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With the increasing proportion of the logistics industry in the economy, the study of the vehicle routing problem has practical
significance for economic development. Based on the vehicle routing problem (VRP), the customer presence probability data are
introduced as an uncertain random parameter, and the VRPmodel of uncertain customers is established. By optimizing the robust
uncertainty model, combined with a data-driven kernel density estimation method, the distribution feature set of historical data
samples can then be fitted, and finally, a distributed robust vehicle routing model for uncertain customers is established. *e
Q-learning algorithm in reinforcement learning is introduced into the high-level selection strategy using the hyper-heuristic
algorithm, and a hyper-heuristic algorithm based on the Q-learning algorithm is designed to solve the problem. Compared with
the certain method, the distributed robust model can effectively reduce the total cost and the robust conservatism while ensuring
customer satisfaction. *e improved algorithm also has good performance.

1. Introduction

To reduce transportation costs in planning vehicle trans-
portation and distribution links, the vehicle routing problem
(VRP) has always been a key problem in the field of logistics
scheduling. *e VRP was first proposed by Dantzig and
Ramser in 1959 [1]; the basic problem is a capacity vehicle
routing problem (CVRP). Under the constraints of meeting
the known vehicle load and customer demand, the problem
aims to minimize the vehicle transportation distance to serve
all customers, thereby reducing the logistics distribution
cost.

In the classical vehicle routing problem, it is generally
assumed that all the information is complete and fixed; that
is, the path planner grasps all the information before
planning the path, including customer information and road
network information, and then finds the optimal solution or
satisfactory solution satisfying the constraint conditions.
However, in the actual distribution process, the above

information is not invariable, and it is also difficult for the
path planner to fully grasp the information of all distribution
nodes in advance, resulting in the uncertainty of informa-
tion, which will make the original optimization problem
nonoptimal or even impossible. Studying the VRP with
uncertain parameters is called the vehicle routing problem
with uncertainty (UVRP).

At present, most of the research on UVRP is conducted
for the uncertainty of customer demand or travel time. In
real-world distribution, ignoring the impact of customer
absence will bring many additional transportation costs and
efficiency losses. It is of great significance to study the
problem of uncertain customers. Lei et al. [2] first studied the
uncertain customer and its zoning problem and proposed a
two-stage solution. In the research of VRPUC, most
problems are optimized by assuming that the probability
distribution of customer existence is a deterministic value
[3] or formulating the strategy of real-time re-optimizing the
path [4]. However, the probability distribution of customer
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presence cannot be accurately measured and can only be
estimated based on historical data. At the same time, the re-
optimization will lead to frequent return of vehicles to the
warehouse to pick up goods, which will lead to higher
transportation costs and lower efficiency. *erefore, in our
study, we consider the uncertainty of customer presence
probability and predict the probability distribution of cus-
tomer presence based on the historical demand information
of customers.

For UVRP, the most common method is to build an
uncertainty model and then convert it into a deterministic
model to solve them. Researchers have adopted many ap-
proaches to transform uncertainty models into deterministic
models: Markovic et al. [5] regarded the urban garbage
collection problem as a VRP with random demand and
travel time and expressed the problem as a chance-con-
strained programming model with a normal distribution.
Hou et al. [6] established a stochastic programmingmodel of
the VRPUC with a time window and solved it by using an
adaptive genetic algorithm. Ge et al. [7] studied the electric
VRP with random demand and active remedies and
established a model with probability constraints. Souyris
et al. [8] proposed a robust model for VRP with soft time
window and service time uncertainty and verified it based on
real-world data by branch and price method. Solano-Charris
et al. [9] proposed a robust optimization method based on
discrete scenes to deal with uncertain travel costs for VRP
with uncertain travel costs. For uncertainty problems, sto-
chastic programming requires exact probability distribution
information of random variables, which cannot be obtained
from observation. Classical robust optimization can solve
this problem, but the solution is too conservative. Several
heuristic algorithms have been proposed for UVRP, and
these include variable neighborhood search [10], tabu search
[11], and particle swarm optimization [12].

In contrast, distributed robust optimization theory has
developed rapidly in recent years, which can make up for the
shortcomings of classical robust optimization and stochastic
optimization. It combines statistical learning and optimi-
zation theory and obtains a good enough solution by as-
suming that the parameters obey some possible
distributions. At present, distributed robust optimization
has been applied to energy scheduling [13, 14], outpatient
scheduling [15, 16], fault detection [17], and other fields, and
has achieved good results. However, the application of
distributed robust optimization in UVRP is relatively rare,
especially in solving VRPUC. It is also meaningful to use
distributed robust optimization theory to solve UVRP.

Reinforcement learning, as a powerful decision-making
tool, has attracted extensive attention. Naturally, we think of
applying reinforcement learning to the high-level strategy of
using a hyper-heuristic algorithm to select the low-level
strategy. Zhang et al. [18] took the reinforcement learning
algorithm based on the deep Q-network as the high-level
strategy of the hyper-heuristic algorithm, used it to evaluate
the performance of the underlying operator, and learned
which operator to use in a specific situation to obtain the
maximum reward through interaction with the environ-
ment. Qin et al. [19] introduced several metaheuristic

algorithms with different characteristics as the low-level
heuristic strategies and introduced policy-based reinforce-
ment learning as the high-level selection strategy. In addi-
tion, deep learning is used to extract hidden patterns in
collected data to better combine the advantages of under-
lying heuristics. However, their proposed algorithm is
complex and has poor performance. At the same time, we
can see that reinforcement learning is increasingly consid-
ered in the design of hyper-heuristic algorithms, and great
progress has been made in recent years.

For VRPUC, we proposed a data-driven distributed
robust optimization method to solve this problem. By
considering the uncertainty of customer existence proba-
bility, we established a distributed robust optimization ve-
hicle routing model and the data-driven kernel density
estimation method to fit the historical data and then opti-
mize the robust model. A reinforcement learning algorithm
based on Q-learning algorithm is designed to solve the above
model. In summary, the main contributions of this paper are
as follows:

(1) Compared with the previous studies, which generally
assumed that the presence of customers obeyed a
certain probability distribution, we considered the
uncertainty of the probability of the presence of
customers.

(2) We introduced the distributed robust optimization
theory to establish a mathematical model for solving
the problem and used the historical data of customer
points to optimize the model. *e experiments
showed that the proposed method could solve this
problem well.

(3) We proposed a hyper-heuristic algorithm based on
reinforcement learning to solve the model. We used
Q-learning algorithm as a high-level selection
strategy to select the low-level operators. *rough
experiments, we can find that our algorithm has
positive effects.

2. VRPUC Model

2.1. Problem Description. *e VRPUC is described as fol-
lows: there is a distribution center with known locations, and
there is a group of customers with known locations. *e
demand of each customer is known, and the model of the
vehicles is fixed. It is known that some customers have fixed
demand andmust have vehicles to serve them every time; the
remaining customers present according to a deterministic
probability, they can produce situations that do not need
services, and the probability of presence is uncertain. A
certain number of vehicles are assigned to deliver services to
customers. Each customer can be served by only one vehicle,
and the vehicle must meet the demand of each customer.*e
vehicle must return to the distribution center after serving all
customers that should be served. Because of the expected
demand, the vehicle will not meet the demand of all cus-
tomers. At this time, the vehicle will return to the distri-
bution center for replenishment and then return to continue
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to serve the remaining customers. *e goal is to solve the
total distance cost, including replenishment distance, on the
premise of meeting all customer demand.

2.2.MathematicalModel. *e formulation for the VRPUC is
as follows: let i� 0 be the distribution center, the set of
customers be represented by i (i� 1, 2, 3, . . ., L), the set of
vehicles be represented by k (k� 1, 2, 3, . . ., K), and Q be the
standard capacity of the vehicle. Each customer demand is
represented by di (i� 1, 2, 3, . . ., L). *e uncertain demand
probability of each customer is represented by pi, and the pi
values are independent of each other; if the customer de-
mand is determined, then pi � 1. *e overall event set is
represented by R, and a customer presence event is repre-
sented by ζ. R/ζ represents the remaining events after re-
moving ζ events, that is, events for which the customer does
not require services.*e set of points for which the customer
does not meet the demand is O, the penalty coefficient is ε,
the distance cost is DT, the penalty cost is S, the total cost is
Cost (xijk, y’ik), and cij represents the distance from customer
i to customer j. *e following variables are defined:

yik �
1, customer i is delivered by vehicle k,

0, others,


xijk �
1, vehicle kmoves from customer points itoj,

0, others.


(1)

*e mathematical model is as follows:
Objective:

min 
ζ⊆R

Pr(ζ) · Cost xijk, yik
′ .

(2)

Subject to:



L

i�1
diyik ≤Q ∀k, (3)

Pr(ζ) � 
i∈ζ

pi · 
i∈R\ζ

1 − pi( ,
(4)

Cost xijk, yik
′  � DT xijk  + S yik

′( 

� 

K

k�1


L

i�0


L

j�0
cijxijk + 2ε · 

K

k�1

i∈O

cioyik
′ ,

(5)



K

k�1
yik � 1 ∀i, (6)


i∈L


k∈K

xijk � 1 ∀j � 1, 2, 3, . . . , L, (7)


i,j∈S×S

xijk ≤ |S| − 1, S ⊂ 1, 2, . . . , L{ },

S≠Φ∀k,

(8)

0≤pi ≤ 1, (9)

yik
′ � 0, 1{ } ∀k, i. (10)

Equation (2) represents the target expected value, that is,
the minimum expected cost. Constraint (3) indicates that the
total demand of customer points served by each vehicle is not
greater than the standard load capacity of the vehicle.
Constraint (4) represents the probability product of the event.
*e former is the probability product of the occurrence of the
demand event, and the latter is the probability product of the
nonoccurrence of the demand event. Constraint (5) repre-
sents the total cost. *e former is the calculation formula of
distance cost, and the latter is the calculation formula of
penalty cost. Constraint (6) ensures that each customer point
is served. Constraint (7) ensures that each customer has only
one vehicle for service. Constraint (8) eliminates the subloop.
Constraint (9) indicates that the probability of customer
demand is [0, 1]; that is, customers can have demand or
probability demand in a certain distribution. Equation (10)
judges whether the customer’s demand is met. If so, the value
is 0; otherwise, it is 1.

3. Robust Optimization of the
VRPUC Formulation

3.1. Robust Model Optimization. Distributed robust opti-
mization is generally used for the approximate distribution
of known uncertain parameters. *e actual distribution is
derived from the combination of the approximate distri-
bution and historical data. *e worst case is selected in the
actual distribution, and then, an improved solution is ob-
tained from the worst case, which better optimizes the in-
consistency between the approximate distribution and the
actual distribution, resulting in overly conservative deter-
mination of the method. For the model with uncertain
probability of customer presence, distributed robust opti-
mization is adopted because the actual distribution of the
probability of each customer presence is unknown, but the
first-order and second-order moments can be obtained from
historical data.

According to Reference [20], the minimum value is
obtained when there is a probability distribution, that is, the
expected minimum value. *erefore, (2) can also be written
as

min
x,y

EP 
i∈P

pi · 
i∈R\P

1 − pi(  · Cost xijk, yik
′ ⎛⎝ ⎞⎠, (11)

where P represents the probability distribution of compli-
ance, and EP(∙) represents the expected value of solution.
*e distributed robust optimization method is introduced to
optimize it, and P’ is designed as a set of probability mea-
sures, which includes all possible distributions of the de-
mand probability pi of each customer with a real situation,
and its range is larger than the P set. It can be imagined that,
if the worst case (maximum value and upper bound) is
selected in the P’ set and meets the required conditions, the
situation in the p’ set must also meet the required conditions.
*erefore, (11) can be rewritten as
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min
x,y

sup
P∈P′

EP′ 

i∈P′
pi · 

i∈R\P′

1 − pi(  · Cost xijk, yik
′ ⎛⎝ ⎞⎠.

(12)

Because the latter part of (12) is only related to the result
of path planning and is not directly related to the probability
of an event at a certain point, constraint (12) can be written
as

min
x,y

sup
P∈P′

EP′


i∈P′
pi · 

i∈R\P′

1 − pi(  · DT xijk  + S yik
′( ⎛⎝ ⎞⎠, (13)

which implies

min
x,y

sup
P∈P′

EP′ 

K

k�1


L

i�0


L

j�0
cijxijk · 

i∈P′
pi · 

i∈R\P′

1 − pi( ⎛⎝ ⎞⎠

+2ε · 

K

k�1

i∈O

cioyik
′ .

(14)

According to (14), the key to the solution is the first half
without considering the penalty cost. Because the penalty
cost can only be determined by path planning, that is,
according to the actual situation, it is impossible to obtain its
maximum value through a functional expression. *erefore,
(14) can be solved by using

sup
P∈P′

EP′ 

K

k�1


L

i�0


L

j�0
cijxijk · 

i∈P′
pi · 

i∈R\P′

1 − pi( ⎛⎝ ⎞⎠. (15)

*e solution is divided into two stages. First, we solve the
first half, that is,

max
P∈P′

EP′ 

K

k�1


L

i�0


L

j�0
cijxijk · 

i∈P′
pi · 

i∈R\P′

1 − pi( ⎛⎝ ⎞⎠. (16)

Expanding its expected formula gives

max
P∈P′


φ



K

k�1


L

i�0


L

j�0
cijxijk · 

i∈P′
pi · 

i∈R\P′

1 − pi( dp. (17)

Unifying pi and (1− pi) in (17) and rewriting them into
corresponding piecewise functions yield

max
P∈P′


φ



K

k�1

L

i�0


L

j�0
cijxijk ·  pidp, (18)

s.t. 
i∈L


k∈K

xijk � 1 ∀j ∈ L, (19)

pmin ≤pi ≤pmax, (20)

pi �

pi, i ∈ P′,

1 − pi, i ∈
R

P′
.

⎧⎪⎪⎨

⎪⎪⎩
(21)

Let μ be the average value obtained from historical data
and σ2 be the variance. *en, the probability distribution of
set P has the following formulas:


P′
dp � 1, (22)


P′

pidp � ui, i ∈ P′, (23)


P′

p
2
i dp � μ2i + σ2i , i ∈ P′. (24)

Because there are only two results (whether the customer
needs services), it can be seen that the P probability should
roughly meet the binomial distribution; that is, the variable
is a discrete variable, so (24) can also be expressed as

nb · pi � ui, nb � 1, 2, . . . , nb, i ∈ P′,

nb · pi · 1 − pi(  � σ2i , nb � 1, 2, . . . , nb, i ∈ P′.
(25)

Equations (18)–(21) can be transformed by using duality
theory. Firstly, we transform the following equation:

min 
K

k�1

L

i�0


L

j�0
cijxijk ·  pi, (26)

and constraint condition (20) to

max
L

i�0
βipmin − αipmax( , (27)

s.t. βi − αi ≤ cijxijk,

i, j � 0, 1, ..., L, k � 1, 2, ..., K, xijk � 1, 0{ },
(28)

where αi and βi are Lagrange multipliers. *erefore, (15) can
be expressed as

sup
P∈P′

EP′ max
βi−αi ≤ cijxijk



L

i�0
βipmin − 

L

i�0
αipmax

⎛⎝ ⎞⎠. (29)

Similarly, (29) can be expressed as

max
βi−αi ≤ cijxijk


P′



L

i�0
βipmin − 

L

i�0
αipmaxdp. (30)

Again, (31) and (22)–(24) can be transformed using the
cone duality theory, and because cijxijk is a constant with an
undetermined value, the conditions can be omitted.
*erefore,
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min
L

i�0
αi
′ui + 

L

i�0
βi
′ u

2
i + σ2i  + υ, (31)

s.t. υ + 
L

i�0
αi
′pi + 

L

i�0
βi
′p2

i ≥ βpmin − αpmax ∀pi ∈ P′, (32)

where αi’, βi’, and υ are also Lagrangemultipliers. Because the
conditions before transformation in the above relationship
are equal sign relationships, the values of the three variables
are αi’∈Rn×n, βi’∈Rn, and υ∈R.*e variable after removing the
subscript can be expressed as the corresponding matrix
vector, and because this condition reflects the strong dual
relationship, it can be written as follows by using constraint
condition (32):

βpmin − αpmax − 
L

i�0
αi
′pi − 

L

i�0
βi
′p2

i ≤ υ ∀pi ∈ P′. (33)

*erefore, if (33) is constant, the following condition
must be met:

max βpmin − αpmax − 
L

i�0
αi
′pi − 

L

i�0
βi
′p2

i ≤ υ ∀pi ∈ P′. (34)

According to semidefinite optimization theory, con-
straint (32) can also be written as

α′
β′
2

β′
2

υ − βn
pmin + αn

pmax

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, n � 1, 2, . . . , n. (35)

Finally, (15) can be simplified to the following dual
formula:

min
α,β∈Rn



L

i�0
αi
′ui + βi
′ u

2
i + σ2i   + max βpmin − αpmax − 

L

i�0
αi
′pi − 

L

i�0
βi
′p2

i

⎧⎨

⎩

⎫⎬

⎭

pi∈P′

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (36)

*e final formula is

min
α,β∈Rn



L

i�0
αi
′ui + βi
′ u

2
i + σ2i   + max βpmin − αpmax − 

L

i�0
αi
′pi − 

L

i�0
βi
′p2

i

⎧⎨

⎩

⎫⎬

⎭

pi∈P′

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+ 2ε · 
K

k�1

i∈O

cioyik
′. (37)

In (36), the maximum part is a linear programming
function when pi is used as the variable value and other
parameters are used as fixed values. It can be seen that it is a
convex function with a maximum value. *e maximum
value occurs when

pi � −
α′
2β′

, (38)

from which it can be obtained that

Fmax pi(  �
4β′ αpmax − βpmin(  − α′2

4β′
. (39)

According to the constraints (28), (34), and (35) and the
attributes of whether the probability pi itself is≥ 0 or ≤0, the
optimal arrangement solution with variables (αi’, βi’, α, β,
y’ik) can be solved, the minimum value can be determined,
the fixed solution of pi can be obtained, and the final de-
terministic robust optimization model with parameters can
be obtained.

3.2. Optimizing Robust Models through Data Driving.
Solving the VRPUC model based on distributed robust op-
timization requires knowing the distribution of uncertain
customer probability variables and the distribution eigen-
values such as mean and variance. *e samples obtained from
simple data collection cannot represent the overall data, which
is one-sided. To obtain the distribution characteristics of
uncertain parameters more accurately, the data-driven non-
parametric kernel density estimation method is used. *e
uncertain variable to be estimated is the probability that the
customer point needs service, which is set as p. Suppose P1, P2,
. . ., Pn are random samples of n discrete variables, which have
a probability density function of f (x). *e specific form and
parameters of the function are unknown. *e empirical dis-
tribution function can be expressed as

Fn(p) �
1
n

the number of P1, P2, . . . , Pn < p( . (40)

Suppose the kernel function is K0(p). *en, its density
estimation function is
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fn(p) �
1
2hn


p+hn

p−hn

dFn(t) � 
p+hn

p−hn

1
hn

K0
t − p

hn

 dFn(t)

�
1

nhn



n

i�1
K0

Pi − p

hn

 .

(41)

Selecting the most widely used Gaussian function as the
kernel function transforms the above formula to

fn(p) �
1

nhn



n

i�1

1
���
2π

√ exp
− p − pi/hn( 

2

2
 

�
1

���
2π

√
hn



n

i�1
exp

− p − pi( 
2

2h
2
n

 .

(42)

Bandwidth h has a great influence on the fn(p) dis-
tribution. An empirical method proposed in Reference [21]
can be used to estimate bandwidth: for sample data close to a
normal distribution or a bimodal probability function, we
select

h0 � 1.06σn
(− 1/5)or

h0 � min σ,
R

1.34
 1.06n

(− 1/5)
,

(43)

where σ is the standard deviation of the sample data and R is
the quartile distance obtained from the sample data. We next
design a historical data sample of a customer point with 1000
historical data samples about a customer presence proba-
bility, and the customer point has a maximum probability
that the demand probability is >55%. We can use the above
method to estimate its data distribution, as shown in
Figure 1.

4. Hyper-Heuristic Algorithm

In the field of reinforcement learning, the Q-learning al-
gorithm is widely used because of its classicality and easy to
understand principle [22]. A hyper-heuristic algorithm
based on the Q-learning algorithm (HH-QL) was designed.
*e design points of the Q-learning algorithm are mainly
state, action, reward, punishment values, Q value, discount
rate (c), and learning rate (α).

4.1.Designof the StateValue. state� [s1, s2, . . ., sn] represents
the performance of the fitness value of the algorithm at this
stage. For some problems where the final solution is de-
termined, it is easy to judge the gap between this time and
the final solution. For the VRP, the state of the algorithm
cannot be clearly expressed. At this time, the fitness value is
poor, or it may just jump out of the local optimal solution
and go to another peak. When it finally reaches the peak, the
fitness value may be better than this value. *erefore, the
following state value design method in [19] is adopted:

state �
− fit − fit′( 

fit′
+ Ck, (44)

where fit represents the current fitness value, fit’ represents
the fitness value of the previous generation, Ck represents
the cardinality of different types of operators, and the
cardinality of mutation type operators is different from that
of non-mutation-type operators, with values of 20 and 40,
respectively, so as to distinguish the impact of different types
of operators on the current state.

4.2. Design of the Action and Reward Values.
Action� [a1, a2, . . ., an] represents the next action that the
algorithm will perform. Only low-level heuristics (LLH)
underlying operators are selected, so action represents the
sequence number of the operator. For instance, a1 is the
designed No. 1 operator, that is, a single path operator. *e
operator proposed in Reference [23] is used as the under-
lying operator. It mainly includes three categories: local
research (LLH-L), mutation (LLH-M), and location-based
radial ruin (LLH-LR), for a total of 11 LLH underlying
operators.

reward� [r1, r2, . . ., rn] indicates the evaluation of the
impact of action on the algorithm in the historical stage. *e
evaluation can be good or bad. A good evaluation will guide
the algorithm to increase the probability of selecting the
action when it encounters the same stage of state in the
future. A bad evaluation will reduce the possibility of
selecting the action.*e design of reward has different effects
because of the different types of operators. For instance, the
impact of the 2-OPToperator is immediate, while the impact
of destruction and reorganization operators is delayed.
*erefore, reward consists of immediate reward and delayed
reward, which are, respectively, aimed at the operators that
produce immediate influence and the operators that produce
delayed influence. *e design is as follows:

reward � I re + F re, (45)

where I_re represents immediate reward value, given by

I re �

I re + 1, fit< fit′,

I re, fit � fit′,

I re − 1, fit> fit′.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

And F_re represents the delayed reward value.
If the fitness value is improved, the immediate reward is

+1; otherwise, it is −1; the delayed reward for the immediate
reward operator is always set to 0. For the delayed reward
operator, its value is set to 0 in the current calculation. At
this time, the serial number of the delayed reward operator
and relevant information, such as the Q value, are saved. If
the fitness value has been improved before the next delayed
operator appears, the value of the corresponding operator
reward is +1, and its Q value and other information will be
updated at the same time.
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4.3.Design of theQValue. *e Q value is the function value
calculated by according to the reward value and the Q
history value. It is used to prevent the evaluation from
being too one-sided and affecting the trend of the algo-
rithm based on using reward only. *e calculation for-
mula is as follows:

Qt+1 st, at(  � Q st, at( 

+ α · rt+1 + c · maxaQ st+1, a(  − Q st, at(  ,

(47)

where s represents state, a represents action, r represents
reward, t represents the corresponding value of the previous
generation, t +1 represents the updated value of this gen-
eration, and maxa represents the value with the largest Q
value among all action values.

4.4. Design of c and α Values. c indicates the impact on
future reward and punishment values. If the c value is
larger, more emphasis is placed on the future prediction
results; that is, it will have a more positive view of the
current behavior. In contrast, if the c value is smaller,
more emphasis is placed on the current income and there
are stricter requirements for the current behavior. *e
value of c has been studied in detail in the literature [23],
and the recommended value is 0.8. In most cases, it has a
good effect on the algorithm.

α represents the learning degree of the Q value function.
Larger α values indicate that the new value replaces the old
value to a greater extent. In contrast, smaller α values in-
dicate that the old value still occupies an absolute position in
the data, and the algorithm pays more attention to the
historical effect of the action. In the VRP, the algorithm may
converge to a local optimal solution, so the α value needs to
be increased when the fitness value has not been improved

for a long time. By using the characteristics of reciprocating
fluctuation of the cosine function, the α value can be de-
termined as

αt � cos
π

2tmax
+ n · 2π ,

mod SN,
tmax

200
  � 0, n � 0, 1, . . . , N.

(48)

*e SN value is designed as the record of the number of
iterations for which the fitness value is not improved.

4.5. Other Considerations. To avoid the situation that, when
the probability of the customer presence is very high, the
service path has been arranged in the path, but the final
customer point does not generate the required service, and
the bundling customer point method was adopted before the
population generation. *e method can avoid a sharp in-
crease in cost resulting from the long path between the two
customer points before and after the unserved customer
points to generate services. *e bundling principle is based
on bundling nearby according to the distance between
customer points.

*e algorithm flow is as follows (see Figure 2):

Step 1: Bundle the customer points. First, uncertain
customers are bundled with other fixed customers. Let
the uncertain customer point be UCi and judge the
corresponding j fixed customer point according to the
original distance matrix. If the distance cij is the
minimum value compared with other fixed customer
points, the customer point j is bundled with i to form a
new customer point C[i,j].
Step 2: Initialize the population. Randomly generate
Npop group individuals, generate feasible solution

0.20

0.5

1

1.5

2

2.5

1 1.20.4 0.6 0.8

Probability density distribution line chart of 1000
service demand probability of a customer

(a)
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Cumulative distribution line chart of 1000
demand service probability of a customer

(b)

Figure 1: Customer data distribution charts. (a) Probability density distribution line chart and (b) cumulative distribution line chart.
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group P (pi � p1, p2, . . ., pNP), calculate the fitness value
as f (fi � f1, f2, f3, . . ., fNP), and randomly select a group of
P. Initialize the global optimal population PB and the
optimal solution FB, initialize the state value to 0,
initialize the action to any 11 operators, and initialize
the Q-Table to 0.
Step 3: Calculate and update. *e initialized action
operator is used to search the solution to obtain a new
individual Ind and fitness value fit. At the same time, if
fit≤ FB, this proves that the solution at this time is
better, then update the global optimal population PB
and FB so that PB � Ind and FB � fit.

Step 4: Calculate state. First, we judge whether to accept
the solution according to the simulated annealing. If it
is accepted, the state value is calculated. Otherwise, the
value remains unchanged.
Step 5: Evaluate action. We determine the operator
corresponding to the action currently. If it is an op-
erator that has a delayed impact on the algorithm and if
DLN is the empty set, we record the corresponding
DLN� [action, reward, Q, fit]. If it is not the empty set,
the history value in the corresponding Q-Table will be
updated again.

Start

Bundle
customer point 

Randomly generate
Npop groups of

individuals

Generate feasible solution sets
P (pi = p1, p2, p3, ..., pNP)
Calculate fitness value

f (fi = f1, f2, f3, ..., fNP)

Randomly selected a
group of pi and fi in P 

Initialization
PB = pi, FB = f i, state = 0,
action = random(NA)

Q-Table

Calculate and obtain
population and

fitness value Ind, fit

Calculate state

action is not
straightforward

Influence?

Update
DLN = [action, reward,

Q, fit]

Calculate reward
value

No

No

Yes

Yes

Yes

Calculate Q value
and update Q-Table 

Select action
according to Q-Table 

fit ≤ FB?

Keep the optimal
solution

PB = Ind, FB = fit

Update a value

end

No

t < tmax?

Figure 2: Algorithm flowchart.
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Step 6: Calculate reward and Q values. We calculate
reward and Q values according to equations (45)–(47)
and update the Q-Table.
Step 7: Select action. According to the Q-Table, we
select the action with the largest Q value corre-
sponding to the state as the next action of the
algorithm.
Step 8: Update learning rate α. We update learning rate
α according to equation (48).
Step 9: Determine the iteration. If the current iteration
number t≤ tmax, we return to Step 4 for reiteration;
otherwise, we exit the algorithm.

5. Computational Experiments

5.1. Implementation Aspects, Configuration of Parameters,
and Instances. *e algorithm was coded in MATLAB, and
all experiments were conducted on a computer with an Intel
Core i5-3230M and 12GB of RAM. After repeated testing,
the parameters used in the algorithm are set to the following:
discount rate c � 0.8 in the Q value function, the initial value
of ε� 0.5, iterative maximum iteration tmax � 106, empirical
pool NE � 800, and the number of samples selected for
learning NS � 600.

All calculation instances (https://www.bernabe.dorronsoro.
es/vrp/) in set A in the CVRP were selected for experiment.
In each calculation instance, 25% of the total customer point
scale was randomly selected as the uncertain customer. *e
random probability was designed at 0.3–0.9, and different
interval conditions such as [0.3, 0.5] and [0.6, 0.9] were used
to generate 1000 random {0,1} samples that are not uni-
formly distributed, where 0 represents no demand and 1
represents demand. *e demand of the next customer point
can only be known when the vehicle arrives at the previous
customer point. *e demand probability was counted every
10 times in 1000 random samples. *rough the method
described above, a random demand quantity based on the
demand quantity of the original customer point was gen-
erated, and 1000 historical samples were generated for each
customer point (and, at a customer point with defined
demand, the demand remains constant). Because there are
many uncertain customer points in each instance, they were
not listed one by one. Only the statistical mean u and
variance σ2 of some customer points in the randomly se-
lected instance were displayed, as listed in Table 1.

5.2. Comparison with Other Algorithms. To test the perfor-
mance of the algorithm, the HH-QL algorithm is compared
with the literature [24–26]. *e results are shown in Table 2.
Each calculation instance is calculated 20 times, the shortest
distance of the total traveling path is the objective function,
and the smaller the distance is, the better the performance of
the algorithm is. Column BKS represents the optimal dis-
tance solution for the instance, column Min represents the
optimal distance solution obtained by the algorithm, column
Avg represents the average of the optimal distance solution,
and column DEV represents the gap between its costs and

BKS.*e DEV is calculated is shown in (49). Also, the values
in bold refer to the optimal solutions.

DEV �
Min − BKS

BKS
. (49)

It can be seen from the results that the proportion of the
optimal solution obtained by LNS-ACO, HVNSOS, and
OHGA in the all instances is 62.96%, 74.00%, and 51.85%,
respectively, and the proportion of HH-QL is 81.48%.
Compared with other algorithms, HH-QL algorithm has
some advantages in the overall optimal rate. *e average
deviation of each algorithm for the optimal solution of 27
instances is 0.60%, 0.13%, 0.37%, and 0.07%. HH-QL is
0.53%, 0.09%, and 0.06% lower than the other three algo-
rithms. In all instances with more than 60 customers, the
algorithm proposed in this paper is relatively more accurate
than other algorithms. It can be concluded that the algo-
rithm in this paper has a better search effect on the set a
standard example compared with the other three algorithms
of multigroup search.

5.3. Comparison with Certain Parameters Problem. To test
the effectiveness of the distributed robust model and algo-
rithm mentioned above, the proportion of nonsatisfaction
customers and the additional cost caused by nonsatisfaction
customers are evaluated.

Table 2 lists the path distance cost and customer satis-
faction ratio of each calculation example after robust op-
timization obtained from the calculation example of set
A.*e greater the percentage of cost reduction and the larger
the proportion of customer satisfaction after optimization,
the better the optimization effect. *e instance column lists
the serial number of the problem, Certain in the Type
column represents certain parameters problem, Robust
represents robust optimization problem of uncertain pa-
rameters, the Cost column lists the distance cost, the De-
crease column lists the percentage of the expected cost lower
than the original planned cost, and the Total column lists the
proportion of path planning with minimum cost that can be
successfully met in 1000 historical samples with uncertain
probability of customer presence. E1 represents the pro-
portion of samples that can be satisfied by all customer
points in the total sample, E2 represents the proportion that
two customer points are not satisfied, and E3 represents the
proportion that three or more customer points are not
satisfied.

After planning the route, if the demand of the customer
point is not met, the vehicle immediately returns to the
origin for replenishment and then returns to the customer
point that does not meet the demand to continue the dis-
tribution service according to the original route. Table 3
shows the set examples of measuring the additional distance
cost incurred by returning to the warehouse to pick up the
goods and continue delivery because the customer demand
cannot be satisfied. *e shorter the cost of increased dis-
tance, the better the robust optimization effect. *e in-
creased cost is 0, which means that the vehicle does not need
to return to the warehouse for delivery. If the penalty
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coefficient is set to 1, the penalty cost is the distance cost of
the driving path. *e Customer number column lists the
maximum number of customers who do not meet the de-
mand of customers in 1000 historical samples.*eMore cost
column lists the increased cost of returning to the origin by
not meeting the demand of customer points in one of 1000

historical samples. *e Maximum and Minimum columns
list the maximum andminimum costs, respectively.*e Fact
cost column lists the distance cost obtained by driving 1000
historical samples according to the actual customer points.
*e symbol — indicates that there is no dissatisfaction with
customers for certain solutions (Table 4).

Table 1: Mean and variance of some customer points.

Instance u σ 2 Instance u σ 2

A-n44-k6.2 0.78 0.21 A-n80-k10.16 0.84 0.13
A-n44-k6.6 0.65 0.31 A-n80-k10.26 0.77 0.21
A-n44-k6.22 0.64 0.26 A-n80-k10.32 0.93 0.08
A-n44-k6.26 0.58 0.25 A-n80-k10.33 0.55 0.21
A-n44-k6.27 0.80 0.10 A-n80-k10.39 0.53 0.25
A-n44-k6.28 0.50 0.26 A-n80-k10.45 0.40 0.07
A-n44-k6.29 0.60 0.27 A-n80-k10.52 0.84 0.12
A-n44-k6.30 0.62 0.20 A-n80-k10.60 0.65 0.31
A-n44-k6.35 0.78 0.11 A-n80-k10.71 0.77 0.25
A-n44-k6.36 0.41 0.06 A-n80-k10.73 0.67 0.21
A-n44-k6.41 0.62 0.25 A-n80-k10.74 0.74 0.25
A-n80-k10.2 0.59 0.22 A-n80-k10.76 0.85 0.10
A-n80-k10.3 0.60 0.27 A-n80-k10.77 0.65 0.31
A-n80-k10.7 0.52 0.20 A-n80-k10.78 0.65 0.21
A-n80-k10.13 0.86 0.10 A-n80-k10.80 0.35 0.05
A-n80-k10.15 0.85 0.13

Table 2: CVRP set A standard instance test results.

Instance BKS
LNS-ACO [24] HVNSOS [25] OHGA [26] HH-QL

Min DEV% Min DEV% Min DEV% Min Avg DEV%
A-n32-k5 784 784 0 748 0 748 0 784 784 0
A-n33-k5 661 661 0 661 0 661 0 661 661 0
A-n33-k6 742 742 0 742 0 742 0 742 742 0
A-n34-k5 778 778 0 778 0 778 0 778 778 0
A-n36-k5 799 799 0 799 0 799 0 799 799 0
A-n37-k5 669 669 0 669 0 669 0 669 669 0
A-n37-k6 949 949 0 949 0 949 0 949 950 0
A-n38-k5 730 730 0 730 0 730 0 730 730 0
A-n39-k5 822 822 0 822 0 822 0 822 824 0
A-n39-k6 831 831 0 831 0 833 0.24 831 833 0
A-n44-k6 937 937 0 937 0 937 0 937 939 0
A-n45-k6 944 958 1.48 944 0 953 0.95 944 960 0
A-n45-k7 1146 1146 0 1146 0 1146 0 1146 1149 0
A-n46-k7 914 914 0 914 0 914 0 914 914 0
A-n48-k7 1073 1084 1.03 1073 0 1073 0 1073 1074 0
A-n53-k7 1010 1010 0 1010 0 1017 0.69 1010 1016 0
A-n54-k7 1167 1167 0 1167 0 1167 0 1167 1171 0
A-n55-k9 1073 1073 0 1073 0 1074 0.09 1073 1074 0
A-n60-k9 1354 1354 0 1354 0 1355 0.07 1354 1358 0
A-n61-k9 1034 1067 3.19 1035 0.09 1035 0.10 1035 1061 0.10
A-n62-k8 1288 1308 1.55 1291 0.23 1308 1.55 1291 1305 0.23
A-n63-k9 1616 1649 2.04 1628 0.74 1630 0.87 1616 1629 0
A-n63-k10 1314 1329 1.14 1319 0.38 1329 1.14 1318 1321 0.03
A-n64-k9 1401 1415 1.00 1414 0.93 1416 1.07 1412 1418 0.79
A-n65-k9 1174 1185 0.94 1177 0.26 1184 0.85 1174 1179 0
A-n69-k9 1159 1170 0.95 1159 0 1170 0.95 1159 1168 0
A-n80-k10 1763 1815 2.95 1779 0.91 1790 1.53 1776 1789 0.74
Average 0.6 0.13 0.37 0.07
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Table 2 lists the test experiments of the set A instance,
along with the certain and robust optimization methods in
terms of expected value and customer point satisfaction.
Because the paths obtained by the certain method account
for the presence of all customer points, the Total column
does not exist. *e path obtained by the robust optimization
method accounts for the expectation of the probability of
customer presence. *e demand of the customer point is
appropriately reduced according to the probability of cus-
tomer point presence. *erefore, when the customer point
actually exists, the vehicle load is insufficient, resulting in the
failure to meet the demand of a certain point. If replen-
ishment is returned, it will affect this point and subsequent
points. Combining this with the comparison diagram of cost
value and expected value in Figure 3, we can obtain that the
overall distance value after robust optimization is less than
that obtained using the certain method, and the proportion
range of reduction is 17%–30%, which is obvious, reflecting
the adjustment of distance cost. Moreover, in the customer
satisfaction diagram, it can be seen that the height of the E1

column almost accounts for the absolute value of the whole
column diagram of an instance. Meanwhile, with the in-
crease of the scale of customer points, there is a high
probability that three or more customer points are not
satisfied; that is, the more customers there are, the greater
possibility of uncertain parameter disturbance, the
greater the difficulty in determining the degree, and the
higher the requirements for the planned path. It can be
concluded that the satisfaction of the robust optimized
path to the customers in the actual sample is still high,
and there is a low probability that one or two customers
will not be satisfied.

Table 3 lists the solution obtained after calculating the
actual transportation distance cost according to the cus-
tomer presence data of 1000 historical data samples in the set
A test experiment and the solution of the distance cost
generated by replenishment in case of replenishment. As
shown in Figure 4, regardless of the maximum value,
minimum value, or average value, the line after robust
optimization is almost below the line of certain results; that

Table 3: VRPUC set A standard instance test results.

Instance Type Cost Decrease (%)
Total

E1 (%) E2 (%) E3 (%)

A-n44-k6 Certain 937 — — — —
Robust 737 21.34 100 0 0

A-n45-k6 Certain 944 — — — —
Robust 707 25.10 99.8 0.2 0

A-n45-k7 Certain 1146 — — — —
Robust 897 21.73 100 0 0

A-n46-k7 Certain 914 — — — —
Robust 715 21.77 99.8 0.2 0

A-n48-k7 Certain 1073 — — — —
Robust 829 22.74 99.8 0.2 0

A-n53-k7 Certain 1010 — — — —
Robust 823 18.51 99.4 0.6 0

A-n54-k7 Certain 1167 — — — -
Robust 860 26.31 99.8 0.2 0

A-n55-k9 Certain 1073 — — — —
Robust 873 18.64 99.6 0.3 0.1

A-n60-k9 Certain 1354 — — — —
Robust 1011 25.33 99.9 0.1 0

A-n61-k9 Certain 1034 — — — —
Robust 854 17.41 99.9 0.1 0

A-n62-k8 Certain 1288 — — — —
Robust 998 22.52 99.6 0.3 0.1

A-n63-k9 Certain 1616 — — — —
Robust 1127 30.26 99.8 0.2 0

A-n63-k10 Certain 1314 — — — —
Robust 944 28.16 99.9 0.1 0

A-n64-k9 Certain 1401 — — — —
Robust 1035 26.12 99.8 0.1 0.1

A-n69-k9 Certain 1159 — — — —
Robust 949 18.12 99.6 0.2 0.2

A-n80-k10 Certain 1763 — — — —
Robust 1316 25.35 99.8 0.1 0.1
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is, the prior path after robust optimization can reduce the
transportation distance cost and prevent unnecessary cost
waste compared with the path obtained by using the certain

method. In the maximum figure, when the customer scale is
large, the degree of savings is higher, and when the customer
scale is small, the result is not obvious. In the graphs of

Table 4: VRPUC set A cost results.

Instance Type Customer number
Fact cost More cost

Maximum Minimum Average Maximum Minimum Average

A-n44-k6 Certain — 937 898 920.68 — — —
Robust 0 942 894 919.42 0 0 0.00

A-n45-k6 Certain — 944 895 914.51 — — —
Robust 2 937 877 901.79 168 0 0.25

A-n45-k7 Certain — 1146 458 665.94 — — —
Robust 0 1127 504 709.54 0 0 0.00

A-n46-k7 Certain — 914 409 723.10 — — —
Robust 1 929 415 738.80 94 0 0.19

A-n48-k7 Certain — 1073 1054 1065.01 — — —
Robust 2 1090 1041 1070.83 144 0 0.29

A-n53-k7 Certain — 1010 969 995.00 — — —
Robust 2 992 913 965.07 92 0 0.33

A-n54-k7 Certain — 1167 1143 1154.22 — — —
Robust 2 1178 1098 1138.61 196 0 0.35

A-n55-k9 Certain — 1073 1026 1055.33 — — —
Robust 3 1061 992 1032.20 252 0 0.34

A-n60-k9 Certain — 1355 1323 1344.10 — — —
Robust 2 1390 1281 1333.11 258 0 0.26

A-n61-k9 Certain — 1037 1000 1022.09 — — —
Robust 1 1007 959 985.07 110 0 0.11

A-n62-k8 Certain — 1298 1251 1280.25 — — —
Robust 3 1233 1174 1213.00 332 0 0.91

A-n63-k9 Certain — 1616 1595 1606.07 — — —
Robust 1 1558 1522 1540.38 102 0 0.20

A-n63-k10 Certain — 1318 429 943.18 — — —
Robust 2 1258 398 913.75 104 0 0.10

A-n64-k9 Certain — 1415 1357 1391.67 — — —
Robust 3 1394 1265 1324.91 296 0 0.34

A-n69-k9 Certain — 1166 1121 1152.51 — — —
Robust 2 1148 1099 1127.72 188 0 0.41

A-n80-k10 Certain — 1779 671 993.14 — — —
Robust 4 1728 562 939.46 358 0 0.52
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Figure 3: Set A results charts. (a) Set A cost and expected value comparison graph. (b) Set A robust customer point satisfaction graph.
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minimum value and average value, the effect is quite obvious
after the customer point scale reaches 48.

As shown in Figure 4(d), if the penalty coefficient is
assumed to be 1 and only the impact of replenishment

distance cost is considered, the average value of the actual
distance cost after robust optimization of 1000 historical
data samples about uncertain customers is added to the
average value of the penalty cost caused by replenishment;
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that is, the total cost, which is the difference graph compared
with the average value of the actual distance cost obtained by
the certain method, is certain cost average− (robust cost
average +more cost average). It can be seen from the figure
that the total cost of most of the two instance sets after robust
optimization is less than that of the certain method. *ere
are only three exceptions in set A, accounting for 18.75% of
the total. When the line chart is almost approximate, owing
to the low replenishment probability and small replenish-
ment distance of the path obtained after robust optimiza-
tion, the total cost maintains a downward trend, which fully
reflects the advantage of the robust model in cost saving.

Figure 5 shows the path diagram of the certain and
robust optimization methods with a large total cost re-
duction in the set. *e points of the triangle represent
uncertain customer points. From the figure, one can see
that the path distributions of the two methods are roughly
the same. Because the certain method looks for the
shortest path graph with customers whose need for ser-
vices is certain, there is less intersection between paths,
while the robust optimization method pursues the rea-
sonable distribution of uncertain customers. Because the
bundling point method is used in the algorithm, in robust
optimization, uncertain customer points tend to be on the
same path as the nearest customer points, such as points
49, 35, and 4 in A-n62. On the same path as the nearest
point, when the uncertain customer point does not have a
demand or there is a demand, the change of the total path
is small. Of course, from the distribution of paths, because
of the many path intersections, the proposed algorithm
may design more iterations in the calculation, so the result
is not optimal. However, if it is the optimal solution, the
distance cost will only be shorter, better reflecting the
effect of robust optimization.

6. Conclusions and Future Work

A distributed robust optimization method is proposed to
solve the probability uncertainty problem of customer de-
mand service. *e method uses the distributed robust op-
timization theory to transform the uncertain model into a
deterministic robust optimization model with parameters.
At the same time, the model is optimized by using the data-
driven kernel density estimation method. We also develop a
hyper-heuristic algorithm for solving the problem.

Compared with other algorithms, our hyper-heuristic
algorithm based on reinforcement learning has good per-
formance. In solving UVRP, the data-driven distributed
robust optimization model produces much better results
than the deterministic model, and our method can effec-
tively solve the problem and reduce the additional cost.

*is paper studies VRPUC, but in real world, there are
more uncertain factors, such as vehicle travel time and
customer demand. It is necessary to consider the joint in-
fluence of multiple uncertain factors in future work. *e
hyper-heuristic underlying operators in this paper are
common and relatively general. It is also meaningful to
design some specific underlying algorithms to solve such
problems in the future.
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