus stop, the
second, P/(2N), is due to the time passengers take to board
the buses. Not knowing when the spikes arrive during the
revolution of the platoon of buses, we cannot simply assume
that the passengers arriving with the spike wait, on average,
TA/2 in this case. A spike may occur while the buses are
boarding at the spike bus stop, in which case we consider
their waiting time contribution from the first term as zero as
passengers only have to wait in line to board, which is
accounted for by the second term of WΔA. We split the first
term of the waiting time into two parts: the contribution
from the passengers arriving while the buses are on the road,
hence equally likely to arrive at any time in TA − τΔA, and the
contribution from passengers arriving while the bus is al-
ready boarding from the previous spikes, hence with zero
waiting time from the first term. We define
􏽥τΔA � (TA/Ts − 1)P/N as the time spent to board from all the
spikes minus one (the one that may occur during boarding at
the spike bus stop). It is our assumption that no more than
one spike can happen while the buses are boarding. We can
compute the new first term for the average waiting time at
the spike bus stop by averaging the two contributions with
probability proportional to the time spent in each situation:

W
Δ
A(first term) �

0 × 􏽥τΔA + TA − τΔA/2􏼐 􏼑 × TA − 􏽥τΔA􏼐 􏼑

􏽥τ△A + TA − 􏽥τΔA􏼐 􏼑

�
1
2

TA − τΔA􏼐 􏼑 TA − 􏽥τΔA􏼐 􏼑

TA

.

(27)

)e second term of WΔA accounts for the time taken to
board the buses. Since more than P passengers board at the
same time, it has to be corrected from equation (3) with a
factor TA/Ts. )e second term of the average waiting time at
the spike bus stop becomes (PTA/Ts)/(2N). )e overall
expression for WΔA for frequent spikes Ts <TA is:

W
Δ
A �

1
2

TA − τΔA􏼐 􏼑 TA − 􏽥τΔA􏼐 􏼑

TA

+
TA

Ts

P

2N
. (28)

All the other formulas in Section 2.1 are not affected by
higher frequency spikes as the increased number of pas-
sengers is accounted for by the TA/Ts factor in the ex-
pressions for the waiting time and total time to complete a
revolution and for the number of passengers. )e overall
waiting time can be computed combining equations (1), (2),
(4), (5), and (28).

)e equations above are valid as long as a maximum of a
single spike occurs while buses are boarding at the spike bus
stop. It is interesting to explore the limit of infinitely many
spikes TA/Ts⟶∞, by Ts⟶ 0, even though the equa-
tions are not exact in this regime. )e total number of
passengers arriving over a period TA must be finite. )e
quantity 􏽢P � P/Ts is the number of passengers arriving at the
spike bus stop per unit time. As spikes are infinitely frequent,
the number of passengers arriving with each spike must be
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infinitesimal P⟶ 0, effectively representing a continuous
arrival of 􏽢P passengers per unit time. From the terms of
equation (28), we see that, in the limit Ts⟶ 0:

limTs⟶ 0
P/Ts�􏽢P

􏽥τΔA � lim
Ts⟶ 0

P/Ts�􏽢P

TA

Ts

− 1􏼠 􏼡

P

N
� lim

Ts⟶ 0
P/Ts�􏽢P

TA

Ts

P

N
�

􏽢PTA

N
� lim

Ts⟶ 0
P/Ts�􏽢P

τΔA,

(29)

where the last equation uses the definition of 􏽢P. We can
therefore express the waiting time at the spike bus stop in this
limit as

limTs⟶ 0
P/Ts�􏽢P

W
Δ
A � lim

Ts⟶ 0
P/Ts�􏽢P

1
2

TA − τΔA􏼐 􏼑
2

TA

+
TA

􏽢P

2N
�

TA

2
1 −

􏽢P

N
+

􏽢P
2

N
2

⎛⎝ ⎞⎠.

(30)

Compared with equation (1) for W□A, there is an extra
term (􏽢P/N)2, due to our assumption that no more than one
spike can occur during boarding at the spike bus stop. )e
term is generally small since 􏽢P/N< 1 in order for buses to
board passengers, as N buses can board N passengers per
unit time. By comparing the analytical result with the
waiting time computed via the simulation employed in
Section 4.4, we verify that the correct limit for W□A is actually
TA/2 × (1 − 􏽢P/N), identical to W□A if 􏽢P is replaced by k,
making 􏽢P effectively an arrival constant. )e number of
passengers boarding, from (4), becomes Ppl△A � 􏽢PTA in this
limit, analogous to Ppl□A replacing 􏽢P with k.

2.5.2. Perfectly Staggered Buses. For perfectly staggered
buses, case C, the formulas for the waiting time at the regular
bus stop and spike bus stop equations (12) and (14) are not
directly affected. In particular, the waiting time and pas-
sengers at the regular bus stop do not directly depend on Ts

or P, but they are indirectly affected through TC. )e ex-
pression of the number of passengers at the spike bus stop
already contains a term TC/Ts that accounts for the fre-
quency of the spikes. )e waiting time at the spike bus stop is
also not affected directly, as long as the number of spikes per
loop is less than the number of buses, in which case the
second term of W□A, accounting for the waiting time due to
boarding, P/2, has to be corrected. If TC/Ts >N, buses
sometimes have to pick up passengers arrived from two or
more different spikes; hence, the formula in equation (14)
has to be modified. We do not consider this extreme case in
this section. All the terms above, however, depend on TC.
)e expression forTC in equation (16) has to be corrected for
frequent spikes. In particular, as TC � T + τΔC + τ□C , the time
spent at the spike bus stop τΔC changes. For low-frequency
spikes, τ△C � PTC/Ts, meaning that every TC/Ts revolution P

passengers board. However if TC/Ts > 1, passengers from
each spike still board a single bus, as passengers arrive P at a
time, so the time to board τΔC becomes max(TC/Ts, 1)P � P

time units, contributing to the total time to complete a
revolution. )e correct expression of TC in the case of
frequent spikes is therefore

TC � T + τΔC + τ□C � T + P +
kTC

N
�

T + P

1 − k/N
. (31)

)e average waiting time for the whole system WC is
obtained following equation (17) using TC computed from
equation (31) and the original equations (12)–(15).

It is well known [1–16] that perfectly staggered buses
outperform bunched buses in terms of average waiting time
when passengers arrive continuously at bus stops, i.e. in the
limit Ts⟶ 0 and P/Ts � 􏽢P finite. In Section 4, we compare
the proposed solutions in the case of low-frequency spikes:
bunched buses also perform poorly as compared with
perfectly staggered buses, as it is shown in Figures 1–3. For
this reason, we do not consider the case of high-frequency
spikes in the rest of this work, as the only configuration that
can outperform perfectly staggered buses is the synchronised
bunched buses setting (case B), which is not possible in the
presence of high-frequency spikes.

3. The Effect of Limited Capacity for the Buses

Real-world transportation systems have limited capacity
regarding the number of commuters who can board. Such
limitations can alter the optimal despatch of vehicles and
headway [49–52], hence staggered solutions are not nec-
essarily optimal even in the presence of only regular bus
stops. Reference [53] deals more explicitly with bunching
buses in the form of a newly proposed modular vehicle
system. )e modular vehicles can be combined to increase
capacity, which is similar to the effect of bunched buses. )e
system however is studied in the context of a splitting route
where different modules travel to different destinations: a
passenger has to board a specific module and none of the
cases cited above deals with loops or spike bus stops.

In this section, we only consider the capacity limit at the
spike bus stop. All of the buses can board up to Q passengers
at the spike bus stop. For dimensional consistency with our
convention for P � p/l, we consider capacity over the fixed
boarding rate l to simplify our equation with the quantity
c � Q/l.

Limiting capacity has a stronger effect on staggered
buses, as at any given time passengers board a single bus.
Performance of perfectly staggered buses is affected when
c<P while for bunched buses, having a combined capacity
Nc, no effect is seen until c<P/N. Figure 3 shows how, for
lower values of c, synchronised bunched buses tend to
outperform perfectly staggered buses. )e major effect on
the bus dynamics when capacity is limited is the inability of
boarding passengers at the spike bus stop within one passage.

3.1. Bunched Buses. One of the advantages of bunched buses
is the cumulative capacity of the platoon, which grows
linearly with the number of buses. Limited capacity affects
this scenario only when c<P/N, if c≥P/N the result in
equation (6) applies. In this section, we present the result in
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the regime P/(2N)< c<P/N. In this case, the buses cannot
board all of the passengers at the spike bus stop, so they need
to complete another revolution to board passengers from
there. For that to be possible, the spikes cannot be too
frequent, so a necessary condition is Ts ≥ 2TAlim

, where TAlim
is the total time needed to complete a revolution. If the
inequality above is not satisfied, more passengers are ar-
riving than those whom the buses can pick up, hence the
number of passengers waiting will grow at every revolution,
leading to a diverging waiting time.

)e major difference, as compared with the case with
unlimited capacity in Section 2.1, is the waiting time at the
spike bus stop as two passages are needed to board passengers
at the spike bus stop. )e waiting time has to be divided
between the Nc passengers boarding at the first passage and
the P − Nc boarding at the second passage, approximately a
revolution after the first group.

W
Δ
Alim

�
Nc

P
δΔfirst +

Nc

2N
􏼒 􏼓 +

P − Nc

P
δΔsecond +

P − Nc

2N
􏼒 􏼓 �

�
Nc

P

TAlim

2
+

Nc

2N
􏼠 􏼡 +

P − Nc

P

3TAlim

2
+

P − Nc

2N
􏼠 􏼡.

(32)

Following the same idea as in Section 2.1, we define δΔfirst
and δΔsecond as the distance (in units of time) of the buses
when they serve the spike bus stop for the first and second
time, respectively. Being the buses bunched, the second time
the buses pick up passengers in the spike bus stop is a whole
revolution after the first time, therefore there is a difference
of TAlim

between δΔfirst and δΔsecond. )e waiting time of pas-
sengers picked up by the buses between the two revolutions
is weighted by the passengers boarded, Nc at the first
revolution and P − Nc in the second round. )e average
number of passengers boarded per revolution is

Ppl
Δ
Alim

� P
TAlim

Ts

, (33)

as P passengers arrive once every Ts/TAlim
revolution.

)e values of W□Alim
and Ppl□Alim

are the same as in
equations (1) and (2), with TA replaced by TAlim

: W□Alim
�

TAlim
/2(1 − k/N) and Ppl□Alim

� kTAlim
. To compute the av-

erage time taken to complete a revolution, TAlim
, we consider

the average time spent at the spike bus stop during a rev-
olution. Every Ts/TAlim

revolution, a spike happens, and for
every spike, the buses need to stop to pick up Nc and P − Nc

passengers at the first and second revolution, respectively.
Hence, the average time to complete a revolution is

TAlim
� T + τΔ(1)

Alim
+ τΔ(2)

Alim
+ τ□Alim

� T +
TAlim

Ts

Nc

N
+

TAlim

Ts

P − Nc

N
+

kTAlim

N
�

�
T

1 − P/NTs( 􏼁 − (k/N)
.

(34)

Combining equations (1), (2), and (32)–(34), the average
waiting time for passengers in a scenario with bunched buses
and reduced capacity P/(2N)< c<P/N is

WAlim
�

NTAlim
3P − 2Nc + kTs(1 − k/N)( 􏼁 +(Nc)

2
+(P − Nc)

2

2N P + kTs( 􏼁
.

(35)

It is possible to generalise the results for c<P/(2N) by
adding extra terms in equation (32) using
δΔi− th � TAlim

/2 × (2i − 1). )e value of TAlim
does not change

since it does not depend on c, as seen in equation (34).

3.2. Synchronised Bunched Buses. Similarly to the bunched
configuration in Section 3.1, limiting the capacity of the
buses in this synchronised bunched setting affects the dy-
namics and the waiting time of buses only in the regime
c<P/N. In this section, we consider only the case of
P/(2N)< c<P/N where the platoon of bunched buses waits
for the spike of passengers at the spike bus stop, but the
capacity is not enough to board them all, so another rev-
olution is needed to pick up the remaining passengers. We
also assume that the buses can always board all of the
passengers at the regular bus stop. In the same way as the case
in Section 3.1, the spikes need to have a long enough period
Ts, in such a way that the buses can pick up all the passengers
at the spike bus stop before a new spike happens. )e formal
condition is Ts ≥T

(1)

Blim
+ T

(2)

Blim
where T

(1)

Blim
represents the time

taken to complete the first revolution after the spike and T
(2)

Blim
is the time taken to complete the second revolution, just
before holding HoldBlim

unit times at the spike bus stop,
waiting for the new spike. )ose quantities are defined in
equations (39) and (40) and related to Ts according to the
equation Ts � T

(1)

Blim
+ T

(1)

Blim
+ HoldBlim

.
To compute the waiting time, we can break the dynamics

into three parts: first revolution, second revolution, and
holding to synchronise with the next spike. )e first part
starts from the arrival of passengers at the spike bus stop,
where the platoon of buses is waiting to board them.)e first
part ends when the spike bus stop is reached a second time. In
our equations, it is indicated with the (1) notation and it lasts
T

(1)

Blim
unit times. )e second part starts when the platoon of

buses picks up the remaining passengers at the spike bus stop
and it ends a revolution later, when the buses reach the spike
bus stop again, just before starting to hold to wait for the next
spike. We indicate the quantities relative to this period with
the index (2) and this revolution lasts T

(2)

Blim
unit times. )e

final phase consists of the buses holding at the spike bus stop
waiting for a new spike to occur.

To compute the waiting time at the regular bus stop, we
average the waiting time the first and the second time the
buses reach this bus stop. At the first revolution (1), the bus
stop has not been served for a time HoldBlim

+ T
(1)

Blim
− τ□(1)

Blim
�

Ts − T
(2)

Blim
− τ□(2)

Blim
and the average waiting time, under the

hypothesis of constant arrival at rate s � k × l, is half the
longest time waited by a passenger, hence
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W
□(1)
Blim

�
1
2

Ts − T
(2)

Blim
− τ□(1)

Blim
􏼒 􏼓

�
Ts − T

(2)

Blim

2
1 −

k

N
􏼠 􏼡.

(36)

)e passengers boarding in the first loop are
Ppl
□(1)
Blim

� k(Ts − T
(2)

Blim
). )e same procedure applies to the

waiting time of the second period (2) where the regular bus
stop has not been served for T

(2)

Blim
− τ□(2)

Blim
units of time.

W
□(2)
Blim

�
1
2

T
(2)

Blim
− τ□(2)

Blim
􏼒 􏼓 �

T
(2)

Blim

2
1 −

k

N
􏼠 􏼡, (37)

with Ppl
□(2)
Blim

� kT
(2)

Blim
passengers boarded, for a total of

Ppl□Blim
� kTs passengers boarding from the regular bus stop

during the two revolutions.
)e waiting time at the spike bus stop also needs to be

calculated averaging the waiting time W
Δ(1)
Blim

of the first
Ppl
Δ(1)
Blim

� Nc passengers who can board immediately after
the spike during revolution (1), so only the time taken to
board is considered in the waiting time, and the waiting time
W
Δ(2)
Blim

of the remaining Ppl
Δ(2)
Blim

� P − Nc that needs to wait
T

(1)

Blim
until the first revolution is completed. )e average

waiting time at the spike bus stop is computed as

W
Δ(1)
Blim

�
Nc

2N
,

W
Δ(2)
Blim

� T
(1)

Blim
+

P − Nc

2N
,

W
Δ
Blim

�
Nc

P
W
Δ(1)
Blim

+
P − Nc

P
W
Δ(2)
Blim

.

(38)

)e waiting time computed requires an expression for
the time taken to complete the revolutions (1) and (2). )e
first case is expressed as

T
(1)

Blim
� T + τΔ(1)

Blim
+ τ□(1)

Blim
� T + c +

k

N
Ts − T

(2)

Blim
􏼒 􏼓. (39)

)e revolution includes T unit times on the road, τΔ(1)
Blim

,
to board from the spike bus stop the first Nc passengers, and
τ□(1)

Blim
to board passengers at the regular bus stop. Passengers

at the regular bus stop started arriving during the previous
(2) revolution, after the platoon of buses finished to board at
the regular bus stop. )e number of passengers arriving at
the regular bus stop during the first revolution (1) (and the
dwelling time τ□(1)

Blim
) is proportional to the sum of the holding

time waited to synchronise with the spike after revolution (2)
and T

(1)

Blim
. )e quantity T

(1)

Blim
is defined as the time taken to

board passengers at the spike bus stop, the time taken to
board up to the last passengers at the regular bus stop during
the first revolution (1), and the time to complete the loop
itself, T: τ□(1)

Blim
∝HoldBlim

+ T
(1)

Blim
. As the duration of the two

revolutions (1) and (2) plus the time HoldBlim
waited at the

spike bus stop must be Ts in order to synchronise with the
spike, HoldBlim

+ T
(1)

Blim
� Ts − T

(2)

Blim
.

)e time taken to complete the second revolution (2)
before holding is

T
(2)

Blim
� T + τΔ(2)

Blim
+ τ□(2)

Blim

� T +
P − Nc

N
+

k

N
T

(2)

Blim

�
T + P − Nc/N

1 − k/N
.

(40)

)e dwelling time taken to board at the spike bus stop is
proportional to the number of passengers left P − Nc. For
the case of the regular bus stop, the number of passengers,
hence the dwelling time, are proportional to T

(2)

Blim
itself, as

there is no waiting for synchronisation in between serving
the regular bus stop during the first (1) and second (2)
revolution in this setting.

Combining the above expressions with Ppl□Blim
� kTs and

PplΔBlim
� P, the average waiting time for synchronised

bunched buses with capacity P/(2N)< c<P/N is found from

WBlim
�

Ppl
Δ
Blim

× W
Δ
Blim

+ Ppl
□
Blim

× W
□
Blim

Ppl
Δ
Blim

+ Ppl
□
Blim

. (41)

)e average waiting time for synchronised bunched
buses is equal to that of a single bus with capacity Nc and
boarding rate Nl. Assuming that it is possible to build and
deploy such a bus, N synchronised bunched buses are still
more versatile and adaptable to a change in demand. First, N
buses can implement active control and move to a staggered
configuration when the passengers demand at the bus stops
changes. As we see from Figures 2 and 3, the more ad-
vantageous configuration can be either perfectly staggered
buses or synchronised bunched buses, depending on the
parameters of the bus loop. Another advantage of N

bunched buses over a single bus with equivalent capacity and
boarding rate is the option of adding and removing extra
buses to match the passenger demand and capacity con-
straints as the number of commuters in the system changes,
reducing operational cost when less capacity is needed.

3.3. Perfectly Staggered Buses. As the spike bus stop is being
served by one bus at a time in this configuration of perfectly
staggered buses, the limited capacity affects the system for
any c<P. In the previous two cases in Sections 3.1 and 3.2,
the limited capacity affects the system only for c<P/N.

We consider the case where m buses are needed to board
the total number of passengers at the spike bus
stop(P/m< c<P/(m − 1)). )e value for m is ⌈P/c⌉. As this
case requires m/N revolutions to clear the passengers at the
spike bus stop, a necessary condition for the buses to serve
this system is Ts > (m/N)T, otherwise the number of waiting
commuters blows up. Following the same reasoning as in
equations (14) and (32),

W
Δ
Clim

�
c

P
δΔ1st +

c

2
􏼒 􏼓 +

c

P
δΔ2n d +

c

2
􏼒 􏼓 + + . . .

+
P − (m − 1)c

P
δΔm− th +

P − (m − 1)c

2
􏼠 􏼡,

(42)
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Figure 2: Average waiting time for two buses in the three configurations A, B, C described in Sections 2 and 3.)e two upper plots represent
a case of low demand P from the spike bus stop while the two lower plots represent high demand P. )e plots on the left assume unlimited
capacity of the buses, and the plots on the right explicitly limit the capacity of buses at c � ⌊P/3⌋while boarding passengers from the spike bus
stop. As discussed in Section 4, synchronised bunched buses (configuration B) outperform perfectly staggered buses (configuration C) when
the demand of the spike bus stop is high as compared with the regular bus stop. Limiting capacity further increases the advantage of bunched
buses. For this example, T is set to a value of 100 time units and Ts � 3T.
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where δΔi− th � TClim
(2i − 1)/(2N) is the distance (in units of

time) of the ith bus to serve the spike bus stop. As in the case
with unlimited capacity, the number of people boarding is
PplΔClim

� PTClim
/Ts.

)e waiting time and people boarded from the regular
bus stop are also the same as in equations (12) and (13):
W□Clim

� TClim
/(2N)(1 − k) and Ppl□Clim

� kTClim
. To express

the average waiting time in the whole system, the last
remaining equation is for TClim

. As in the case of unlimited
capacity in equation (16), boarding passengers at the
regular bus stop takes τ□Clim

� kTClim
/N for each bus, under

the assumption of perfectly staggered buses and no ca-
pacity constraints at the regular bus stop. At the spike
bus stop, buses will dwell for either c or P − (m − 1)c unit
times if there are passengers there. For perfectly stag-
gered buses, the necessary condition is for all the buses
to move with the same period, hence they all have to
employ dynamic control to keep themselves staggered,
slowing down at the pace of the slowest buses. Since
c>P − (m − 1)c, by definition of m � ⌈P/c⌉, the slowest
bus waits c unit times, and that happens Ts/TClim

times a
loop. )e expression for the average time taken to
complete a loop is then

TClim
� T + τΔClim

+ τ□Clim

� T +
cTClim

Ts

+
kTClim

N

�
T

1 − c/Ts − k/N
.

(43)

)e general expression depends on the value of m via
WΔClim

. We report the average waiting time in the case of
m � 2, hence in the regime P/2< c<P, but the equations
above allow for a general calculation via equation (18).

WClim
�

N c
2

+(P − c)
2

􏼐 􏼑 + TClim
3P − 2c + k(1 − k)Ts( 􏼁

2N P + kTs( 􏼁
.

(44)

4. Comparison and Discussion

In a bus loop with a spike bus stop and a regular bus stop, six
important variables affect the system: the crowdedness of the
bus stops, through P and k, the period of the spikes Ts, the
period for a revolution without dwelling T, the number of
buses N, and the capacity of buses c.

4.1. Limit Cases of P and k. First, as the perfectly staggered
buses are the best solution in terms of waiting time for a
regular bus stop [14, 15], we expect that for lower demand of
the spike bus stop as compared with the regular bus stop, the
staggered configuration will outperform the two bunched
configurations examined in this work. Computing the av-
erage waiting time of the three cases with unrestricted ca-
pacity in the limit P � 0 in equations (6), (11), and (17), we
have

WA(P � 0) � TA 1 −
k

N
􏼠 􏼡 �

T

2
, (45)

WB(P � 0) �
Ts

2
1 −

k

N
􏼠 􏼡, (46)

WC(P � 0) �
TC

2N
(1 − k) �

T

2
1 − k

N − k
. (47)

)e waiting time for bunched buses, case A, is fixed as
T/2 since as long as passengers can be boarded faster than
they arrive (k<N), no passenger has to wait for more than a
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Figure 3: Comparison of the average waiting time for the three configurations as a function of the demand at the spike bus stop P and the
capacity c. )e orange triangles represent the set of parameters where synchronised bunched buses have the lowest average waiting time,
while the green “x” symbols indicate where perfectly staggered buses have the lowest average waiting time among the three configurations.
Bunched buses (case A) are never the best performers for the parameters explored.)e three plots show how increasing the number of buses
from 2 to 3 to 4 (from left to right) tends to favour the staggered bus configuration. Points in the region of high P and low c are missing, since
in that regime more than two revolutions are needed to pick up all the passengers at the spike bus stop. )is region is defined by c<P/(2N).
For this example, T is set to a value of 100 time units and Ts � 3T while k is fixed at 0.1.
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whole revolution T to board. )e synchronised bunched
buses in case B behave in the same way, except that having to
wait at the spike bus stop, the time taken to complete a
revolution is Ts ≥TA, where the inequality is a necessary
condition for synchronised bunched buses, so
WA(P � 0)≤WB(P � 0). In the last case of perfectly stag-
gered buses, C, the waiting time is always the lowest, as
expected.)e quantity (1 − k)/(N − k) is always less than or
equal to 1, since k< 1 is a necessary condition for staggered
buses, so WC(P � 0)≤WA(P � 0)≤WB(P � 0). In the case
of a single bus N � 1, case A and case C are equivalent.
Taking the limit P � 0 leads to the same result as taking the
limit for Ts⟶∞ for the case of bunched buses A and
perfectly staggered buses C. For synchronised bunched
buses, this limit does not make sense, as the buses would
have to wait indefinitely at the spike bus stop.

In the opposite limit where all demand is concentrated at
the spike bus stop (k � 0), we expect the synchronised
bunched buses to outperform the other configurations as the
platoon of buses waits for the spike to arrive, eliminating any
delay between arrival and beginning of boarding process.
From equations (6), (11), and (17), in the setting of un-
constrained capacity:

WA(k � 0) �
P + NTA

2N

�
P

2N
+

T

2
1

1 − P/NTs

,

(48)

WB(k � 0) �
P

2N
, (49)

WC(k � 0) �
NP + TC

2N

�
P

2
+

T

2N

1
1 − P/Ts

.

(50)

It takes P unit times to board P passengers for perfectly
staggered buses C, so if another spike occurs at Ts ≤P, the
number of passengers waiting growswith time, either diverging
or causing the buses to bunch, against the hypothesis of
perfectly staggered buses, hence we consider Ts ≥P.
Synchronised busesB always perform the best among the three,
since 1 − P/(NTs) and 1 − P/Ts are necessarily positive. For
casesA andC, in the limit of smallP≪T<Ts, thewaiting time
is dominated by the time needed for a bus to reach the bus stop,
so bunched buses have the longest waiting time as, on average,
buses are further away from the spike bus stop
WA(k � 0, P≪T) ≈ T/2>WC(k � 0, P≪T) ≈ T/ (2N). In
the opposite limit, where P⟶ Ts, perfectly staggered buses
cannot keep upwith the demandwhile staying staggered, hence
WC(k � 0, P⟶ Ts)⟶∞. A similar analysis can be per-
formed in the case of constrained capacity c from the equations
of the waiting time in Section 3.

4.2. Intermediate Values of P and k. Intermediate cases of k

and P are less intuitive, and introducing the capacity limit c

makes the expressions less simple. To understand and

compare the behaviour of the buses in such a scenario, we
visualise the effect that the aforementioned variables have
on the system. First, the average waiting time as a function
of k is explored in Figure 2 where the three methods
(bunched buses, synchronised bunched buses, and per-
fectly staggered buses) are compared in a case with high
and low demand from the spike bus stop P, in two con-
ditions of unlimited and limited capacity. As expected from
the analytical comparison above, synchronised bunched
buses outperform perfectly staggered buses in the regime of
low demand kT from the regular bus stop. )e comparison
is done with kT to have dimensional consistency with P.
)e curve for the synchronised bunched buses B from
Figure 2 is particularly interesting. )e average waiting
time increases with k for low values of k as expected, but
after reaching a peak, the waiting time decreases in the
regime of high k. )e downward trend can be explained
from equations (7) and (9). )e contribution to the average
waiting time from the spike bus stop, in the case of
synchronised bunched buses B, does not depend on k, nor
on the number of passengers boarded from the spike bus
stop P. )e number of passengers boarded at the regular bus
stop Ppl□B∞k increases with k, while P is constant, hence
eventually the contribution at the regular bus stop domi-
nates for high k, showing the downward trend∞(1 − k/N)

since W□B∞(1 − k/N). An intuitive explanation is that at
larger k the buses spend more time at the regular bus stop
and less time waiting for the spike at the spike bus stop. In
all of the cases examined in Figure 2, bunching buses A are
never the best performing configuration regarding mini-
mising the average waiting time.

)e impact of the limited capacity is visualised in
Figure 3 where the three configurations of buses are
compared, changing the number of buses N from 2 to 4.
In the range of parameters explored, bunched buses are
always outperformed by synchronised bunched buses or
perfectly staggered buses, in terms of average waiting
time. While the case of two buses in the leftmost plot in
Figure 3 seems to follow the intuition that low capacity c

and high spike demand P favour synchronised bunched
buses over perfectly staggered buses, we see that for N � 3
and N � 4 the situation is less intuitive for intermediate
values of c. )e explanation of this phenomenon has to do
with the fact that lowering the capacity c in the case of
perfectly staggered buses lowers the average time that
buses take to complete a loop TC since each bus has to
stop less time at the spike bus stop, according to equation
(43). )is reduction in TC is directly proportional to the
reduction in waiting time at the regular bus stop via
equation (12) and indirectly reduces the waiting time at
the spike bus stop via equation (42) since the δΔi− th is
proportional to TC. )is reduction of the waiting time is
only effective up to a point where the reduction in waiting
time due to a lower TC is offset by the need for more and
more buses to clear the passengers at the spike bus stop,
through extra terms δΔi− th in equation (14). Fixing the
maximum capacity c, synchronised bunched buses out-
perform perfectly staggered buses for values of P high
enough.
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4.3. Applicability. Another comparison point pertains to the
applicability of the three different methods in the real world.
Bunched buses are stable [3, 12], in the sense that pertur-
bations in the system and in the initial conditions do not
influence the long-term configuration as the buses will tend
to bunch. Perfectly staggered buses, on the other hand,
require active dynamic intervention to keep the headway
between buses constant. Such intervention can be imple-
mented through holding [1–13, 17, 19, 35, 41–48, 54],
limiting boarding [28, 30, 55–58], or stop-skipping
[18, 19, 21, 32, 59, 60]. Dynamic control requires specific
infrastructure and it can be challenging to implement as
instructions need to be provided in real-time to bus drivers,
hence a technique that involves bunched buses has the
advantages of being more robust to perturbations and, at the
same time, easier to deploy.

4.4.ComparisonwithaSimulation. To validate our analytical
results, we compare the average waiting time found with our
approach in Sections 2 and 3 with a time-based numerical
simulation of the scenarios described. )e simulation is the
same time-based simulation described in reference [25] and
employed to test bus bunching in reference [14]. One of the
challenges of the simulation is in translating a result built on
continuous variables in a discrete simulation, where the
smallest unit is the unit of time. A convenient way to do so is
to use small units of time, hence we define T as 1000 units of
time. )e comparison with the simulation is given in Fig-
ure 1. )e plot on the left considers unlimited capacity c

while the plot on the right compares formulas and simu-
lation for limited c. )e main discrepancies with the sim-
ulation are at very low kT, where the discretisation of time
still plays a role, and at very high kT for the perfectly
staggered buses.)is has to do with the assumption wemade
in Section 2.3 about the buses being perfectly staggered. In
the simulation, this is implemented by holding buses at the
spike bus stop whenever the headway is not perfectly stag-
gered, which happens after the first bus picks up passengers
at the spike bus stop. )ere are many choices and many ways
of implementing dynamic control, one of which is described
in reference [2], but none of them can keep the buses
perfectly staggered at all times, making our assumption valid
only approximately. Nonetheless, our simulation matches
the waiting time predicted by the formulas within 3% for
most of the range of parameters explored in all three
configurations analysed, both for limited and unlimited
capacity.

5. Conclusion

A bus loop with a spike bus stop creates a situation where
perfectly staggered buses may not be the configuration that
minimises the average waiting time of passengers. If the
passenger demand from the spike bus stop is large enough,
bunched buses synchronised with the spike perform better
than staggered buses. )e advantage is stronger when bus
capacity constraints are considered. )e edges of bunched
buses are faster passenger boarding and have higher effective

capacity. When the bunched buses wait at the spike bus stop
until the spike occurs, the waiting time of the passengers
arriving at the spike bus stop is minimised, at the expense of
the waiting time of passengers arriving at the regular bus
stop. As discussed in Section 4, bunched configurations also
have the advantage of being robust to external perturbations,
as well as being easier to implement as compared with
staggered buses.

While our models are idealised, they take inspiration
from real-world situations, such as a bus stop connected to a
train station or mass rapid transit. We prove that bunched
buses can outperform perfectly staggered buses in certain
scenarios if the buses are synchronised with the spike in
passenger demand. )e analytical results of the waiting time
for the three bus configurations can be generalised to more
complicated bus loops, as explained in Sections 2.4 and 2.5.
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