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-is research article offers a study on a new relation of rough sets and soft sets with an algebraic structure quantale module by
using soft reflexive and soft compatible relations. -e lower approximation and upper approximation of subsets of quantale
module are utilized by aftersets and foresets. As a sequel of this relation, different characterizations of rough soft substructures of
quantale modules are obtained. To ensure the results, soft reflective and soft compatible relations are focused and these are
interpreted by aftersets and foresets. Furthermore, the algebraic relations between upper (lower) approximation of substructures
of quantale module and the upper (lower) approximations of their homomorphic images with the help of quantale module
homomorphism are examined. In comparison with the different type of approximations in different type of algebraic structures, it
is concluded that this new study is much better.

1. Introduction

-e quantale module has piqued the interest of many re-
searchers since it was first proposed by Abramsky and
Vickers [1]. -e concept of a quantale module was inspired
by the concept of module over a ring. Rings are replaced by
quantales, while abelian groups are replaced by complete
lattices. For the first time, the concept of quantale module
appeared out of nowhere as the central concept in Abramsky
and Vickers’ unified treatment of process semantics. Mulvey
[2] proposed the Quantale theory. It is defined on the basis of
a complete lattice as an algebraic structure.

Pawlak developed the famous rough set theory [3],
which deals with inadequate knowledge. -e rough set deals
with the categorization and investigation of inadequate
information and knowledge. After Pawlak’s work, some
contributions and a new view on rough set theory were
suggested by Zhu [4]. In [5], some properties and charac-
terization of generalized rough sets were presented by Ali

et al. Rough sets are now used in a variety of fields, including
cognitive sciences, machine learning, pattern recognition,
and process control.

Rough sets theory was brought to algebraic structures
and soft algebraic structures by a number of authors. Iwinski
explored rough set algebraic characteristics [6]. In Q-module
[7], Qurashi and Shabir presented the concept of roughness.
Xiao and Li [8] proposed the concept of generalized rough
quantales (subquantales). Yang and Xu examined rough
ideals (prime, semi prime) in quantales [9]. Luo and Wang
[10] introduced fuzzy ideals and its type in quantales.
Generalized roughness of fuzzy substructures in quantale
based on soft relation was studied by Qurashi et al. [11].
Topological structures of lower and upper rough subsets in a
hyperring were introduced by Abughazalah et al. [12]. In
[13], criteria selection and decision making of hotels using
dominance-based rough set theory were presented. Ap-
proximations of substructures in partially ordered LA-
semihypergroups were presented by Yaqoob and Tang [14].
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In [15], roughness of bipolar soft sets and their related
applications are discussed. In [16], Feng et al. presented the
relationship between soft and rough sets and proposed
rough soft sets and soft rough sets. Integrated Best-Worst
Method in terms of Green supplier selection based on the
information system performance was suggested by Fazlol-
lahtabar and Kazemitash [17].

Many issues emerge in different fields such as engi-
neering, economics, and social sciences where data have
some degree of ambiguity. Because well-known mathe-
matical tools are designed for certain situations, they have
numerous restrictions. Many theories exist to deal with
uncertainty, such as fuzzy set theory, probability theory,
rough sets, and ambiguous sets, but they are constrained by
their design.

Molodtsov introduced the concept of soft set [18], which
is a mathematical tool for overcoming the problems that
plague the above theories. Soft set theory is a general
mathematical technique for dealing with items that are
unclear, imprecise, or not precisely defined. Many authors
offer different set operations and attempt to unify the al-
gebraic aspects of soft sets like Maji et al. [19]. A new and
different idea of operations was presented by Ali et al. [20].
Soft sets and algebraic structures were combined in various
ways by researchers like soft intersection semigroups [21].
Soft linear programming and applications of soft vector
spaces were presented in [22]. Khan et al. applied uni-soft
structures to ordered Γ-Semihypergroups [23]. Complex
intuitionistic fuzzy algebraic structures in groups were in-
troduced by Gulzar et al. [24]. Development of a rough-
MABAC-DoE-based metamodel for supplier selection in an
iron and steel industry was introduced by Chattopadhyay
et al. [25].

-e central theme and objective of soft sets is to capture
the essence of parametrization, which has been adapted to
the creation of soft binary relations (SBRs), which are a
parameterized collection of binary relations on a universe of
interest. -is mentioned the problem of complicated objects
that can be interpreted differently from different
perspectives.

By using aftersets and foresets and then notions asso-
ciated to soft binary relation (SBR), a new method of ap-
proximation space is widely utilized these days. By using
generalized approximation space based on SBR, different
soft substructures in semigroups were approximated by
Kanawal and Shabir [26]. Motivated by the idea in [26], soft
substructures in quantale module are defined and the
aftersets and foresets are employed to construct the lower
approximation and upper approximation of soft substruc-
tures. Since we are dealing with approximation of soft
subsets of quantale, further soft substructures are employed
for further characterization.

A new generalized approximation space is commonly
used these days by utilizing the aftersets and foresets notions
related with soft binary relations. Kanawal and Shabir [26]
approximated different soft substructures in semigroups
using a generalized approximation space based on soft bi-
nary relations. Roughness of intuitionistic fuzzy sets by soft
relations was discussed by Anwar et al. [27]. Roughness of

Pythagorean fuzzy sets based on soft binary relations was
proposed in [28] by Bilal and Shabir. Using soft relations,
soft substructures were defined by Zhou et al. [29] and these
were approximated by soft relations. Soft substructures in
quantale modules are defined in this paper, and aftersets and
foresets are used to construct the lower and upper ap-
proximation of substructures, respectively.

-e following scheme is for the remainder of the paper.
Section 2 connects some key explanations about quantale
modules, their substructures, soft substructures, and their
relevant sequels. Section 3 discusses the concept of crisp sub
sets approximations over quantale module created by soft
binary relations. In Section 4, generalized soft substructures
are defined and further fundamental algebraic properties of
these phenomena are investigated utilizing these ideas. In
Section 5, we also extend this research by defining the re-
lationship between homomorphic images of substructures in
quantale module and their approximation by soft binary
relations.

2. Preliminaries

In this section, we will review some fundamental concepts
related to quantale module and its substructures, soft sets,
and rough sets.

2.1. Definition (see [2]). A quantale Kd is a complete lattice
equipped with an associative, binary operation ⊛ distrib-
uting over an arbitrary joins. -at is for any
r ∈ Kd, ri, si ∈ Kd, (i ∈ I). It holdsr⊛(∨i∈Isi) � ∨i∈I(r⊛si)

and (viεIri)⊗ s � viεi(ri ⊗ s).
Let Xi, X, Y⊆Kd(i ∈ I). -en, the followings are defined:

X⊛Y � x⊛y|x ∈ X, y ∈ Y􏼈 􏼉;

X∨Y � x∨y|x ∈ X, y ∈ Y􏼈 􏼉;

∨i∈IXi � ∨i∈Ixi|xi ∈ Xi􏼈 􏼉.

(1)

-roughout the paper, quantales are denoted by Kd.

2.2. Definition (see [1]). Let Kd be a quantale and M be a
Sup− lattice equipped with a left action ⊕ : Kd × M⟶M.

-en,M is called left Kd−module over the quantale Kd if for
any ai, a, b ∈ Kd, x ∈M, xj􏽮 􏽯⊆M, (i ∈ I), (j ∈ J), we have

∨i∈Iai( 􏼁⊕x � ∨i∈I ai ⊕ x( 􏼁; (2)

Right quantale modules can be defined in the same way.
For the rest of the paper, Kd-module M will stand for a left
quantale module over the quantale Kd. -e symbol T will
denote the top element and ⊥ will stand for the bottom one
for quantale module, unless stated otherwise.

2.3. Example. -e following are the examples of Kd-mod-
ules M:

(1) Let Kd � 0, r, s, 1{ } be a complete lattice where 0 is
the bottom element and 1 is the top element of Kd, as
shown in Figure 1 and the operation ⊛ on Kd is
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shown in Table 1. -en, it is straightforward to verify
that (Kd,⊛) is a quantale. Let M � ⊥, x,T{ } be a Sup−

lattice. -e order relation of M is given in Figure 2
and let ⊕ : Kd × M⟶M be the left action onM as
shown in Table 2.-en, it is straightforward thatM is
a Kd-module.

(2) Every quantale Kd is certainly a Kd-module over Kd.

2.4. Definition (see [1]). Let M be a Kd-module. A subset
M1⊆M is called a sub-Kd-module of M if for any r ∈M1,
si􏼈 􏼉⊆M1, k ∈ Kd, it holds that ∨i∈Isi ∈M1 and k⊕ r ∈M1.

2.5. Definition (see [1]). Let M be a Kd-module and
∅≠ I⊆M. -en, I is a Kd-module ideal of M.

(1) If ri ∈ I(i ∈ I), then ∨i∈Iri ∈ I

(2) r ∈ I and c≤ r implies c ∈ I

(3) r ∈ I implies a⊕ r ∈ I,∀a ∈ Kd

2.6. Definition (see [1]). Let M be a Kd-module. A binary
relation Γ on M is called congruence on M if it is an
equivalence relation on M; for any given mi􏼈 􏼉,
ni⊆M􏼈 􏼉, m, nεM, and q ∈ Kd, it satisfies the following
conditions: for alliεI, miΓniimpliesΔi∈ImiΓΔi∈IniandmΓn
impliesqΔmΓqΔn.

2.7.Definition (see [1]). Let M1 and M2 be two Kd-modules.
A mapΩ: M1⟶M2 is a Kd- module homomorphism if it
is a sup-lattice homomorphism which also preserves scalar
multiplication. -at is,

Ω ∨i∈Iri( 􏼁 � ∨i∈IΩ ri( 􏼁,

Ω(b⊕ r) � b⊕Ω(r),
(3)

for any b ∈ Kd, r ∈M,, ri􏼈 􏼉⊆M(i ∈ I)

A Kd-module homomorphism Ω: M1⟶M2 is called
an epimorphism if Ω is onto M2 and Ω is called a mono-
morphism if Ω is one-one. It is an isomorphism, if Ω is
bijective.

2.8.5eorem (see [1]). LetM1 andM2 be twoKd-modules. If
Ω: M1⟶M2 is a Kd-module homomorphism, then
Ker(Ω) � (a, b) ∈M1 × M1: Ω(a) � Ω(b)􏼈 􏼉 is a congru-
ence of Kd-modules.

2.9. Definition (see [18]). A pair (F, C) is called soft set over
M if F: C⟶ P(M) where C is a subset of E (the set of
parameters).

2.10. Definition (see [20]). Let (F, C1) and (H, C2) be two
soft sets over M. -en, (F, C1) soft subset (H, C2) if the
following conditions are fulfilled:

(1) C1⊆C2

(2) F(c)⊆H(c), ∀ c ∈ C1

2.11. Definition (see [30]). Let (Γ, C) be a soft set over
M × M, i.e., Γ: C⟶ P(M × M). -en, (Γ, C) is called a
soft binary relation (SBYR) over M.

2.12. Definition. Let (Γ, C) be a soft set over quantale
module M. -en,

(1) (Γ, C) is called a soft sub-Kd-module over M iff Γ(c)

is a sub-Kd-module of M∀ c ∈ C

Table 1: Binary operation subject to ⊗.

⊗ 0 r s I

0 0 0 0 0
r 0 r 0 r

s 0 0 s s

I 0 r s I

⊺

⊥

x

Figure 2: Illustration of M.

Table 2: Binary opreation subject to ⊕.

⊕ ⊥ x T

0 ⊥ ⊥ ⊥
r ⊥ x T

s ⊥ x x

I ⊥ x T

sr

1

0

Figure 1: Illustration of kd.
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(2) (Γ, C) is a called soft Kd-module ideal over M iff Γ(c)

is Kd-module ideal of M, ∀ c ∈ C

2.13. Definition (see [3]). Let M≠∅ be a finite set and Γ be
an equivalence relation on M. Let [t]Γ denote the equiva-
lence class of the relation Γ containing t ∈M. If a subset of
M is expressed as a union of equivalence classes of M, then
that is said to be definable set in M. Let a subset R of M

cannot be expressed as a union of equivalence classes of M.

-en, we say it is undefinable set. However, we can ap-
proximate that undefinable set by two definable sets in M.
-e first one is called Γ-lower approximation (Γ − LAP) of R,
and the second is called Γ-upper approximation (Γ − UAP)

of R. -ey are defined as follows:

Γ(R) � t ∈M: [t]Γ⊆M􏼈 􏼉 and Γ(R) � t ∈M: [t]Γ ∩M≠∅􏼈 􏼉.

(4)

A rough set is the pair (Γ(R), Γ(R)); if Γ(R) � Γ(R), then
R is definable.

3. Approximation of Subsets of Quantale
Module by Soft Binary Relation

In this section, applications of soft relation on quantale
module are discussed. A subset of quantale moduleM can be
approximated by soft relations in two ways. Aftersets and
foresets are applied to approximate a subset of M. Two sets
named as soft set corresponding to each subset are called the
lower approximation (LAP) and the upper approximation
(UAP) with respect to the aftersets and foresets, respectively.

3.1. Definition (see [11]). Let Γ : C⟶ P(M × M). -en,
(Γ, C) is a soft binary relation on a setM, where ϕ≠C⊆E (set
of parameters). For ϕ≠ S⊆M,(ΓS, C) and (ΓS, C) of S with
respect to aftersets are basically the two soft sets over M,

defined as follows:

Γ
S

(u) � k ∈M|kΓ(u)⊆S{ } and ΓS(u) � k ∈M|kΓ(u) ∩ S≠∅{ }

(5)

Further, (SΓ, C) and (SΓ, C) of S with respect to foreset
are basically the two soft sets over M, defined as follows:
SΓ(u) � k ∈M|Γ(u)k⊆S{ } and SΓ(u) � k ∈M|Γ(u){

k∩ S≠∅}.
For all u ∈ C, kΓ(u) � r ∈M: (k, r) ∈ Γ(u){ } is called

afterset of k and Γ(u)k � r ∈M: (r, k) ∈ Γ(u){ } is called
foreset of k. Moreover, LAP and UAP are defined as
ΓS: C⟶ P(M) and ΓS: C⟶ P(M) for aftersets.
SΓ: C⟶ P(M) and SΓ: C⟶ P(M) for foresets for each
S ∈ P(M). Generally, kΓ(u)≠Γ(u)k, ΓS(u)≠ SΓ(u), and
ΓS(u)≠ SΓ(u). However, they are equal if Γ(u) is a sym-
metric relation. -is is justified in the next example.

3.2. Example. Let Kd � ⊥, r, s, T{ } and C � u1, u2􏼈 􏼉. Define
Γ: C⟶ P(M × M) by Γ(u1) � (⊥,⊥), (r, r), (s, s),{

(T, T), (⊥, r)} and Γ(u2) � (⊥,⊥), (r, r), (s, s), (T, T),{

(r, T)}

-us, the aftersets of elements M are as follows.
⊥Γ(u1) � ⊥, r{ }, rΓ(u1) � r{ }, sΓ(u1) � s{ },

TΓ(u1) � T{ } and ⊥Γ(u2) � ⊥{ }, rΓ(u2) � r, T{ },
sΓ(u2) � s{ }, and TΓ(u2) � T{ }, and the foresets of elements
of M are as follows: Γ(u1)⊥ � ⊥{ }, Γ(u1)r � ⊥, r{ },
Γ(u1)s � s{ }, Γ(u1)T � T{ } and Γ(u2)⊥ � ⊥{ }, Γ(u2)r � r{ },
Γ(u2)s � s{ }, Γ(u2)T � r, T{ }. Let S � ⊥, T{ }. -en, LAP and
UAP of S⊆M with respect to aftersets and foresets are as
follows: ΓS(u1) � T{ }, ΓS(u2) � ⊥, T{ } and ΓS(u1) � ⊥, T{ },
ΓS(u2) � ⊥, r, T{ }, SΓ(u1) � ⊥, T{ }, ΓS(u2) � ⊥{ } and
SΓ(u1) � ⊥, r, T{ }, SΓ(u2) � ⊥, T{ }. -is shows that
(ΓS, C)≠ (SΓ, C) and (ΓS, C)≠ (SΓ, C).

3.3. Definition. A SBR Γ on a quantale module M is called
soft compatible relation (SCRE), if it satisfies the following
conditions: ∀i ∈ I if riΓsi⇒(∨i∈Iri)Γ(∨i∈Isi) and
rΓs⇒(k⊕ r)Γ(k⊕ s) for any r, s ∈M, ri􏼈 􏼉, si􏼈 􏼉⊆M, (i ∈ I)

and k ∈ Kd.

3.4. Example. Let Kd � ⊥, r, s, T{ } be a complete lattice as
shown in Figure 3, and the operation ⊛ on Kd is a⊛b � ⊥.
-en, it is easy to verify that (Kd,⊛) is a quantale. Let
⊕ : Kd × M⟶M be the left action of Kd on M as shown
in Table 3. In this case, M � Kd. -en, it is easy to check that
Kd is a Kd-module over Kd and represented by M. Let
C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M × M) by

Γ u1( 􏼁 � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (s,Τ){ },

Γ u2( 􏼁 � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (r,Τ){ }.
(6)

-en, (Γ, C) is a soft compatible relation (SCRE) and soft
reflexive relation (SRRE) on M.

3.5. Remark. Let (Γ, C) be a SCRE on a Kd-moduleM. -en,
it is easily verified that k⊕ sΓ(u)⊆(k⊕ s)Γ(u) and
rΓ(u)∨sΓ(u)⊆(r∨s)Γ(u) for all r, s ∈M and k ∈ Kd.

3.6. Example. Let (Kd, ⊕ ) be a Kd-module M as given in
example 3.4 and let C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M ×

M) by Γ(u1) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (s,Τ), (Τ, s),{

(r,Τ), (Τ, r)} and Γ(u2) � (⊥,⊥), (r, r), (s, s), (Τ,Τ){ }.
-en, (Γ, C) is a SCRE and SRRE on M. -e aftersets cal-
culated by the elements of M are as follows:

⊥Γ u1( 􏼁 � ⊥{ }, rΓ u1( 􏼁 � r,Τ{ }, sΓ u1( 􏼁 � s,Τ{ }. (7)

ΤΓ(u1) � r, s,Τ{ }. -us, we have
rΓ(u1)∨sΓ(u1) � r,Τ{ }∨ s,Τ{ } � Τ{ }⊆ r, s,Τ{ } � (r∨s)
Γ(u1). Hence, rΓ(u1)∨sΓ(u1)⊆(r∨s)Γ(u1) Also, similarly we
can check that
k⊕xΓ(u)⊆(k ⊕x)Γ(u)∀k ∈ Kd, x ∈M∀u ∈ C.

3.7. Remark. If (Γ, C) is a SCRE on a Kd-module M, then
k⊕ Γ(u)s⊆Γ(u)(k ⊕ s) and Γ(u)r∨Γ(u)s⊆Γ(u)(r∨s) with
respect to foresets.
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3.8. Definition. A SCRE (Γ, C) on a Kd-module M is called
soft join-complete with respect to to aftersets if
pΓ(u)∨qΓ(u) � (p∨q)Γ(u) and is called soft complete with
respect to ⊕ if
k⊕pΓ(u) � (k⊕p)Γ(u)∀k ∈ Kdp, q ∈M∀u ∈ C.

A SCRE (Γ, C) which is both join-complete and
⊕ -complete with respect to aftersets is called soft complete
relation (SCTR) with respect to aftersets.

3.9. Example. Let (Kd, ⊕ ) be a Kd-module M as given in
example 3.4 and let C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M ×

M) by

Γ u1( 􏼁 � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (s,Τ), (r,Τ){ }

and Γ u2( 􏼁 � (⊥,⊥), (r, r), (s, s), (Τ,Τ){ }.
(8)

-en, (Γ, C) is a SCRE and SRRE on M. -e aftersets
calculated by the elements of M are as follows:
⊥Γ(u1) � ⊥{ }, rΓ(u1) � r,Τ{ }, sΓ(u1) � s,Τ{ },ΤΓ(u1) � Τ{ }.
It is easily checked that pΓ(u1)∨qΓ(u1) �

(p∨q)Γ(u1)​ ∀p, q ∈M -at is, rΓ(u1)∨sΓ(u1) � r,Τ{ }

∨ s,Τ{ } � Τ{ } � (r∨s)Γ(u1) etc. Further, we can check that
k⊕pΓ(u1) � (k⊕p)Γ(u1)∀k ∈ Kd, p ∈M∀u ∈ C.

So, (Γ, C) is a SCTR with respect to aftersets.

3.10. Definition. A SCRE (Γ, C) on a Kd-moduleM is called
soft join-complete with respect to foresets if Γ(u)p∨Γ(u)q �

Γ(u)(p∨q) and is called soft complete with respect to ⊕ if
k⊕ Γ(u)p � Γ(u)(k⊕p)∀k ∈ Kdp, q ∈M∀u ∈ C.

A SCRE (Γ, C) which is both join-complete and
⊕ -complete is called SCTR with respect to foresets.

3.11. Remark. It has been observed that if we have SCTR for
aftersets, not need it is SCTR for foresets. -is is demon-
strated in the following example.

3.12. Example. Let (Kd, ⊕ ) be a Kd-module M as given in
example 3.4 and let C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M ×

M) by Γ(u1) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (s,Τ), (r,Τ){ } and
Γ(u2) � (⊥,⊥), (r, r), (s, s), (Τ,Τ){ }. -en, (Γ, C) is a SCRE
and SRRE on M. -e aftersets and foresets calculated by the
elements of M are as follows: ⊥Γ(u1) � ⊥{ }, rΓ(u1) �

r,Τ{ }, sΓ(u1) � s,Τ{ },ΤΓ(u1) � Τ{ }, Γ(u1)⊥ � ⊥{ },

Γ(u1)r � r{ }, Γ(u1)s � s{ }, Γ(u1)Τ � r, s,Τ{ }. It is observed
that rΓ(u1)∨sΓ(u1) � r,Τ{ }∨ s,Τ{ } � Τ{ } � (r∨s)Γ(u1).
Likewise, we can check that k⊕pΓ(u1) �

(k⊕p)Γ(u1)∀k ∈ Kd, p ∈M,∀u ∈ C So, (Γ, C) is a SCTR
with respect to aftersets. But, Γ(u1)r∨Γ(u1)s � r{ }∨ s{ } �

Τ{ }≠ r, s,Τ{ } � Γ(u1)(r∨s) So, (Γ, C) is not a SCTR with
respect to foresets.

In ref [31], the following theorems are helpful for our
further study.

3.13. 5eorem (see [31]). Let ∅≠ S,∅≠R be the subsets of
Kd-module M and (Γ, C) and (c, C) be SRRE on M. -en,
the following hold for all u ∈ C:

(1) ΓS(u)⊆S⊆ΓS(u)

(2) S⊆R⇒ΓS(u)⊆ΓR(u)

(3) S⊆R⇒ΓS(u)⊆ΓR(u)

(4) (ΓS, C)∩ (ΓR, C) � (ΓS∩R, C)

(5) (ΓS, C)∩ (ΓR, C)⊇(ΓS∩R, C)

(6) (ΓS, C)∪ (ΓR, C)⊆(ΓS∪R, C)

(7) (ΓS, C)∪ (ΓR, C) � (ΓS∪R, C)

(8) (Γ, C)⊆(c, C)⇒(ΓS, C)⊇(cS, C)

(9) (Γ, C)⊆(c, C)⇒(ΓS, C)⊆(cS, C)

3.14. 5eorem (see [31]). Let ∅≠ S,∅≠R be the subset of
Kd-module M and (Γ, C) and (c, C) be SRRE on M. -en,
the following hold for all u ∈ C:

(10) SΓ(u)⊆S⊆SΓ(u)

(11) S⊆R⇒SΓ(u)⊆RΓ(u)

(12) S⊆R⇒SΓ(u)⊆RΓ(u)

(13) (SΓ, C)∩ (RΓ, C) � (S∩RΓ, C)

(14) (SΓ, C)∩ (RΓ, C)⊇(S∩RΓ, C)

(15) (SΓ, C)∪ (RΓ, C)⊆(S∩RΓ, C)

(16) (SΓ, C)∪ (RΓ, C) � (S∪RΓ, C)

(17) (Γ, C)⊆(c, C)⇒(SΓ, C)⊇(Sc, C)

(18) (Γ, C)⊆(c, C)⇒(SΓ, C)⊆(Sc, C)

3.15. 5eorem (see [31]). Let ∅≠ S,∅≠R be the subsets of
Kd-module M and (Γ, C) and (c, C) be SRRE on M. -en,
the following hold for all u ∈ C:

(1) ((Γ ∩ c)S, C)⊆(ΓS, C)∩ (cS, C)

sr

⊥

T

Figure 3: Illustration of M.

Table 3: Binary operation subject to ⊕.

⊕ ⊥ r s T
⊥ ⊥ r s T
r ⊥ r s T
s ⊥ r s T
T ⊥ r s T
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(2) ((Γ ∩ c )S, C)⊇(ΓS, C)∪ (cS, C)

(3) (S(Γ ∩ c), C)⊆(SΓ, C)∩ (Sc, C)

(4) (S(Γ ∩ c ), C)⊇(SΓ, C)∪ (Sc, C)

3.16.5eorem. Let (Γ, C) be SRRE and SCRE with respect to
the aftersets on a Kd-moduleM. -en, for non-empty subset
S and R of M, we have k⊕ ΓS(u)⊆Γk⊕ S

(u) and
ΓS(u)∨ΓR(u)⊆ΓS∨R(u)∀ ​ u ∈ C.

Proof. Let x ∈ k⊕ ΓS(u) -en, x � k⊕p where p ∈ ΓS(u)

such that pΓ(u)∩ S≠∅. -us, there exist a ∈ pΓ(u)∩ S such
that a ∈ S. -at is, (p, a) ∈ Γ(u). Since (Γ, C) is SCRE, we
have (k⊕p, k⊕ a) ∈ Γ(u) and k⊕ a ∈ k⊕ S, ⇒k⊕ a ∈
(k⊕p)Γ(u)∩ k⊕ S,
⇒∅≠ (k⊕p)Γ(u) ∩ k⊕ S⇒k⊕p ∈ Γk⊕ S

(u). So,
x ∈ Γk⊕ S

(u). -us, k⊕ ΓS(u)⊆Γk⊕ S
(u)

Let y ∈ ΓS(u)∨ΓR(u). -en, y � p∨q where p ∈ ΓS(u)

and q ∈ ΓR(u) such that pΓ(u)∩ S≠∅ and qΓ(u)∩R≠∅.
-at is, a ∈ pΓ(u)∩ S and b ∈ qΓ(u)∩R. So, a ∈ pΓ(u),
a ∈ S and b ∈ qΓ(u), b ∈ R, ⇒(p, a) ∈ Γ(u), a ∈ S and
(q, b) ∈ Γ(u), b ∈ R. Since (Γ, C) is SCRE, we have
(p∨q, a∨b) ∈ Γ(u)and a∨b ∈ S∨R⇒a∨b ∈ (p∨q)

Γ(u)∩ S∨R, ⇒∅≠ (p∨q)Γ(u) ∩ (S∨R)⇒(p∨q) ∈ ΓS∨R(u)

So, y ∈ ΓS∨R(u). -us, ΓS(u)∨ΓR(u)⊆ΓS∨R(u). □

3.17. Example. Let (Kd, ⊕ ) be a Kd-module M as given in
example 3.4 and let C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M ×

M) by Γ(u1) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (r,Τ){ } and
Γ(u2) � (⊥,⊥), (r, r), (s, s), (Τ,Τ){ }. -en, (Γ, C) is a SCRE
and SRRE on M. -e aftersets calculated by the elements of
M are as follows: ⊥Γ(u1) � ⊥{ }, rΓ(u1) � r,Τ{ },

sΓ(u1) � s{ },ΤΓ(u1) � Τ{ }, ⊥Γ(u2) � ⊥{ }, rΓ(u2) � r{ },

sΓ(u2) � s{ },ΤΓ(u2) � Τ{ }. Let R � s{ } and S � T{ }. -en,
ΓR(u1) � s{ }, ΓS(u1) � r, T{ }, and ΓR(u1)∨Γ

S
(u1) � T{ }.

Now, S∨R � T{ }and ΓS∨R(u1) � r, T{ }. So,
ΓS(u1)∨Γ

R
(u1)⊆Γ

S∨R
(u1). Similarly, we can prove that

k⊕ ΓS(u)⊆Γk⊕ S
(u).

3.18.5eorem. Let (Γ, C) be SRRE and SCRE with respect to
the foresets on a Kd-moduleM. -en, for non-empty subset
S and R of M, we have k⊕ SΓ(u)⊆k⊕ SΓ(u) and
SΓ(u)∨RΓ(u)⊆S∨RΓ(u)∀u ∈ C.

Proof. -eproof is similar to the proof of-eorem 3.16. □

4. Approximation of Substructures in
Quantale Module

In this section, foresets and aftersets are applied to different
type of substructures in quantale module through soft

relations to discuss their lower and upper approximations.
-ese are then characterized by soft reflexive and soft
compatible relations to present different characteristics of
them.

4.1. Definition. Let ∅≠ S⊆M and (Γ, C) be a SBR on a
Kd-module M. -en, S is said to be generalized upper soft
sub Kd-module of M with respect to aftersets if (ΓS, C) is a
soft sub-Kd-module of M.

4.2. 5eorem. Let (Γ, C) be a SRRE and SCRE on a
Kd-module M. -en, S is said to be generalized upper soft
sub Kd-module of M with respect to aftersets if S is a soft
sub-Kd-module of M.

Proof (1) Suppose that ri ∈ Γ
S
(u) for u ∈ C and for some

i ∈ I. -en, riΓ(u)∩ S≠∅. -ere are
xi ∈ riΓ(u)∩ S such that xi ∈ riΓ(u) and
xi ∈ S. -at is, (ri, xi) ∈ Γ(u) and xi ∈ S,
∀i ∈ I. Since S is a sub-Kd-module of M and
Γ(u) is a SCRE∀u ∈ C. -us, we have
(∨i∈Iri,∨i∈Ixi) ∈ Γ(u) and ∨i∈Ixi ∈ S. -at is,
∨i∈Ixi ∈ ∨i∈IriΓ(u) and ∨i∈Ixi ∈ S. So,
∨i∈Ixi ∈ ∨i∈IriΓ(u)∩ S. Hence,
∨i∈IriΓ(u)∩ S≠∅. -is shows that
∨i∈Iri ∈ Γ

S
(u).

(2) Let r ∈M such that r ∈ ΓS(u). -is shows
rΓ(u)∩ S≠∅. -en, there is y ∈ rΓ(u)∩ S such that
y ∈ rΓ(u) and y ∈ S. -at is, (r, y) ∈ Γ(u) and y ∈ S.
Since S is a sub-Kd-module ofM and Γ(u) is a SRRE
and SCRE. -us, we have k⊕y ∈ S and
(k⊕ r, k⊕y) ∈ Γ(u), ⇒k⊕y ∈ (k⊕ r)Γ(u) and
k⊕y ∈ S, ⇒k⊕y ∈ (k⊕ r)Γ(u)∩ S. Hence,
(k⊕ r)Γ(u)∩ S≠∅. -is shows that k⊕ r ∈ ΓS(u).
-erefore, ΓS(u) is a sub Kd-module of M.-at is, S
is a generalized upper soft sub-Kd-module ofM with
respect to aftersets.

It is mentioned in the next example that the converse is
not true. □

4.3. Example. Suppose Kd � ⊥, r, s, t, T{ } be a complete
lattice as shown in Figure 4 and the operation ⊛ on Kd is that
a⊛b � ⊥. -en, it is easily checked that (Kd,⊛) is a quantale.
Suppose ⊛: Kd × M⟶M be the left action of Kd on M as
shown in Table 4. In this case, M � Kd; then, it is easy to
check that Kd is a quantale module M. Let C � u1, u2􏼈 􏼉.
-en, Γ: C⟶ P(M × M) defined by
Γ(u1) � (⊥,⊥), (r, r), (s, s),{

(Τ,Τ), (r,Τ), (s, T), (⊥, T), (t, T), (r, t), (r,⊥), (t, s), (t, t)}

and Γ(u2) � (⊥,⊥), (r, r), (s, s), (t, t), (Τ,Τ), (T, t), (t, r){ }.
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-en, (Γ, C) is a SCRE and SRRE on M. -e aftersets cal-
culated by the elements of M are as follows:

⊥Γ u1( 􏼁 � ⊥, T{ }, rΓ u1( 􏼁

� ⊥, r, t,Τ{ }, sΓ u1( 􏼁

� s, T{ },

tΓ u1( 􏼁 � s, t, T{ }, TΓ u1( 􏼁

� T{ },

⊥Γ u2( 􏼁 � ⊥{ }, rΓ u2( 􏼁

� r{ }, sΓ u2( 􏼁

� s{ },

tΓ u2( 􏼁 � r, t{ }, TΓ u2( 􏼁

� t, T{ }.

(9)

Let S � T, r, s{ }. -en, S is not a sub-Kd-module of M.
But, ΓS(u1) � ⊥, r, s, t, T{ } and ΓS(u2) � r, s, t, T{ } are sub-
Kd-module of M. Hence, S is a generalized upper soft sub-
Kd-module of M with respect to aftersets.

4.4. Definition. Let ∅≠ S⊆M and (Γ, C) be a SBR on a
Kd-module M. -en, S is said to be generalized upper soft
sub Kd-module of M with respect to foresets if (SΓ, C) is a
soft sub-Kd-module of M.

4.5. 5eorem. Let (Γ, C) be a SRRE and SCRE on a
Kd-module M. -en, S is said to be generalized upper soft
sub Kd-module ofMwith respect to foresets if S is a soft sub-
Kd-module of M.

Proof. -e proof is similar to the proof of -eorem 4.2. □

4.6. Definition. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCRE on a Kd-module M. -en, S is said to be generalized
lower soft sub-Kd-module of M with respect to aftersets if
(ΓS, C) is a soft sub-Kd-module of M.

4.7. 5eorem. Let (Γ, C) be a SRRE and SCTE on a
Kd-module M. -en, S is said to be generalized lower soft
sub Kd-module of M with respect to aftersets if S is a soft
sub-Kd-module of M.

Proof. (1) Suppose that ri ∈ ΓS(u) for u ∈ C and for i ∈ I.
-is shows that riΓ(u)⊆S. Hence, S is a sub-
Kd-module of M and Γ(u) is SCTR ∀u ∈ C.

-us, (∨i∈Iri)Γ(u) � ∨i∈I(riΓ(u)) and
(∨i∈Iri)Γ(u) � ∨i∈I(riΓ(u))⊆S. Hence,
(∨i∈Iri)Γ(u)⊆S. -is shows that
∨i∈Iri ∈ ΓS(u).

(2) Let r ∈M be such that r ∈ ΓS(u). -is shows
rΓ(u)⊆S for u ∈ C. Hence, S is a sub-Kd-module of
M and Γ(u) is a SRRE and SCTE. -us, we have
(k⊕ r)Γ(u) � k⊕ rΓ(u). So, we can write
(k⊕ r)Γ(u) � k⊕ rΓ(u)⊆S. Hence, (k⊕ r)Γ(u)⊆S.
-is shows that k⊕ r ∈ ΓS(u). -erefore, ΓS(u) is a
sub Kd-module ofM.-at is, S is a generalized lower
soft sub-Kd-module of M with respect to aftersets.

Observe in the next example that the converse is not
true. □

4.8. Example. Let (Kd, ⊕ ) be a Kd-module M as given in
example 4.3 and let C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M ×

M) by Γ(u1) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (r,Τ), (s, T){ } and
Γ(u2) � (⊥,⊥), (r, r), (s, s), (t, t),{ (Τ,Τ), (T, t),

(r, T), (s,⊥)}. -e aftersets calculated by the elements of M
are as follows: ⊥Γ(u1) � ⊥{ }, rΓ(u1) � r,Τ{ }, sΓ(u1) �

s, T{ },ΤΓ(u1) � Τ{ }, ⊥Γ(u2) � ⊥{ }, rΓ(u2) �

r, T{ }, sΓ(u2) � ⊥, s{ },ΤΓ(u2) � r,Τ{ }. -en, (Γ, C) is a
SCTR and SRRE with respect to aftersets. Let S � ⊥, r, s{ }.
-en, S is not a sub-Kd-module of M. However, ΓS(u1) �

⊥{ }, ΓS(u2) � ⊥{ } are sub-Kd-module of M. Hence, S is
generalized lower soft sub-Kd-module of M.

4.9. Definition. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCRE on a Kd-module M. -en, S is said to be generalized
lower soft sub-Kd-module of M with respect to foresets if
(SΓ, C) is a soft sub-Kd-module of M.

4.10. 5eorem. Let (Γ, C) be a SCTR and SRRE on a
Kd-module M. -en, S is said to be generalized lower soft

sr

⊥

t

T

Figure 4: Illustration of M.

Table 4: Binary operation subject to ⊕.

⊕ ⊥ r s t T
⊥ ⊥ r s t T
r ⊥ r s t T
s ⊥ r s t T
t ⊥ r s t T
T ⊥ r s t T
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sub Kd-module ofMwith respect to foresets if S is a soft sub-
Kd-module of M.

Proof. -e proof is obvious. □

4.11. Remark. -e results in this section related to foresets
are similar to the results with respect to aftersets.

4.12. Definition. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCRE on a Kd-moduleM if (ΓS, C) is a soft Kd-module ideal
M. -en, S is said to be generalized upper soft Kd-module
ideal of M with respect to aftersets.

4.13. 5eorem. Let ∅≠ S⊆M and (Γ, C) be a SRRE, SCRE
and soft join-complete relation on a Kd-module M. -en, S
is said to be generalized upper soft Kd-module ideal of M
with respect to aftersets if S is an Kd-module ideal of M.

Proof (1) Suppose that r, s ∈M such that r, s ∈ ΓS(u) for
u ∈ C. -erefore, rΓ(u)∩ S≠∅ and
sΓ(u)∩ S≠∅. -en ,there are x ∈ rΓ(u)∩ S

and y ∈ sΓ(u)∩ S such that x ∈ rΓ(u),
y ∈ sΓ(u), and x ∈ S, y ∈ S. -is implies
(r, x) ∈ Γ(u), (s, y) ∈ Γ(u), and x, y ∈ S. S is a
Kd-module ideal of M and Γ(u) is a SCRE
∀u ∈ C. Hence, we have (r∨s, x∨y) ∈ Γ(u)

and x∨y ∈ S. -at is, x∨y ∈ (r∨s)Γ(u) and
x∨y ∈ S. So, x∨y ∈ (r∨s)Γ(u)∩ S. Hence,
(r∨s)Γ(u)∩ S≠∅. -is shows that
(r∨s) ∈ ΓS(u).

(2) Let s ∈ ΓS((u)) and r≤ s. -erefore, sΓ(u)∩ S≠∅.
-en, there is y ∈ sΓ(u)∩ S such that y ∈ sΓ(u) and
y ∈ S. Since Γ(u) is a SCRE and soft join-complete
relation, we have sΓ(u) � (r∨s)Γ(u) � rΓ(u)∨sΓ(u).
-en, there is u ∈ rΓ(u) and v ∈ sΓ(u) such that
y � u∨v.S is a Kd-module ideal of M and u≤y ∈ S.

We have u ∈ S so r ∈ ΓS(u)

(3) Let k ∈M be such that r ∈ ΓS(u). -is shows
rΓ(u)∩ S≠∅. -en, there are y ∈ rΓ(u)∩ S such
that y ∈ rΓ(u) and y ∈ S. -at is, (r, y) ∈ Γ(u) and
y ∈ S. S is a Kd module ideal ofM and Γ(u) is a SRRE
and SCRE. We have k⊕y ∈ S and
(k⊕ r, k⊕y) ∈ Γ(u)⇒k⊕y ∈ (k⊕ r)Γ(u) and
k⊕y ∈ S, ⇒k⊕y ∈ (k⊕ r)Γ(u)∩ S. Hence,
(k⊕ r)Γ(u) ∩ S≠∅. -is shows that k⊕ r ∈ ΓS(u).
-erefore, ΓS(u) is a Kd-module ideal ofM.-at is, S
is a generalized upper soft Kd-module ideal of M
with respect to aftersets.

It is observed in the next example that the converse is not
true. □

4.14. Example. Let M be the quantale module as given in
example 4.3 and C � u1, u2􏼈 􏼉. -en,
Γ(u1) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (r,Τ), (s, T),{ (⊥, T),

(t, T), (r, t), (r,⊥), (t, s), (t, t)} and Γ(u2) � (⊥,⊥),{

(r, r), (s, s), (t, t), (Τ,Τ), (T, t), (t, r)}.

-e aftersets calculated by the elements of M are as
follows:

⊥Γ u1( 􏼁 � ⊥, T{ }, rΓ u1( 􏼁

� ⊥, r, t,Τ{ }, sΓ u1( 􏼁

� s, T{ }, tΓ u1( 􏼁

� s, t, T{ },ΤΓ u1( 􏼁

� Τ{ }⊥Γ u2( 􏼁

� ⊥{ }, rΓ u2( 􏼁

� r, T{ }, sΓ u2( 􏼁 � s{ },ΤΓ u2( 􏼁

� Τ{ }, tΓ u2( 􏼁

� t{ },

(10)

then (Γ, C) is a SCRE and SRRE and soft join-complete
relation with respect to aftersets on M. Let S � T, t, s,⊥{ }.
-en, S is not a Kd-module ideal of M. However, ΓS(u1) �

⊥, r, s, t, T{ } and ΓS(u1) � ⊥, r, s, t,T{ } are Kd-module ideal
ofM. Hence, S is a generalized upper soft Kd-module ideal of
M with respect to aftersets.

4.15. Definition. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCRE on a Kd-moduleM if (SΓ, C) is a soft Kd-module ideal
M. -en, S is said to be generalized upper soft Kd-module of
M with respect to foresets if S is a Kd-module ideal of M.

4.16. 5eorem. Let ∅≠ S⊆M and (Γ, C) be a SRRE, SCRE,
and soft join-complete relation on a Kd-module M. -en, S
is said to be generalized upper soft Kd-module ideal of M
with respect to foresets if S is an Kd-module ideal of M.

Proof. -e proof is obvious. □

4.17. Definition. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCRE on a Kd-moduleM if (ΓS, C) is a soft Kd-module ideal
M. -en, S is said to be generalized lower soft Kd-module of
M with respect to aftersets.

4.18. 5eorem. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCTR on a Kd-module M. -en, S is said to be generalized
lower soft Kd-module ideal ofM with respect to aftersets if S
is an Kd-module ideal of M.

Proof (1) Suppose that r, s ∈M such that r, s ∈ ΓS(u) for
u ∈ C. -is shows rΓ(u)⊆S and sΓ(u)⊆S.
Hence, S is a Kd-module ideal of M and Γ(u)

is SCTR ∀u ∈ C. So, we have
(r∨s)Γ(u) � rΓ(u)∨sΓ(u) and
rΓ(u)∨sΓ(u) � (r∨s)Γ(u)⊆S. Hence,
(r∨s)Γ(u)⊆S. -is shows that (r∨s) ∈ ΓS(u).

(2) Let s ∈ ΓS(u) and r≤ s. -erefore, sΓ(u)⊆S. For
w ∈ rΓ(u), we have (r, w) ∈ Γ(u). Since
(r, w) ∈ Γ(u) is a SRRE and SCRE, we have
(r∨s, w∨s) ∈ Γ(u). -at is, (s, w∨s) ∈ Γ(u). -us,
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(w∨s) ∈ S. Since S is a Kd-module ideal of M, we
have w ∈ S. -us, rΓ(u)⊆S and r ∈ ΓS(u).

(3) Let k ∈M be such that r ∈ ΓS(u). -is shows
rΓ(u)⊆S for u ∈ C. Hence, S is a Kd-module ideal of
M. -en, for all k ∈M, we have k⊕ rΓ(u)⊆k⊕ S⊆S.
Also given that Γ(u) is a SRRE and SCTE. -us, we
can write k⊕ rΓ(u) � (k⊕ r)Γ(u)⊆S. Hence,
k⊕ rΓ(u) � (k⊕ r)Γ(u)⊆S. -is shows that
k⊕ r ∈ ΓS(u). -erefore, ΓS(u) is a Kd-module ideal
ofM.-at is, S is a generalized lower soft Kd-module
ideal of M with respect to aftersets.

Observe in the next example that the converse is not
true. □

4.19. Example. Let (Kd, ⊕ ) be a Kd-module M as given in
example 3.4 and let C � u1, u2􏼈 􏼉. Define Γ: C⟶ P(M ×

M) by Γ(u1) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (r,Τ), (s, T){ } and
Γ(u2) � (⊥,⊥), (r, r), (s, s), (Τ,Τ), (T, r), (r, T), (s,⊥){ }.
-e aftersets calculated by the elements of M are as follows:
⊥Γ(u1) � ⊥{ }, rΓ(u1) � r,Τ{ }, sΓ(u1) � s, T{ },ΤΓ(u1) � Τ{ },
⊥Γ(u2) � ⊥{ }, rΓ(u2) � r, T{ }, sΓ(u2) � ⊥, s{ },

ΤΓ(u2) � r,Τ{ }. -en, (Γ, C) is a SCTR and SRRE with
respect to aftersets. Let S � ⊥, r, s{ }. -en, S is not an ideal of
Kd-module of M. However, ΓS(u1) � ⊥{ }, ΓS(u2) � ⊥{ } are
Kd-module ideal of M. Hence, S is generalized lower soft
Kd-module ideal of M with respect to aftersets.

4.20. Definition. Let ∅≠ S⊆M and (Γ, C) be a SBR on a
Kd-moduleM if (SΓ, C) is a soft Kd-module idealM. -en, S
is said to be generalized lower soft Kd-module of M with
respect to foresets.

4.21. 5eorem. Let ∅≠ S⊆M and (Γ, C) be a SRRE and
SCTR on a Kd-module M. -en, S is said to be generalized
lower soft Kd-module ideal ofM with respect to foresets if S
is an Kd-module ideal of M.

Proof. -e proof is simple. □

5. Homomorphic Images of Generalized Rough
Soft Substructures

-e relationship between the upper and lower generalized
soft substructures of the Kd- module, as well as the images of
upper (lower) approximations under Kd-module homo-
morphism, is being discussed in this section. Further, we
study some properties of these approximations.

5.1. Lemma. Let M1 andM2 be Kd-modules and (β2, C) be a
SBR on M2. Let Ω: M1⟶M2 be a surjective Kd-module
homomorphism. Set β1(u) � (s, t) ∈M1 × M1:􏼈

(Ω(s),Ω(t)) ∈ β2(u)∀u ∈ C}. -en, the following holds:

(1) (β1, C) is a SBR on M1

(2) (β1, C) is SRRE if (β2, C) is SRRE
(3) (β1, C) is SCRE if (β2, C) is SCRE

Proof. -e proof is obvious. □

5.2.Lemma. Let M1 andM2 be aKd-modules and (β2, C) be
a SBR on M2. LetΩ: M1⟶M2 be a surjective Kd-module
homomorphism. Set β1(u) � (s, t) ∈M1 × M1: (Ω(s),􏼈

Ω(t)) ∈ β2(u)∀u ∈ C} -en, (β1, C) is SCTR with respect to
aftersets if (β2, C) is SCTR with respect to aftersets and Ω is
one-one.

Proof. Clearly rβ1(u)∨sβ1(u)⊆(r∨s)β1(u)∀u ∈ C.
Conversely, suppose that x ∈ (r∨s)β1(u). -en, by

definition of aftersets (r∨s, x) ∈ β1(u). -us,
Ω(r∨s),Ω(x) ∈ β2(u), that is, Ω(r)∨Ω(s),Ω(x) ∈ β2(u).
-is implies that Ω(x) ∈ Ω(r)∨Ω(s)β2(u). Since (β2, C) is
SCTR with respect to aftersets,
Ω(x) ∈ Ω(r)β2(u)∨Ω(s)β2(u). -en, there is
t1 ∈ Ω(r)β2(u) and t2 ∈ Ω(r)β2(u) such that Ω(x) � t1∨t2.
AsΩ is onto, we have s1, s2 ∈M1,Ω(s1) � t1 andΩ(s2) � t2.
-us, Ω(x) � Ω(s1)∨Ω(s2). -is implies, Ω(x) � Ω(s1∨s2).
As Ω is one-one, we have x � s1∨s2. Now, t2 ∈ Ω(r)β2(u),
⇒, Ω(s1) ∈ Ω(r)β2(u)ww, ⇒(Ω(r),Ω(s1)) ∈ β2(u),
⇒(r, s1) ∈ β1(u), ⇒s1 ∈ rβ1(u). Also now, t2 ∈ Ω(s)β2(u),
⇒, Ω(s2) ∈ Ω(s)β2(u), ⇒(Ω(s),Ω(s2)) ∈ β2(u),
⇒(s, s2) ∈ β1(u), ⇒s2 ∈ sβ1(u). Now,
x � s1∨s2 ∈ rβ1(u)∨sβ1(u). -at is, x ∈ rβ1(u)∨sβ1(u). -is
implies that (r∨s)β1(u)⊆rβ1(u)∨sβ1(u). Hence,
(r∨s)β1(u) � rβ1(u)∨sβ1(u)∀u ∈ C. Similarly, we can prove
that k⊕ rβ1(u) � (k⊕ r)β1(u)∀u ∈ C. -is show that (β1, C)

is SCTR with respect to aftersets. □

5.3.Lemma. Let M1 andM2 be aKd-modules and (β2, C) be
a SBR on M2. LetΩ: M1⟶M2 be a surjective Kd-module
homomorphism. Set β1(u) � (s, t) ∈M1 × M1:􏼈

(Ω(s),Ω(t)) ∈ β2(u)∀u ∈ C}. -en, (β1, C) is SCTR with
respect to foresets if (β2, C) is SCTR with respect to foresets
and Ω is one-one.

Proof. -e proof is obvious. □

5.4.Lemma. Let M1 andM2 be Kd-modules and (β2, C) be a
SBR on M2. Let Ω: M1⟶M2 be a surjective Kd-module
homomorphism. Set β1(u) � (s, t) ∈M1 × M1:􏼈

(Ω(s),Ω(t)) ∈ β2(u)∀u ∈ C} -en, Ω(βS

1(u)) � βΩ(S)

2 (u)

for S⊆M1 and ∀u ∈ C.

Proof. Let s ∈ βΩ(S)

2 (u). -en, sβ2(u)∩Ω(S)≠∅. -en,
there is r ∈ sβ2(u)∩Ω(S) such that r ∈ sβ2(u) and r ∈ Ω(S).
So, (s, r) ∈ β2(u) and r ∈ Ω(S). Since Ω is onto, there exist
x ∈ S and y ∈M1 such that r � Ω(x) and s � Ω(y). -us,
(s, r) � (Ω(y),Ω(x)) ∈ β2(u), that is, (Ω(y),Ω(x) ∈ β2(u).
Hence, (yx) ∈ β1(u), that is, x ∈ yβ1(u) and x ∈ S. -is
implies x ∈ yβ1(u)∩ S. So, we have y ∈ βS

1(u),
⇒Ω(y) ∈ Ω(β

S

1(u)), ⇒s ∈ Ω(β
S

1(u)). -is show that
⇒s ∈ Ω(β

S

1(u)).
Conversely, let z ∈ Ω(β

S

1(u)). -en, there is r ∈ βS

1(u)

such that rβ1(u)∩ S≠∅ and z ∈ Ω(r). -us, x ∈ rβ1(u)∩ S

such that x ∈ rβ1(u) and x ∈ S. So, (r, x) ∈ β1(u) and x ∈ S,
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⇒Ω(x) ∈ Ω(S) and (Ω(r),Ω(x) ∈ β2(u),
⇒Ω(x) ∈ Ω(r)β2(u) and Ω(x) ∈ Ω(S). Hence,
Ω(x) ∈ Ω(r)β2(u)∩Ω(S), that is, ∅≠Ω(r)β2(u)∩Ω(S),
⇒Ω(r) ∈ βΩ(S)

2 , ⇒z ∈ βΩ(S)

2 (u). -is shows that Ω(βS

1(u))

⊆βΩ(S)

2 (u). Hence, Ω(βS

1(u)) � βΩ(S)

2 (u)∀u ∈ C. □

5.5.Lemma. LetM1 andM2 be Kd-modules and (β2, C) be a
SBR on M2. Let Ω: M1⟶M2 be a surjective Kd-module
homomorphism. Set
β1(u) � (s, t) ∈M1 × M1: Ω(s),Ω(t) ∈ β2(u)∀u ∈ C􏼈 􏼉.
-en, the following holds:

(1) Ω(β1
S(u))⊆β2

Ω(s)(u)∀u ∈ C; if Ω is one-one, then
Ω(β1

S(u)) � β2
Ω(s)(u)∀u ∈ C

(2) IfΩ: M1⟶M2 is one-one, thenΩ(x) ∈ Ω(β
S

1(u))

if and only if x ∈ (β
S

1(u))∀u ∈ C

Proof (1) Let r ∈ Ω(β1
S(u)) for u ∈ C. -en, there is

s ∈ β1
S(u) such that sβ1(u)⊆S and r � Ω(x).

Suppose that y ∈ rβ2(u). -en, there is
x ∈M1 such that Ω(x) � y and
Ω(x) ∈ Ω(s)β2(u), that is,
(Ω(s),Ω(x)) ∈ β2(u). Hence, (s, x) ∈ β1(u)

by definition of aftersets x ∈ sβ1(u). Hence,
sβ1(u)⊆S and x ∈ S. So, Ω(x) ∈ Ω(S) using
above Ω(x) � y, ⇒y ∈ Ω(S). -us,
rβ2(u)⊆Ω(S). Hence, r ∈ β2

Ω(s)(u)which
shows that Ω(β1

S(u))⊆β2
Ω(s)(u)∀u ∈ C.

Conversely, let s ∈ β2
Ω(s)(u)∀u ∈ C. -en,

sβ2(u)⊆Ω(S). Suppose that Ω is one-one.
-en, there is r ∈M1 such that s � Ω(r) and
Ω(r)β2(u)⊆Ω(S). Let x ∈ rβ1(u) by defini-
tion of aftersets, we have (r, x) ∈ β1(u). -en,
Ω(r),Ω(x) ∈ β2(u), that is,
Ω(x) ∈ Ω(r)β2(u). Since Ω(r)β2(u)⊆Ω(S),
Ω(x) ∈ Ω(S),⇒x ∈ S.-us, rβ1(u)⊆S, that is,
r ∈ β1

S(u), ⇒Ω(r) ∈ Ω(β1
S(u)) since

s � Ω(r). Hence, s ∈ Ω(β1
S(u)).

So,β2
Ω(s)(u)⊆Ω(β1

S(u))∀u ∈ C. -us,
Ω(β1

S(u)) � β2
Ω(s)(u)∀u ∈ C.

(2) Let Ω(r) ∈ Ω(β
S

1(u)). -en, there is s ∈ βS

1(u) such
that Ω(r) � Ω(s). Since Ω is one-one, we get r � s.
-us, r ∈ βS

1(u). Conversely, let r ∈ βS

1(u)∀u ∈ C.
-en, Ω(r) ∈ Ω(βS

1(u))∀u ∈ C. □

5.6.5eorem. Let S⊆M1 and letΩ be a surjective Kd-module
homomorphism on a Kd-modules M1, M2 and (β2, C) be a
SBR and SCTR with respect to aftersets on M2. Set
β1(u) � (s, t) ∈M1 × M1: (Ω(s),Ω(t)) ∈ β2(u)∀u ∈ C􏼈 􏼉.
-en, the following holds:

(1) β
S

1(u) is a Kd-module ideal of M1 if and only if
β
Ω(S)

2 (u) is a Kd-module ideal of M2∀u ∈ C

(2) β
S

1(u) is a sub-Kd-module of M1 if and only if
β
Ω(S)

2 (u) is a sub-Kd-module of M2∀u ∈ C

Proof. (1) Let β
S

1(u) be a Kd-module ideal of M1. -en, we
have to show that β

Ω(S)

2 (u) is a Kd-module ideal of
M2∀u ∈ C. By Lemma 5.4, we haveΩ(β

S

1(u)) � β
Ω(S)

2 (u) for
all S⊆M1 and ∀u ∈ C.

Let ri ∈ Ω(βS

1(u))∀u ∈ C. -en, there is ti ∈ β
S

1(u) such
that Ω(ti) � ri. Hence, Ω is a Kd-module homomorphism
and βS

1(u) is a Kd-module ideal of M1∀u ∈ C. So, we have
∨i∈Iti ∈ β

S

1(u), ⇒Ω(∨i∈Iti) ∈ Ω(βS

1(u)). -us,
∨i∈IΩ(ti) ∈ Ω(βS

1(u)). Hence, ∨i∈Iri ∈ Ω(βS

1(u)).
Let r≤ s and s ∈ Ω(β

S

1(u)). -en, there is t ∈M1 and
u ∈ βS

1(u) such thatΩ(t) � r andΩ(u) � s. Hence, r≤ s, that
is, Ω(t)≤Ω(u) and Ω(t)∨Ω(u) � Ω(u). Further, Ω is a
Kd-module homomorphism. -us, we have
Ω(t∨u) � Ω(t)∨Ω(u), � Ω(u) ∈ Ω(β

S

1(u)),
⇒Ω(t∨u) ∈ Ω(β

S

1(u)). By Lemma 5.5(2), we have
(t∨u) ∈ βS

1(u). Hence, β
S

1(u) is a lower set and t≤ t∨u. -us,
t ∈ βS

1(u) and Ω(t) ∈ Ω(β
S

1(u)) so r ∈ Ω(β
S

1(u)). Hence,
Ω(β

S

1(u)) is a lower set.
Now, we show that k⊕ r ∈ Ω(β

S

1(u)) for all r ∈ Ω(β
S

1(u))

and ∀k ∈ Kd. Let k � Ω(s) ∈ Kd and r � Ω(t) ∈ Ω(β
S

1(u)).
So, Ω(t) ∈ Ω(β

S

1(u)). -en, by Lemma 5.5(2), we have
t ∈ βS

1(u). Hence, β
S

1(u) is an Kd-module ideal of M1. -us,
s⊕ t ∈ βS

1(u). -us, Ω(s⊕ t) ∈ Ω(β
S

1(u)). Hence, Ω is an
Kd-module homomorphism. -us, Ω(s⊕ t) � Ω(s) +Ω(t),
that is, Ω(s)⊕Ω(t) ∈ Ω(β

S

1(u)). Hence, k⊕ r ∈ Ω(β
S

1(u)).
-us, Ω(β

S

1(u)) � β
Ω(S)

2 (u) is a Kd-module ideal of
M2∀u ∈ C.

Conversely, suppose Ω(βS

1(u)) � βΩ(S)

2 (u) is a
Kd-module ideal of M2∀u ∈ C.

Suppose si ∈ β
S

1(u)∀u ∈ C for some i ∈ I. -en,
Ω(si) ∈ Ω(β

S

1(u))∀u ∈ C. Hence, Ω(β
S

1(u)) is a Kd-module
ideal and Ω is a Kd-module homomorphism. So,
∨i∈IΩ(si) � Ω(∨i∈Isi) ∈ Ω(β

S

1(u)), ∀u ∈ C. -en, by Lemma
5.5(2), we have ∨i∈Isi ∈ β

S

1(u) and β
S

1(u) is directed.
Let r≤ sand s ∈ βS

1(u). -en, Ω(r)≤Ω(s) and
Ω(s) ∈ Ω(βS

1(u)). Since Ω(βS

1(u)) is a lower set, we have
Ω(r) ∈ Ω(βS

1(u)). -us, by Lemma 5.5(2), we have
r ∈ βS

1(u). So, βS

1(u) is a lower set. Suppose k ∈ Kd and
v ∈ βS

1(u) -en, Ω(k) ∈ Kd and Ω(v) ∈ Ω(βS

1(u)). Since
Ω(β

S

1(u)) is an Kd-module ideal of M2, we have
Ω(k⊕ v) � k⊕Ω(v) ∈ Ω(β

S

1(u)),
⇒Ω(k⊕ v) ∈ Ω(β

S

1(u))∀u ∈ C and then by Lemma 5.5(2),
we have k⊕ v ∈ βS

1(u). By the above discussion, we have
β

S

1(u) is Kd-module ideal of M1.

(2) Let β
Ω(S)

1 (u) is a sub-Kd-module of M1∀u ∈ C. -en,
we have to show that βΩ(S)

2 (u) is sub-Kd-module of
M2∀u ∈ C. By Lemma 5.4, we have
Ω(β

S

1(u)) � β
Ω(S)

2 (u) for all S⊆M1 and ∀u ∈ C.
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Let ri ∈ Ω(β
S

1(u))∀u ∈ C -en, there is ti ∈ β
S

1(u) such
that Ω(ti) � ri. Hence, Ω is a Kd-module homomorphism
and β

S

1(u) is a sub-Kd-module of M1, ∀u ∈ C. So,
∨i∈Iti ∈ β

S

1(u), ⇒Ω(∨i∈Iti) ∈ Ω(β
S

1(u)). So, we have
∨i∈IΩ(ti) ∈ Ω(β

S

1(u)). Hence, ∨i∈Iri ∈ Ω(β
S

1(u)).
Now, we show thatk⊕ r ∈ Ω(βS

1(u)) for all r ∈ Ω(βS

1(u))

and ∀k ∈ Kd. Letk � Ω(s) ∈ Kd and
r � Ω(t) ∈ Ω(β

S

1(u)).So,Ω(t) ∈ Ω(β
S

1(u)).-en, by Lemma
5.5(2), we have t ∈ βS

1(u). Hence, β
S

1(u) is a sub-Kd-module
of M1. -is shows that k⊕ t ∈ βS

1(u). -us,
Ω(k⊕ t) ∈ Ω(β

S

1(u)). Hence, Ω is an Kd-module homo-
morphism. -us, Ω(k⊕ t) � Ω(k) +Ω(t), that is,
Ω(k)⊕Ω(t) ∈ Ω(β

S

1(u)). Hence, k⊕ t ∈ Ω(β
S

1(u)). -us, we
have that Ω(β

S

1(u)) � β
Ω(S)

2 (u) is a sub-Kd-module of
M2∀u ∈ C.

Conversely, suppose Ω(β
S

1(u)) � β
Ω(S)

2 (u) is a sub-
Kd-module of M2∀u ∈ C. Suppose, si ∈ β

S

1(u)∀u ∈ C for
some i ∈ I.-en, Ω(si) ∈ Ω(β

S

1(u))∀u ∈ C. Hence,
Ω(βS

1(u)) is a sub-Kd-module and Ω is a Kd-module ho-
momorphism. So, ∨i∈IΩ(si) � Ω(∨i∈Isi) ∈ Ω(βS

1(u)),
∀u ∈ C. -en, by Lemma 5.5(2), we have ∨i∈Isi ∈ β

S

1(u).
Suppose k ∈ Kdand v ∈ βS

1(u). -en, Ω(k) ∈ Kd and
Ω(v) ∈ Ω(βS

1(u)). Since Ω(βS

1(u)) is an sub-Kd-module
ideal of M, we have Ω(k⊕ v) � k⊕Ω(v) ∈ Ω
(βS

1(u))⇒Ω(k⊕ v) ∈ Ω(βS

1(u))∀u ∈ C and then by Lemma
5.5(2) we have k⊕ v ∈ βS

1(u). From the above discussion, we
get βS

1(u) is sub-Kd-module of M1. □

5.7. Remark. With similar arguments, -eorem 5.6 can be
similarly proved but for the foresets.

5.8.5eorem. Let S⊆M1 and letΩ be a surjective Kd-module
homomorphism on a Kd-module M and (β2, C) be a SBR
and SCTR and with respect to aftersets on M2. Set
β1(u) � (s, t) ∈M1 × M1: (Ω(s),Ω(t)) ∈ β2(u)∀u ∈ C􏼈 􏼉.
-en, the following holds:

(1) βS

1(u) is a Kd-module ideal of M1 if and only if
βΩ(S)

2 (u) is a Kd-module ideal of M2∀u ∈ C

(2) βS

1
(u) is a sub-Kd-module of M1 if and only if

βΩ(S)

2 (u) is a sub-Kd-module of M2∀u ∈ C

Proof. -e proof is similar in view of -eorem 5.6. □

6. Comparison

Qurashi and Shabir presented the roughness in quantale
modules with the help of congruence relation [7]. Fur-
thermore, generalized roughness of fuzzy substructures in
quantale with respect to soft relations in quantale was de-
fined in [11]. It is clear that equivalence relation is a hurdle
while evaluating roughness. In order to avoid this this

hurdle, soft binary relations are presented in this paper.
Since suitable soft binary relations are easy to find out, it is
an easy approach to observe soft rough properties to discuss
different characterizations of soft rough substructures in
quantale modules with the help of aftersets and foresets.
Different characterization of soft substructures in semi-
groups and their approximation based on soft relation was
discussed by Kanwal and Shabir [26]. We are actually
motivated from the paper roughness in quantale module and
taken help from [11] to develop the idea of this paper.

7. Conclusion

In this paper, we have suggested a new relation of sub-
structures of quantale module with rough set and soft sets.
-e properties of rough soft substructures in quantale
module are discussed for the first time. On the one hand, we
have presented different characterizations for soft relations
to approach quantale module subsets, as well as the use of
aftersets and foresets in this regard. Structural features of soft
relations under aftersets and foresets are discussed. Fur-
thermore, in the quantale module, foresets and aftersets are
applied to various types of substructures using soft relations
to explore their lower and upper approximations. -e fol-
lowing work can be done in future:

(1) Soft relations applied to the fuzzy substructures of
quantale module and their approximations

(2) Some studies of soft substructures of quantale
module and their approximations
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