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Diffusion plays an essential role in the distribution of predator and prey. We mainly research the diffusion network’s effect on the
predator-prey model through bifurcation. First, it is found that the link probability and diffusion parameter can cause Turing
instability in the network-organized predator-prey model. +en, the Turing stability region is obtained according to the sufficient
condition of Turing instability and the eigenvalues’ distribution. Finally, the biological mechanism is explained through our
theoretical results, which are also illustrated by numerical simulation.

1. Introduction

Turing instability was first investigated in the reaction-dif-
fusion system [1], and it is constantly being promoted to
explain the dynamical mechanism [2, 3]. Asllani et al.
pointed out that the directed network could induce Turing
instability when an indirect network does not work [4, 5].
Meanwhile, tuning the topology structure of the system can
create or destroy patterns in a reaction-diffusion system [6].
Mimar et al. proved that the pattern formation’s topological
properties are determined by complex interaction [7]. Al-
though spontaneous patterns [8] are associated with the
dominance of eigenvectors and eigenvalues [9–11], the
dynamical mechanism of the random network in pattern
formation remains to be uncovered.

Since the Lotka–Volterra model was proposed in the
early twentieth century, some biological mechanisms were
explained in the predator-prey system [12–18]. Chang et al.
researched the dynamics in the predator-prey system on
complex networks and found that Turing instability caused
by delay can generate spiral waves [19]. Liu et al. showed the
effect of network and diffusion on the ecological balance of
the predator-prey system [20]. Upadhyay and Bhattacharya
studied the differences between the aqueous and terrestrial
environments in predator-prey networks and tried to

explain their biological mechanism [21]. Astarloa et al. tried
to use the joint species distribution modeling to reveal the
coexistence problem of prey and predator in the Bay of
Biscay [22]. Although previous work shows that diffusion
and randomness influence the Turing pattern significantly,
the random network’s effect on the distribution of predator
and prey should be carefully evaluated.

To reveal the natural mechanism of biological invasion,
we intend to investigate the random diffusion network’s
effect on the network-organized predator-prey model’s
stability. First, we obtain the conditions under which Turing
bifurcation arises. Second, we find an estimated region of all
the eigenvalues of the Laplacian matrix, the sufficient sta-
bility conditions in the network-organized predator-prey
model. +ird, we explain the network-organized Turing
instability by the mean-field approximation and comparison
principle. Also, we estimate the Turing instability range
about link probability and diffusion and try to explain the
mechanism of biological invasion. Last, we illustrate our
theoretical results through numerical simulation.

2. A Network-Organized Predator-Prey Model

For the convenience of subsequent research, we first give
some necessary symbolic rules. +e network Laplacian
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matrix L � Lij  can be treated as Lij � Aij − kiδij, and all
the eigenvalues of L areΛ � Λi .+e eigenvectors ϕi ∈ Rn of
Λi satisfy Lϕi � Λiϕi, i � 1, . . . , n. L is real symmetric, and we
choose an orthonormal basis for ϕiϕj � δij, where the degree
of node i is ki, and δij is the Kronecker delta function.

We consider the following predator-prey system:

dx

dt
� x r1 − a11x − a12y ,

dy

dt
� y r2 + a21x − a22y ,

(1)

where x and y are prey and predator, respectively. r1 rep-
resents the intrinsic growth rate, a12 is the proportionality
coefficient of predator and prey, and a21 is the growth rate of
the predator; the predator increases exponentially with ratio
r2 (actually r2 < 0 means the number of predators decreases
exponentially). According to Samuelson’s assumptions [23],
a11 and a22 represent increasing returns or decreasing
returns, respectively. Among them, aii > 0(< 0), (i � 1, 2)

correspond to increasing returns (decreasing returns).
System (1) correspond to the mixed-income when a11a22 ≤ 0.

System (1) always has three equilibria
E0 ≜ (0, 0), E1 ≜ (r1/a11, 0), and E2 ≜ (0, r2/a22). System (1)
also have fourth equilibrium point E3 ≜ (x∗, y∗)≜ (r1a22 −

r2a12/a11a22 + a12a21, r1a21 + r2a11/a11a22 + a12a21) when
r1a22 − r2a12/a11a22 + a12a21 > 0, r1
a21 + r2a11/a11a22 + a12a21 > 0. On the basis of Hopf bifur-
cation’s definition, we need to satisfy
tr(JE3

) � 0, det(JE3
)> 0.+e critical value for bifurcation is a

positive root of tr(JE3
) � 0 and the bifurcation parameter is

a12 � a∗12 which satisfies det(JE3
)> 0,

a12 �
r1 + r2( a11a22 + r1a21a22

r2a11
≜ a
∗
12,

r2 r1a21 + r2a11( 

a11 + a21
< 0.

(2)

+en, we give the condition of Hopf bifurcation. Firstly,
we verify the transversality condition [24].

d
da12

tr J x∗ ,y∗( ) 

a12�a∗12

� −
a22 a11 + a21(  r1a21 + r2a11( 

a11a22 + a12a21( 
2

a12�a∗12

� −
r2a11( 

2

a22 a11 + a21(  r1a21 + r2a11( 
≠ 0.

(3)

+en, we compute the first Lyapunov coefficient [25]. Let
a12 � a∗12, then (x∗c, y∗c) � (− (r2/a11 + a21),

(r2a11/a22(a11 + a21))). Making the following shift

X � x − x
∗c

,

Y � y − y
∗c

.
(4)

(1) becomes

_X � α10X + α01Y + α20X
2

+ α11XY,

_Y � β10X + β01Y + β11XY + β02Y
2
,

(5)

where α10 � − a11x
∗c, α01 � − a12x

∗c, α20 � − a11, α11 � − a12,

β10 � a21y
∗c, β01 � − a22y

∗c, β11 � a21, β02 � − a22.
+e first Lyapunov coefficient at a12 � a∗12 can be

computed by the formula

l1 �
− 3π

2α01Δ
3/2

α10α01 β211 − 2α220 + α20β11 + α11β02  + α10β10 α211 − 2β202 + α11β02 

+α01β10 β11β02 − α11α20( 

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ − 2α210β11β02 + 2α210α11α20

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

�
− 3π
2

−
a11 + a21

r2 r1a21 + r2a11( 
 

3/2
r1a21 + r1a11 + r2a11( a

2
22

a11 + a21
,

(6)

where Δ � α10β01 − α01β10 > 0, α10 + β01 � 0, and if
l1 < 0(> 0), the Hopf bifurcation is supercritical (resp.
subcritical).

When r1a22 − r2a12/a11a22 + a12a21 > 0, r1 a21 + r2a11/
a11a22 + a12a21 > 0, E3 changes its stability, and Hopf bi-
furcation occurs if a12 � a∗12.

Typically, the distribution of individuals is spatially
heterogeneous. So, we research (1) with a reaction-diffusion
and network as follows:

dxi

dt
� xi r1 − a11xi − a12yi  + d1∇

2
xi,

dyi

dt
� yi r2 + a21xi − a22yi  + d2∇

2
yi,

(7)

where d1, d2 are the diffusion constants.
Generally, we can regard diffusion as an interplay be-

tween network nodes. In this article, we consider a dis-
tinctive interaction between nodes. So the network-
organized system (7) is
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dxi

dt
� xi r1 − a11xi − a12yi  + d1 

j

Lijxi,

dyi

dt
� yi r2 + a21xi − a22yi  + d2 

j

Lijyi.

(8)

+e linearized network-organized system of the system
(8) is

dxi

dt
� α10xi + α01yi + d1 

j

Lijxi,

dyi

dt
� β10xi + β01yi + d2 

j

Lijyi.

(9)

+e general solution of the linear network-organized
system can be expressed as [3].

xi � 

N

k�1
ckβke

λktϕk
i ,

yi � 
N

k�1
cke

λktϕk
i ,

(10)

where jLijϕ
k
j � Λiϕ

k
i .

Substituting the general solution into system (9), the
Jacobian matrix Bi(i � 1, . . . , n) is

Bi �
α10 + d1Λi α01

β10 β01 + d2Λi

 , (11)

where all the eigenvalues of matrix L can be represented as
Λi(0 � Λ1 >Λ2 > · · · >ΛN). +en, system (8) has the fol-
lowing characteristic function:

λ2 + pΛi
λ + qΛi

� 0, (12)

where pΛi
� − (α10 + β01) − (d1 + d2)Λi,

qΛi
� d1d2Λ2i + (α10d2 + β01d1)Λi + α10β01 + α01β10. Turing

instability occurs when there is a Λi with Reλ> 0. From (12),

4d1d2 α10β01 + α01β10(  + α10d2 + β01d1( 
2

� 0. (13)

We can get the Turing instability’s critical value about Λ
(Skim d1 � 0.1562d2) in the reaction-diffusion system Fig-
ure 1. Note k2

1c, k2
2c(k2

1c < k2
2c) as two solutions of

Reλ(k2) � 0, Reλ(k2)> 0 holds if k2 ∈ B � λ|k21c < λ< k2
2c 

Figure 2(d2 � 2). Turing instability of the reaction-diffusion
system is the Turing instability’s prerequisite in the network-
organized system. Based on the Gershgorin circle theorem
[9, 10], we have.

(i) Result 1: kmax � max ki , kmin � min ki  and Λi is
the eigenvalue of the Laplacian matrix L, then,
Λi ∈ C � Λi| − 2kmax <Λi ≤ 0 .

(ii) Result 2: in a network-organized system, a system
remains stable when no eigenvalue of L stays at the
instability range Λ∩B � Φ, Turing instability occurs
when Λ∩B≠Φ, and B∩C≠Φ (C is the set of the

eigenvalues of Laplacian matrix) induces the oc-
curring of instability.

To study the mechanism of the network-organized
system’s stability, we research (8) through the comparison
principle: let xi � x∗ + εxi and yi � y∗ + εyi, where
0< ε≪ 1. Substituting xi, yi in (9), expanding in ε, we can get
the linearized system:

dxi

dt
� α10xi + α01yi + d1Lxi,

dyi

dt
� β10xi + β01yi + d2Lyi.

(14)

We resolve the first-order perturbations into ϕi’s
eigenfunction expansions, to consider the system’s stability.
Let

xi � Xiϕi,
Yi � Yiϕi, for each i � 1, . . . , n. (15)
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Figure 1: +e stability of the system (1) without diffusion when
r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1, a21 � 2, a22 � 1.
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Figure 2: +e stability of the system (1) without diffusion when
r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1.7271, a21 � 2, a22 � 1.
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Substituting (15) into (20) and noting the properties of
ϕi, we obtain

d Xi

dt
� α10 Xi + α01 Yi + d1Λi

Xi,

dYi

dt
� β10 Xi + β01 Yi + d2Λi

Yi.

(16)

Using the comparison principle from [26], we note

d2Y
dt

2 + P(t)
dY

dt
+ Q(t)Y � 0, (17)

where Q(t)< 0. We eliminate one of Xi or Yi from (16), then
d2 Xi

dt
2 + pΛi

d Xi

dt
+ qΛi

Xi � 0,

d2 Yi

dt
2 + pΛi

dYi

dt
+ qΛi

Xi � 0,

(18)

where pΛi
, qΛi

are as in (12). +en, we obtain the generalized
condition:

α10β01 + α01β10 + d1β01 + d2α10( Λi + d1d2Λ
2
i < 0. (19)

Assume that the instability condition (19) holds. +en,
the homogeneous state (xk, yk) � (x∗, y∗) is unstable under
the ith Turing mode (15).

We also consider the system (8) through the mean-field
theory:

dxi

dt
� f xi, yi(  + d1 H

x
− kixi( ,

dyi

dt
� g xi, yi(  + d2 H

y
− kiyi( ,

(20)

where Hx � 
n
j�1 Aijxj, Hy � 

n
j�1 Aijyj and ki is the net-

work’s degree. We let other nodes stay at equilibrium
(x∗, y∗), and rewrite the single-node system,

dxi

dt
� xi r1 − a11xi − a12yi  + d1 x

∗
− kixi( ,

dyi

dt
� yi r2 + a21xi − a22yi  + d2 y

∗
− kiyi( .

(21)

+erefore, it is easy to obtain the characteristic equation:

λ2 + pki
λ + qki

� 0, (22)

where pki
� − (α10 + β01) + d1ki + d2ki, qki

� α10β01+ (α10d2
+ β01d1)ki + d1d2k

2
i . Assume λ1 and λ2 are two eigenvalues of

system (22). +en system (21) is stable when d1 � d2 � 0,
namely pki

> 0, so λ1 + λ2 � − pki
< 0. If qki

> 0(qki
< 0). +en,

the system (21) is stable(unstable). To sum up, we can use the
comparison principle(the mean-field theory) to conclude that
the system (8) is unstable when qΛi

< 0(qki
< 0).

3. Numerical Simulation

We give some numerical analysis based on the earlier
theoretical analysis. From Figure 3, if we choose

r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1, a21 � 2, a22 � 1, the
equilibrium point (x∗, y∗) is asymptotically stable, namely,
ecological balance persists as long as there is no biological
invasion. +at means the predator and the prey can coexist.
+e equilibrium (x∗c, y∗c) � (1.1326, 1.2651) is unstable,
and Hopf bifurcation occurs Figure 4, when a12 passes
through the critical value a∗12 � 1.7271. Because
l1 � 8.2123> 0, the Hopf bifurcation is subcritical, the prey-
predator system shows periodic changes; thus, this state is
easy to destroy. +e equilibrium point (x∗, y∗) becomes
unstable, when a12 � 1.8271> a∗12.

As diffusion is a vital factor in the distribution of
predator and prey, we should not ignore migration. So we
construct the random network and transform it into the
Laplacian matrix Lij. And we consider how the random
network affects the equilibrium point’s stability when (7) is
stable.

Based on the above theoretical analysis, the Turing in-
stability in the reaction-diffusion equation is a precondition
for Turing instability in a network-organized system. Turing
instability occurs in a reaction-diffusion equation when
Turing bifurcation parameters d2 and d1 are in a certain
range Figure 1. Namely, diffusion behavior is universal and
allowed, but the relative diffusion rate needs to be within a
specific range; otherwise, the ecosystem will be out of bal-
ance and destroyed.

To observe Turing instability in the network-organized, we
should guarantee d1 < 0.1562d2 while changing p. However,
the Laplacian matrix eigenvalues are Λ1,Λ2, . . . ,ΛN, N is the
number of nodes, and k2 is continuous in a reaction-diffusion
system. In other words, the distribution of − Λi determines the
system stability.+e critical point is d1c � 0.3124 when d2 � 2.
+e range of eigenvalues Λi could be obtained by result 1. +e
eigenvalues of L are discrete and included in the continuous
region Figure 2.

+e red region shows the estimated range of Turing
instability about (p, d1) in Figure 5. Besides, we obtain the
estimated range of p, (d2 ln N/d1cN)>p> (1/N2), which
determines the system dynamical behavior and network
characteristics. Moreover, p � ln N/N is the critical value
between the connected network and sparse network [27].
Anyway, the invasive rate of species and p in the predator-
prey network play a vital role in balancing the native bio-
logical system.

Let the value of (p, d1) lie in the blue region shown in
Figure 5 (here, we set p � 0.00006, d1 � 0.1124), then,

Turing instability

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

d1

2 4 6 8 100
d2

Figure 3: Turing bifurcation about d2 and d1 in the continuous
system.
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Figure 4: Linear stability analysis. +e relationship between Reλ about − Λi(k2) when r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1, a21 � 2, a22 � 1,
and p � 0.1, d2 � 2. +e critical values are Λc � − 3.35, d1c � 0.3124.
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Figure 5: +e region of instability about d1 and p.
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Figure 6: (a) Instability region (left) of random network and pattern formation (right) in random network when p � 0.00006, d1 � 0.1124.
(b) +e bifurcation about d1 when p � 0.00006.
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there is no point Λi (k2) in the instability region
Λ∩ (1.7, 21.1) � Φ (result 2) (Figure 6(a)) and the equi-
librium is stable (Figure 6(a)). We verified the correctness
of the previous analysis with bifurcation diagrams
(Figure 6(b)). We can conclude that with a fixed predator
invasion rate and a fixed prey invasion rate, the link
probability between two different systems will negatively
impact the entire predator-prey network stability. Even
the predator-prey network’s diffusion induces the species
extinction.

Figure 7 shows an example of p that belongs to the red
region in Figure 5, such as p � 0.08, d1 �

0.1124< d1c � 0.3124, almost all of Λi(k2) in instability re-
gion Figure 7(a) left(up) and 7(a) right(up) shows that Turing
instability occurs. If p � 0.08 and d1 � 1.1124>d1c � 0.3124
(i.e., (p, d1) in the blue region in Figure 5), there is no point
Λi(k2) in the instability region (Figure 7(a), left(down)), the
system is stable (Figure 7(a), right(down)). We also verified
the correctness of the previous analysis with a bifurcation
diagram (Figure 7(b)).
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Figure 7: (a) +e relationship between Reλ about − Λi(k2) (left) and the pattern formation of system (3) (right). Top: when
p � 0.08, d1 � 0.1124, almost all points Λi(k2) lie in the instability region and the Turing instability occurs. Bottom: when
p � 0.08, d1 � 1.1124, no point Λi(k2) lies in the instability region and the system is stable. (b) +e bifurcation occurs about d1 when
p � 0.08.
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+e ecological interpretation is that the system is less
stable when the invasion rate of the prey is lower when the
link probability of predator-prey systems is fixed. Con-
versely, if we want to keep the predator-prey system stable,
the invasion rate of the prey needs to be decreased.

4. Conclusion

+is paper theoretically derives Turing instability conditions
[28–31] in a predator-prey network and carries out a detailed
numerical study. We study the effects of diffusion and link
probability on pattern formation in a random system. +e
smaller the invasion rate d1 of the prey undergoes, the easier
the predator-prey network Turing instability. Meanwhile,
Turing instability occurs when the link probability p falls in
the approximate region (d2 ln N/d1cN)>p> (N2/1), which
depends on the system characteristics.

Regarding an explanatory biological mechanism, the link
probability and the invasion rate significantly influence the
entire predator-prey network stability. +e lower the inva-
sion rate of the prey is, the less stable it is. Conversely, the
prey invasion rate can be increased if we want to keep the
predator-prey system stable. +at means we can find an
equilibrium point between native and invasive species by
adjusting the diffusion probability and species’ invasion rate.
Finally, we obtain the estimated region of p,
(d2 ln N/d1cN)>p> (1/N2). +us, invasion rate of species
and the link probability in the predator-prey network play a
key role in balancing the native biological system.
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