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Quantum walks (QWs) exhibit different properties compared with classical random walks (RWs), most notably by linear
spreading and localization. In the meantime, random walks that replicate quantum walks, which we refer to as quantum-
walk-replicating random walks (QWRWs), have been studied in the literature where the eventual properties of QWRW
coincide with those of QWs. However, we consider that the unique attributes of QWRWs have not been fully utilized in the
former studies to obtain deeper or new insights into QWs. In this paper, we highlight the directivity of one-dimensional
discrete quantum walks via QWRWs. By exploiting the fact that QWRW allows trajectories of individual walkers to be
considered, we first discuss the determination of future directions of QWRWs, through which the effect of linear spreading
and localization is manifested in another way. Furthermore, the transition probabilities of QWRWs can also be visualized
and show a highly complex shape, representing QWs in a novel way. Moreover, we discuss the first return time to the origin
between RWs and QWs, which is made possible via the notion of QWRWs. We observe that the first return time statistics of
QWs are quite different from RWs, caused by both the linear spreading and localization properties of QWs.

1. Introduction

In this paper, we examine the concept of a quantum-walk-
replicating random walk, which we call QWRW. A
quantum walk (QW) is often explained as the counterpart
of the classical random walk (RW) [1–3]. However, the
properties of a quantum walk are quite different from the
latter. Quantum walks were first introduced in the field of
quantum information theory [4, 5]. After that, the
characteristic structure of quantum walks was intensively
studied by mathematicians, and since then, quantum
walks have been an important topic in both fundamental
and applied research. Indeed, quantum walks exhibit
versatile behavior depending on conditions or settings of
time and space, so there are many studies about their

mathematical analysis [6–13]. In addition, their unique
behavior is useful for implementing quantum structures
or quantum analogs of existing models; therefore, the
application is considered in fields such as quantum
teleportation [14, 15], time series analysis [16], topo-
logical insulators [17, 18], radioactive waste reduction
[19, 20], and optics [21]. Moreover, properties of quan-
tum walks have also been simulated numerically [22] or
experimentally via the interference of classical light waves
[23–25].

.e particularly unique characteristics of a quantum
walk are linear spreading and localization. .e former
means that the deviation of the distribution of a quantum
walk is proportional to its run time..e latter implies that
there exist specific positions that have nonzero
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measurement probability after sufficient time evolution.
.ese interesting properties are, however, not easy to
intuitively interpret since they are based on the quantum
superposition of multiple states. On the other hand,
modified models of classical random walks are widely
considered (e.g., correlated random walk [26], Lévy walk
[27], and Metropolis walk [28]). Such walks are treated as
interesting models not only in the field of mathematics
but also in natural science [29], economics [30], and
informatics [31], among others. While the distribution of
a simple random walk converges to the normal distri-
bution, those of classical random walks, in general, do not
necessarily do so, including the ones mentioned above.
.is is why researchers in many fields are interested in
them: they can describe more complex transitions of
states in real phenomena.

.e relationship between quantum walks and modi-
fied classical random walks is an active field of study. A
related study is given regarding finite graph structures by
Andrade et al. [32]. In their study, they show the tran-
sition probability matrices of quantum walks as non-
homogeneous random walks. In the study on Z, the
construction of Markov processes is presented by sepa-
rating the quantum evolution equation into Markovian
and interference terms by Romanelli et al. [33]. .e aim of
their decomposition is to show that the linear spreading is
derived from coherence. .at is, if the equation is
decoherent, the spread of the probability distribution
goes like simple random walks: the standard deviation is
O(

�
t

√
), where t is the run time [34, 35]. In the meantime,

Montero studied how to obtain the time- and site-de-
pendent coin operator to generate an intended proba-
bility distribution on Z [36]. .erein, the
nonhomogeneous random walk on Z exhibiting the
identical probability distribution of quantum walk was
discussed as a part of interchanging roles.

Our study treats the infinite line (Z) and sheds new
light on the associated fundamental properties of QWs
from the viewpoint of directivity, which is accessible by
the notion of QWRWs. In conventional quantum walks,
the probability of observing a walker in a particular
position is calculated via a coherent sum of all probability
amplitudes. On the other hand, a QWRW provides an
individual trajectory to reach a position. .e probability
of observing a walker in a position is calculated via the
statistics of individual walkers. In other words, the co-
herent summation of probability amplitudes is trans-
formed into the transition probabilities of walkers at time
n and position x on the line in QWRW, which results in
the characteristic directivity of walkers. While there are
previous studies on classical analogs of QWs as men-
tioned above, we consider that the effects of linear
spreading or localization in QW are not examined well
from such a perspective in the literature. In particular,

concerning the fact that one of the remarkable attributes
of QWRW is its ability to track the trajectory of indi-
vidual walkers, we can obtain insights into the properties
of QWs regarding directivity.

More specifically, we characterize the decision of
future directions of QWs, which manifests the effect of
linear spreading and localization in an unconventional
manner. Furthermore, the transition probabilities of the
QWRW are spatially and temporally defined and allow to
study characteristics of QWs. Moreover, we examine the
first return time of the walkers to the origin after
departing the origin with respect to RWs and QWs, which
is another interesting aspect examined via the notion of
QWRWs. We observe that the first return time statistics
of QWs are quite different from RWs.

.e rest of the paper is organized as follows. Section 2
gives the model of one-dimensional quantum walks and
quantum-walk replicating random walks as preparation.
In Section 3, we discuss the directivity of quantum
walkers by utilizing QWRWs. Beginning with the dis-
cussion on the trajectory of quantum walkers, we discuss
the decision of future direction, transition probabilities,
and the first return time statistics, which all exhibit
different characteristics compared with simple random
walks. Finally, we give a summary and discussion in
Section 4.

2. Preliminaries

In this section, we present quantum-walk-replicating
random walk (QWRW). First, we define the two-state
quantum walk that QWRW is based on. Second, we
describe the way of constructing the QWRW. In this
study, we limit the target to Z. We then show that the
probability distribution of a QWRW matches that of the
corresponding quantum walk by giving an initial con-
dition for both of them.

2.1. Quantum Walk. First, we give the following unitary
matrix: for x ∈ Z,

Cx �
ax bx

cx dx

􏼢 􏼣, (1)

where ax, bx, cx, dx ∈ C and axbxcxdx ≠ 0.We call Cx a coin
of the quantum walk. Here, we consider the decomposition
of C. Let |L〉 and 〈R| be [1, 0]T and [0, 1]T, respectively.
Using them, we put

Px � |L〉〈L|Cx, Qx � |R〉〈R|Cx. (2)

.en, we obtain
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Cx � Px + Qx, (3)

where Px and Qx give the decomposition of Cx. Px and Qx

correspond to the transition probabilities in the context of
simple random walks, respectively.

For a set (n, x) ∈ N0 × Z, we define the vector
Ψn(x) ∈ C2. Here, n and x represent the time instant of
quantum walks and the position on Z, respectively. .en,
Ψn(x) stands for the probability amplitude vector of
quantumwalks on the position x at the time n. We define the
time evolution of quantum walks as follows:

Ψn+1(x) � Px+1Ψn(x + 1) + Qx−1Ψn(x − 1), (4)

which is an analog of the recurrent formula of existence
probability of a walker in the context of simple randomwalks.

Finally, for a set (n, x), we define
μn(x) � Ψn(x)

����
����
2
, (5)

where μn(x) now describes the measurement probability of
the particle on the position x at the time n.

2.2. Quantum-Walk-Replicating Random Walk (QWRW).
In this subsection, we construct QWRWs. For a set
(n, x) ∈ N0 × Z such that μn(x)> 0, the transition proba-
bilities of the random walks are defined by the following
quantity:

pn(x) �
PxΨn(x)

����
����
2

μn(x)
,

qn(x) �
QxΨn(x)

����
����
2

μn(x)
.

(6)

Here for pn(x) and qn(x), the following Propositions 1
and 2 hold, which are important to construct the
distribution.

Proposition 1. For a set (n, x) ∈ N0 × Z such that μn(x)> 0,

0≤pn(x)≤ 1 and 0≤ qn(x)≤ 1. (7)

Proof. Here, we show this proposition for pn(x). We can
obtain the conclusion for qn(x) by making a similar
discussion.

By the property of norms and the assumption μn(x)> 0,
the inequality

0≤pn(x), (8)

is trivial. We define 〈PL| � [ax, bx], which leads to
‖PΨn(x)‖2 � |〈PL|Ψn(x)〉|2. By Cauchy–Schwarz
inequality,

〈PL|Ψn(x)〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ PL

����
����
2

· Ψn(x)
����

����
2

� ax

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ bx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑μn(x).
(9)

Here, the relationship ‖PL‖2 � |ax|2 + |bx|2 � 1 holds by
the unitarity of the coin C. .erefore, we obtain the
inequality

PΨn(x)
����

����
2 ≤ μn(x)

⇔pn(x) �
PΨn(x)

����
����
2

μn(x)
≤ 1.

(10)

Combining (8) and (10), we obtain the desired
result. □

Proposition 2. For a set (n, x) ∈ N0 × Z such that μn(x)> 0,

pn(x) + qn(x) � 1. (11)

Proof. By unitarity of the coin C and Eq. (1), we obtain

μn(x) � Ψn(x)
����

����
2

� CxΨn(x)
����

����
2

� PxΨn(x) + QxΨn(x)
����

����
2
.

(12)

Here, the relational expression 〈L|R〉 � 〈R|L〉 � 0 holds,
which leads to

PxΨn(x) + QxΨn(x)
����

����
2

� PxΨn(x)
����

����
2

+ QxΨn(x)
����

����
2
. (13)

.erefore,

PxΨn(x)
����

����
2

+ QxΨn(x)
����

����
2

� μn(x)⇔pn(x) + qn(x) � 1.

(14)

.is is the desired equation. □

By the propositions above, we can define QWRW as
follows:

Definition 1 (quantum-walk-replicating random walk
(QWRW))

Let Ψn􏼈 􏼉n∈N0
be the quantum walk defined by (4), that is,

Ψn+1(x) � Px+1Ψn(x +1) + Qx−1Ψn(x −1),

Ψ0(x) � δ0(x)φ0.
(15)

with ‖φ0‖ � 1. .e quantum-walk-replicating random
walk (QWRW) Sn􏼈 􏼉n∈N0

satisfies the following evolution: for
(n, x) ∈ N0 × Z such that μn(x)> 0,

P Sn+1 � x + ξ|Sn � x( 􏼁 �

pn(x) : ξ � −1

qn(x) : ξ � +1

0 : otherwise

⎧⎪⎪⎨

⎪⎪⎩
, (16)

where pn(x) � ‖PxΨn(x)‖2/μn(x) and qn(x) � ‖PxΨn(x)‖2

/μn(x).
Let ]n(x) be the probability that a particle following

QWRW (a QWRWer) exists on x ∈ Z at the time n ∈ N0. In
other words, ]n(x) is defined by the initial distribution and
the following recurrent formula:
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]n+1(x) � pn(x + 1)]n(x + 1) + qn(x − 1)]n(x − 1). (17)

Moreover, we put

]n � · · · , ]n(−1), ]n(0), ]n(1), · · ·􏼂 􏼃
T

, (18)

and call it the distribution of QWRWs at time n.
Incidentally, we have the following lemma:

Lemma 1. For n ∈ N0,

μn+1(x) � pn(x + 1)μn(x + 1) + qn(x − 1)μn(x − 1). (19)

Proof. By Eq. (4),

μn+1(x) � Ψn+1(x)
����

����
2

� Px+1Ψn(x + 1) + Qx− 1Ψn(x − 1)
����

����
2

� 〈L Cx+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Ψn(x + 1)〉
����

����
2

+ 〈R|Cx− 1|Ψn(x − 1)〉
����

����
2

� Px+1Ψn(x + 1)
����

����
2

+ Qx− 1Ψn(x − 1)
����

����
2
.

(20)

By the definition of pn(x) and qn(x) (6), we obtain the
desired conclusion. □

Using Lemma 1, we obtain the following fact: if and only
if we assume ]0 � μ0, the distribution of QWRWs and QWs
coincidents completely. .erefore, we can draw the fol-
lowing theorem:

Theorem 1

]0 � μ0⇔]n � μn for all n ∈ N0. (21)

Proof. We assume that for time instant n ∈ N0,

]n � μn. (22)

.en using the relational expression (17) and the as-
sumption above, we have

]n+1(x) � pn(x + 1)μn(x + 1) + qn(x − 1)μn(x − 1), (23)

for any x ∈ Z. .erefore, by Lemma 1, we obtain the
following:

]n+1(x) � μn+1(x). (24)

Reminding that this holds for any x ∈ Z, we obtain the
desired conclusion. □

Here, we compare our theory with previous studies. Our
statement extends .eorem 1 in [32] to an infinite graph if
we consider numbers of position x ∈ Z as labels of vertices
on the infinite graph G(Z, EZ) with EZ � (x, y) ∈􏼈

Z2
����x − y|� 1}. Our definition of transition probabilities (6)

corresponds to the case that υ(u, t)> 0 and (u, v) ∈ E in Eq.
(16) in their results, which is the case that μn(x)> 0 and
(x, y) ∈ EZ in our contexts. Note that ρ(v, c, t + 1) in their
paper corresponds to the left (resp. right) chirality of
Ψn+1(x − 1)(Ψn+1(x + 1)), whose value matches the left
(right) component of PxΨn(x)(QxΨn(x)). .e difference of

our study from their result is that the identification between
the distribution of quantum walk (μn) and QWRW (]n) is
the theorem as we showed in .eorem 1 while they assume
the match between quantum walk (υ(v, t)) and nonho-
mogeneous random walk (πv(t)).

In Reference [36], almost the same model is generated
as a result of interchanging roles, which solve the problem
of how a time- and site-dependent random walk mimics
the properties of a quantum walk or the opposite situa-
tion. Time- and site-dependent random walk and quan-
tum walk are combined by equating both of the net fluxes,
which are

J
(RW)
n (x) � qn(x) − pn(x)( 􏼁]n(x),

J
(QW)
n (x) � QΨn(x)

����
����
2

− PΨn(x)
����

����
2
,

(25)

respectively, in our contexts. However, this theory also needs
the assumption that the distribution of time- and site-de-
pendent random walk and that of quantum walk are the
same, which are described as ρ(n, t) in Reference [36]. In this
sense, our introduction of the distribution is made in the
opposite direction to their paper.

2.3.Demonstrations. Here we show two examples, which are
treated in the numerical studies later.

Example 1 (Site-homogeneous model). We set

Cx �
1
�
2

√
1 1

1 −1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ for anyx,

Ψ0(0) �
1
�
2

√
1

i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(26)

In this case, transition and existence probabilities are
calculated like Figure 1(a). .ese calculations are detailed in
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Appendix A..e probability remains the same as the case of
a symmetric simple random walk until time n � 3. However,
the distribution starts to differ at time n � 4. From there on,
the effects of linear spreading become apparent. .e
resulting probability distribution ]n(x) appears as
Figure 2(a). .is graph shows the peaks on the ends; these
correspond to linear spreading. Localization does not appear
in this case.

.e quantum walk model based on this example is well
known as one of the most fundamental models of quantum
walks and is introduced as symmetric model in Konno [7].
.e graph of the probability function also matches that of
Figure 3 in Konno [7].

Example 2 (One-defect model). We set

Cx �

1 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (x � 0)

1
�
2

√

1 1

1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (x≠ 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,Ψ0(0) �
1
�
2

√
1

i
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (27)

In this case, transition and existence probabilities are
calculated like Figure 1(b). .ese calculations are
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Figure 1: Transition of the distribution ]n of the QWRW corresponding to (a) Ex. 1 and (b) Ex. 2. Red and blue arrows represent pn(x) and
qn(x) from each set (n, x), respectively. Values on each coordinate (n, x) represent the corresponding value of ](x). For the coordinates that
do not have any display about ]n(x), their values are 0.
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detailed in Appendix A. .e probability is the same as
the case of symmetric simple random walks until n � 4.
However, at time n � 5 QWRWers are likely to go
outside on x � ±1, which results in a different proba-
bility distribution from the symmetric simple random
walk. .e resulting probability distribution ]n(x) is
shown in Figure 2(b). While this example has peaks on
the ends similar to Ex. 1, it also has an extremely high
peak on the origin, as this example shows both linear
spreading and localization.

.e quantum walk model based on this example is often
called one-defect quantum walk, which exhibits localization
at x � 0 as well as linear spreading.

3. Directivity of QWRWers

In this section, we introduce graphical representations of
QWRW as our main results. Comparing them with those of
simple random walk, whose walkers go to both sides with
probability 1/2 regardless of time and site, we point out how
linear spreading and localization play roles as walk
controllers.

3.1. Trajectories. One of the significant benefits of QWRWs
is that the notion of the path of a walker is valid because the
walker follows a classical probability at each position. A real
quantum walk is not a stochastic process, so it is not per-
mitted to observe its path in such a classical way. In this
regard, QWRW plays an important role as the visualizer of
quantum walks. Here, we demonstrate the path trajectories
of the walkers of QWRWs.

.e curves in Figures 3(a) and 3(b) show the path
trajectories of the walkers of QWRWs, which correspond to
Exs. 1 and 2, respectively. For comparison, we also show the
path trajectories of simple random walk in Figure 3(c). .e
horizontal and vertical axes, respectively, denote time and
position. .e number of walkers shown therein is 100.

.ere are many paths that spread towards the end
sections resulting in linear spreading. While in genuine QW,
linear spreading and localization are the effects of many
interfering wave amplitudes, in QWRWs this effect can be
observed as a trace of an individual walker.

In Figure 3(a), the corresponding QWRW has the
property of linear spreading, but does not exhibit locali-
zation. Linear spreading carries walkers radially, and the

n
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Figure 2: Graphical expressions of QWRW for (a) example 1 (site-homogeneous model) and (b) example 2 (one-defect model). .e upper
figure of each panel illustrates the space-time diagrams of the probability distribution. Circular markers are located at the coordinates (n, x)

such that ]n(x)> 0 with their color indicating the value of ]n(x). .e darker the color is, the larger the value of ]n(x) is. .e lower figure of
each panel shows probability distribution of QWRW ]n(x) at the time instant n � 500, which exactly matching the distribution of the
original QWs.
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range of terminus of walkers is much wider than that of
simple random walkers. Moreover, the farther from the
origin the position is, the higher the density of walkers,
which corresponds to the highest peaks of the probability
distribution shown in Figure 2.

On the other hand, in Figure 3(b), both linear spreading
and localization work on walkers. As with Ex. 1, some
walkers leave away from the origin. However, many walkers
wander around the origin, which is a clear difference from
the previous example. Furthermore, comparing the area
−200<x< 200 with Figure 3(a), the center area except for
the origin is almost free of walkers. .is range is also much
narrower than the running range of the simple random
walker. .ese different observations from Ex. 1 are affected
by localization. .is property catches walkers and prevents
them from leaving away. Meanwhile, the walkers that are not
captured by localization go far under the influence of linear

spreading. Eventually, walkers are divided between far
travelers and stayers on the origin.

3.2. Future Direction. We further examine the properties
made observable by QWRWs through the analysis of indi-
vidual trajectories. Here, the final time instant is given by
N ∈ N. Let K be the number of walkers of QWRWs or the
simple randomwalk and S(k)

n as the position of the k-th walkers
at time n with k ∈ [K] and n ∈ [N]0. Moreover, using them,
we define r(n) as the following to characterize the relevance of
the current (time: n) position and the future (time:N) position:

r(n) �
1
K

× # k ∈ [K]|sgn S
(k)
N􏼐 􏼑sgn S

(k)
n􏼐 􏼑 � 1􏽮 􏽯. (28)

Here, sgn(S
(k)
N )sgn(S(k)

n ) � 1 means that the k-th walker is
on the same side as the final positionwith respect to the origin at
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Figure 3: Paths of individual walkers in QWRWs for final time N � 500 and 100 walkers for (a) example 1 (site-homogeneous model), (b)
example 2 (one-defect model), and (c) simple random walk. .e linear spreading of quantum walks is visible as quasiballistic trajectories
towards the edges. Paths staying around the origin in Ex. 2 (b) localization by the defect coin in the quantum walk.
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time n. On the other hand, sgn(S
(k)
N )sgn(S(k)

n ) � −1 means that
the k-th walker is on the opposite side of the final position with
respect to the origin at time n. In this way, sgn(S

(k)
N )sgn(S(k)

n ) is
the benchmark to investigate when walkers effectively deter-
mine the directions they arrive in the future. If a walker
maintains sgn(S

(k)
N )sgn(S(k)

n ) � 1, we can interpret the walker
determines its own evolving direction. Based on that, we can
consider that r(n) is a figure-of-merit to investigate the ratio of
walkers that determines their future direction.

.e red and green curves in Figure 4(a) show r(n) re-
garding QWRWs of Exs. 1 and 2, respectively. In addition,

the blue curve in Figure 4(a) indicates r(n) for the simple
random walk.

We can clearly observe that r(n) of QWRWs increases
dramatically soon after the time evolution begins after n � 0,
that is, the future direction of a walker is highly determined
by the position in its early stage. .is observation is affected
by linear spreading; this property pulls walkers from the
origin and prevents returning there again. On the other
hand, the jump-up of r(n) of the one-defect QWRW (Ex. 2)
is not higher than that of the no-defect QWRWs (Ex. 1) and
maintains the value within a certain range. In addition, even
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Figure 4: (a) Degree of deciding future direction is characterized through the analysis of paths derived via QWRWs or the simple random
walk (N � 499, K � 100000). According to Eq. (26), walkers are counted to the numerator of r(n) in the only case that the sign at time n

matches the final one. Note that it is not counted in case of Sn � 0. QWRWs of Exs. 1 and 2 exhibit a dramatic increase right after the initial
time, which is another manifestation of linear spreading. (b) .e 2-term moving variance (MV) v(n) of r(n). QWRW of Ex. 2 exhibits a
larger variance, which clearly indicates localization.
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Figure 5: Transition probabilities p500(x) and q500(x) for QWRWs generated from QWs for (a) Ex. 1 (site-homogeneous) and (b) Ex. 2
(one-defect). It holds that p500(x) + q500(x) � 1, so left (p500(x), blue) and right (q500(x), orange) transition probabilities are expressed as a
stacked bar graph.
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after r(n) of Ex. 2 is reached and overtaken by that of the
simple random walk, the stay of value continues, and at the
very end, goes to 1. .is is the effect that localization makes
some walkers wander around the origin, which repeats
crossing x � 0.

Another observable feature is oscillation. .e ratio
r(n) gets higher and lower value when n is odd and even,
respectively, which causes oscillation for all the curves.
.is is because some walkers are on the origin at even
time instance because they are not counted on the nu-
merator of r(n) (see (27)). In response to this fact, we set
the final time instance of this simulation as an odd
number so as to have r(n) reach 1 in the end. .e am-
plitude of oscillation can be estimated by the 2-term
moving variance v(n) of r(n) by the following equation,
see Appendix A for details.

v(n) �
1
4

r(n)
2

− 2r(n)r(n − 1) + 5r(n − 1)
2

􏼐 􏼑. (29)

.e results are shown in Figure 4(b). We observe that
v(n) decreases dramatically right after the jump-up in
QWRWs of Ex. 1. .is is because most of the walkers leave
from the origin right away with linear spreading and never
return there again. Conversely, in QWRWof Ex. 2, v(n) does
not exhibit a drastic decrease, which stays at a constant value
of approximately 10− 2. .is means that many walkers of the
one-defect QWRW wander around the origin right before
the final time; that is, the effect of the other characteristics of
quantum walks: localization.

3.3. Transition Probability. We examine the expressions of
transition probabilities pn(x) and qn(x). .e sum of pn(x)

and qn(x) is equal to 1; hence, our interest is in the im-
balances between pn(x) and qn(x). .e red and red portion

of the color bars in Figure 5 indicate the amount of pn(x)

and qn(x), respectively.
A common attribute observed in Figures 5(a) and 5(b) is

that there are peaks of pn(x) and qn(x) on the left and right
sides, respectively. For x≤ −350 and x≥ 350, all examples
have identical transition probabilities, following a simple
quasicontinuous function of x. .is part of the transition
probabilities indicates that individual walkers that go far
away from the origin tend to go farther, which is related to
the linear spreading property of QWs.

In the center region of Figure 5, the transition proba-
bilities are fluctuating quickly as a function of x. .ese
fluctuations are calm around the origin, but they are violent
outside x � ±50. .e exact position and height of these
maxima and minima in pn(x) and qn(x) also change with n.
.e causes of these fluctuations are not clarified, but we
hypothesize that they are the classical representation of
self-interference of the quantum walkers.

A significant difference between two examples shown in
Figure 5 is the distribution around the origin. In Figure 5(a),
pn(x) exhibits a peak on the left side of the origin while
qn(x) shows a peak on the right side of the origin. .is
means that the QWRWers starting from the origin equally
likely go to the left side or to the right side. .is is strongly
related to the fact that the probability distribution ]n(x) in
Ex. 1 exhibits its highest peaks on both left and right sides
(Figure 2(a)).

On the other hand, in Figure 5(b), pn(x) and qn(x) show
the local maximum on the right and left sides, respectively,
meaning that the QWRWers are guided toward opposite
directions alternatively around the origin. Namely,
QWRWers are highly likely locked in around the origin,
which is a manifestation of localization (Figure 2(b)). .is is
considered to be a result of the defect located near the origin.
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Figure 6: (a) Relationship between time nf and the ratio of walkers whose first return time is the time, which is described as R(nf ) (N � 104,
K � 100000). (b) Cumulative value of R(nf ), whose setting is the same as (a). In case of simple random walk, site-homogeneous QWRW,
and one-defect QWRW, R(10000) is approximately 0.992, 0.613, and 0.699, respectively.
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Furthermore, from the transition probabilities calculated via
QWRWs, we can foresee certain underlying smooth
structures plus highly oscillatory ones in Figures 5(a) and
5(b), which is one of the interesting future studies.

3.4. FirstReturn Time. .e first return time concerns
whether a walker departing from the origin comes back to
the origin and if so, the first return time is the time when the
walker comes back to the origin first, which is denoted by nf .
.is is one of the interesting figures to characterize the
directivity of walkers. It is well known that the probability of
a walker to be back to the origin at time nf for a symmetric
one-dimensional random walk follows power law nf3/2.
Furthermore, the cumulative return probability is 1,
meaning that the random walker surely comes back to the
origin at some moment.

Fig. 6(a) summarizes the fraction of walkers whose first
return time is time nf, which is denoted by R(nf ). .e blue,
red, and green curves represent the result with respect to
simple RW, site-homogeneous QWRW, and one-defect
QWRW, respectively. Here we run in a total of 100,000
random walkers. .e simple RW (red curve) in Fig. 6(a)
follows the abovementioned nf3/2 trend. In addition, Fig.
6(b) characterizes the cumulative value of R(nf ) as a function
of nf. It should be noted that the red curve by the simple RW
is approaching unity, manifesting that the return probability
of simple RW is one.

In contrast, the site-homogeneous QWRW exhibits
smaller R(nf ) values for any nf than simple RW in Fig. 6(a),
which indicates that the walker is less likely to come back to
the origin at time nf than for a simple RW. Indeed, in Fig.
6(b), the cumulative value of R(nf ) undergoes a plateau,
indicating strongly that some of the walkers never return to
the origin. .is is another manifestation of the linear
spreading of QW in the format of the first return time
discussion. Indeed, the red curve in Fig. 6(a) approximately
numerically follows power-law statistics with n−2

f . A strict
derivation of this distribution could give further insights
into the behavior of the QWRWs, but so far this remains an
open challenge.

In the one-defect model (green curve), R(nf ) shows the
same order of value as that of simple RW until nf = 8, but
after that, it drastically decreases. .is indicates that the
defect coin strongly pulls some walkers back to the origin by
localization to the origin (until nf = 8), but such a character
quickly decays, and most of the walkers run away because of
linear spreading. Similar to the former site-homogeneous
case, the cumulative value of R(nf ) sees a plateau, indicating
that some of the walkers spread away from the origin. At the
same time, it should be noted that the cumulative value of
R(nf ) by one-defect QW is larger than that by site-homo-
geneous QW, indicating that the localization by the defect
contributes to the increase of the returns of the walkers.

Connecting the results of the future direction (Fig. 4) and
first return time (Fig. 6), we can also see that approximately
38% of walkers for site-homogeneous QWRW never return
to the origin, which means that their future direction must
stay on the same side after time n = 1. Indeed, compared with

future directions shown in Fig. 4(a), r(n) is larger than about
0.38. Similarly, for all the models of walk and time instance
n, r(n) is larger than the cumulative value of R(n), and the
difference is related to the walkers that cross the origin
several times because of wandering.

4. Summary and Discussion

In this study, we examine the directivity of quantum walks via
its random walk replica, which is called quantum-walk-repli-
cating random walk (QWRW). Although the theoretical ap-
proach to deal with quantum walks in classical random walks
(i.e., QWRW) has been studied in the literature, the insights and
viewpointsmade possible byQWRWare notwell characterized,
especially the directivity of quantum walks. We start with the
derivation of trajectories of QWRW, followed by the demon-
stration of transition probabilities to left and right, which co-
incides with the linear spreading and localization properties of
QW. Furthermore, we demonstrate that the future direction of
QWRW is determined at the very early stage of the time
evolution, which is another representation of the linear
spreading attribute. Finally, the first return time of QWRW is
examined where the scaling properties are different from the
simple RW. With the site-homogeneous coin and one-defect
coin examples, we can clearly observe the linear spreading and
localization effects in the first return time statistics.

For future studies, more avenues of research remain. A
deeper mathematical understanding of QWRWs is desirable,
and several open questions remain. For example: what is the
asymptotic behavior of transition probabilities
limn⟶∞pn(x) and limn⟶∞qn(x) for each x ∈ Z? Can the
metrics to describe the future directions be represented by an
analytical formula? Besides, quantum walks strongly depend
on initial conditions as studied in Reference [37]; therefore,
the initial state dependency is a promising future direction to
QWRW.

So far, the coin operator has also been restricted to be a
Hermitian matrix. Extension to non-Hermitian systems
[38, 39] would significantly enhance the generality of the
related discussions.

.e present study only examines single-particle systems.
QWRW approaches for multiparticle systems, including
entanglement, could provide even deeper insights into the
relationship between classical RWs and QWs. Entangled
QWRWs could also potentially have computational ad-
vantages over full quantum simulations, although this re-
mains an open question.

In particular, QWRWs generate walkers exhibiting
equivalent statistics as the measurement result of a QW.
Computationally, the cost is also much lower under certain
assumptions; once the transition probabilities at time n and
the position x are known, calculating an individual trajec-
tory of the QWRW is very fast and will be O(n) for tra-
jectories until time n. A comparable QW would necessarily
need to calculate the fully selfinteracting wave function,
which requires matrix products and is O(n2).

However, in our current work, the correct transition
probabilities pn are directly calculated from the wave
function, which requires a complete QW simulation initially,
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as this is how we ensure that the resulting QWRW shares all
important properties with the original QW. As related
thoughts in Andrade et al. [32] outline, there are potential
cases where pn could be obtained directly. In those cases,
which for now appear to be rare, a simulation of QWRW
would overall be more efficient than a QW simulation.
Whether it is possible to obtain the transition probabilities
pn and qn in general through some clever formulae that
avoid calculating the wave function of the corresponding
QW remains an open problem.

Besides the numerical simulation of QWRWs, the
physical implementation of QWRWs is an intriguing issue. In
QWRW, the walker transits to the left or right depending on
the transition probability at any given time and position. .is
could be implemented physically, for example, in a me-
chanical system where a ball, the walker, rolling down a plane
encounters an array of pins that deflect the ball to left or right
in a probabilistic manner, just like in “pachinko” [40]. .e
precision of the deflection ratesmay, however, turn out to be a
limiting factor for large QWRW. To its advantage, such a
mechanical system also ensures an effectively discrete-time
evolution of the ball’s pathway, corresponding to the rows in a
classical “pachinko” machine. Ultimately, much faster
physical processes may also allow for the construction of
quasi-“pachinko” machines, such as electronics or photonics.

A QWRW trajectory can also be the starting point of
further applications. In the literature, a chaotically oscil-
lating time series has been experimentally utilized in effi-
ciently solving multiarmed bandit problems [41].
Furthermore, Okada et al. [42] demonstrated a theoretical
model that accounts for the acceleration of solving the two-
armed bandit problem within the framework of correlated
random walks. .ese findings imply that a QWRW may be
an exciting resource for solving such bandit problems.

Appendix

A. Calculations of Probabilities on QWRW

A.1. Ex. 1 [Site-Homogeneous Model]
.e coin matrix Cx is decomposed as follows: for all

x ∈ Z,

Px � |L〉〈L|Cx �
1
�
2

√
1 1

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≕P, Qx � |R〉〈R|Cx

�
1
�
2

√
0 0

1 −1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≕Q.

(A.1)

.e probability at time n � 0 is defined as follows:

]0(0) � μ0(0) � 1. (A.2)

.e probabilities p0(0) and q0(0) are calculated as
follows:

p0(0) �
PΨ0(0)

����
����
2

μ0(0)
�
1
2
, q0(0) �

QΨ0(0)
����

����
2

μ0(0)
�
1
2
. (A.3)

.erefore, the existence probabilities at time n � 1 are
obtained as follows:

]1(−1) � p0(0)]0(0) �
1
2
, ]1(1) � q0(0)]0(0) �

1
2
. (A.4)

.e probabilities p1(±1), q1(±1) are calculated as
follows:

p1(−1) �
PΨ1(−1)

����
����
2

μ1(−1)
�

P
2Ψ0(0)

����
����
2

PΨ0(0)
����

����
2 �

1
2
,

p1(1) �
PΨ1(1)

����
����
2

μ1(1)
�

PQΨ0(0)
����

����
2

QΨ0(0)
����

����
2 �

1
2
,

q1(1) �
QΨ1(1)

����
����
2

μ1(1)
�

Q
2Ψ0(0)

����
����
2

QΨ0(0)
����

����
2 �

1
2
,

q1(−1) �
QΨ1(−1)

����
����
2

μ1(−1)
�

QPΨ0(0)
����

����
2

PΨ0(0)
����

����
2 �

1
2
. (A.5)

.erefore, the existence probabilities at time n � 2 are
obtained as follows:

]2(−2) � p1(−1)]1(−1) �
1
4
,

]2(0) � p1(1)]1(1) + q1(−1)]1(−1) �
1
2
,

]2(2) � q1(1)]1(1) �
1
4
.

(A.6)

.e probabilities p2(0), q2(0), p2(±2), and q1(±2) are
calculated as follows:

p2(−2) � q2(−2) � p2(0) � q2(0) � p2(2) � q2(2) �
1
2
.

(A.7)

.erefore, the existence probabilities at time n � 3 are
obtained as follows:

]3(−3) � ]3(3) �
1
8
, ]3(−1) � ]3(1) �

3
8
. (A.8)

Until then, the probabilities are the same as the simple
random walk, but this shall not apply to further behavior.
.e transition probabilities at n � 3 are calculated as follows:

p3(−3) � q3(−3) � p3(3) � q3(3) �
1
2
,

p3(−1) � q3(1) �
5
6
, q3(−1) � p3(1) �

1
6
. (A.9)

Here, we note that Ψ3(−3) � P3Ψ0(0),
Ψ3(−1) � (P2Q + PQP + QP2)Ψ0(0), Ψ3(1) � (PQ2 +

QPQ + Q2P)Ψ0(0), and Ψ3(3) � Q3Ψ0(0). .erefore,
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the existence probabilities at time n � 4 are obtained as
follows:

]4(−4) � ]4(4) �
1
16

, ]4(−2) � ]4(2) �
3
8
, ]4(0) �

1
8
.

(A.10)

.e probabilities at time n � 5 are calculated similarly.
A.2. Ex. 2 [One-Defect Model]
.e coin matrix Cx is decomposed as follows:

Px �

1 0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (x � 0)

1
�
2

√

1 1

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≕P (x≠ 0))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

Qx �

0 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (x � 0)

1
�
2

√

0 0

1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≕Q (x≠ 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.11)

Equally to Ex. 1, we define the initial probability dis-
tribution as follows:

]0(0) � μ0(0) � 1.

p0(0) �
P0Ψ0(0)

����
����
2

μ0(0)
�
1
2
, q0(0) �

Q0Ψ0(0)
����

����
2

μ0(0)
�
1
2
.

(A.12)

.erefore, the existence probabilities at time n � 1 are
obtained as follows:

]1(−1) � p0(0)]0(0) �
1
2
, ]1(1) � q0(0)]0(0) �

1
2
, (A.13)

.e probabilities p1(±1), q1(±1) are calculated as
follows:

p1(−1) �
PΨ1(−1)

����
����
2

μ1(−1)
�

PP0Ψ0(0)
����

����
2

P0Ψ0(0)
����

����
2 �

1
2
,

q1(−1) �
QΨ1(−1)

����
����
2

μ1(−1)
�

QP0Ψ0(0)
����

����
2

P0Ψ0(0)
����

����
2 �

1
2
,

p1(1) �
PΨ1(1)

����
����
2

μ1(1)
�

PQ0Ψ0(0)
����

����
2

Q0Ψ0(0)
����

����
2 �

1
2
,

q1(1) �
QΨ1(1)

����
����
2

μ1(1)
�

QQ0Ψ0(0)
����

����
2

Q0Ψ0(0)
����

����
2 �

1
2
. (A.14)

.e result is the same as Ex. 1, but we should note that
the applied matrices are different from Ex. 1 because of the
definition of the coin. .e existence probabilities at time n �

2 are obtained as follows:

]2(−2) � p1(−1)]1(−1) �
1
4
,

]2(0) � p1(1)]1(1) + q1(−1)]1(−1) �
1
2
,

]2(2) � q1(1)]1(1) �
1
4
. (A.15)

Equally, by using the decomposition matrices properly,
we obtain the probabilities after then.

B. The 2-Term Moving Variance of r(n)

We define 2-term moving variance v(n) of r(n), which we
introduced as (28) in Section 3.2, along 2-term moving
average m(n) of r(n) defined as follows. For n ∈ N,

m(n) �
1
2

(r(n) − r(n − 1)). (B.1)

Here, we consider v(n) as the analog of the ordinary
variance: the mean of the difference between the random
variable and its mean. Concretely, we define

v(n) �
1
2

(r(n) − m(n))
2

+ (r(n − 1) − m(n))
2

􏽮 􏽯. (B.2)

By substituting (B.1) to it, we obtain the following:

v(n) �
1
4

r(n)
2

− 2r(n)r(n − 1) + 5r(n − 1)
2

􏼐 􏼑. (B.3)
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