
Research Article
Thermal Convective Instabilities and Chaos in a Rotating Hybrid
Nanofluid Layer with Cattaneo–Christov Heat Flux Model
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,e linear and nonlinear dynamics of thermal convection of a rotating hybrid nanofluid layer heated from below with the
Cattaneo–Christov heat flux model are studied in this paper. Starting from the flow equations of a hybrid nanofluid and
exploiting the free boundary conditions, the analytical expressions of the stationary and oscillatory Rayleigh numbers of
the base fluid are determined as a function of the dimensionless parameters of the heat transfer fluid and the thermo-
physical properties of the hybrid nanofluid. ,e effects of hybrid nanoparticles and Taylor number on the onset of
stationary convection in the base fluid are investigated graphically. ,en, a numerical study of the transition from natural
convection to chaotic behaviour of the hybrid nanofluid is made using the truncated Galerkin approximation. ,is
approximation allowed us to find a novel six-dimensional nonlinear system depending on the parameters of the base fluid
and the thermophysical properties of the hybrid nanofluid that can be reduced to five, four, or three dimensions when we
tend some parameters to zero. ,e different results showed that the addition of hybrid nanoparticles (alumina-copper) to a
thermal fluid (water) subjected to the rotation force in the presence or absence of the thermal relaxation time allows control
of the chaotic convection in the base fluid. On the other hand, the increase of the rescaled Taylor number and the Cattaneo
number widens the domain of chaos in the hybrid nanofluid with the increase of the rescaled Rayleigh number of the
base fluid.

1. Introduction

In 1995, Choi introduced, at the Argonne National Labo-
ratory of the University of Chicago in the U.S., the concept of
nanofluid [1]. ,is new generation of fluids consists of

dispersing nanoparticles (assemblies of a few hundred to a
few thousand atoms, leading to an object with at least one
dimension of thousands of atoms, leading to an object of
which at least one of the dimensions is of nanometric size) in
a base liquid (water, oil, ethylene glycol, toluene). ,e use of
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these nanofluids in some industrial operations that involve
heat transfer by convection is a promising alternative so-
lution to improve thermal performance. ,us, the problem
of natural convection in a nanofluid layer heated from below
has been studied by several researchers [2–6] with the
Fourier law. ,e flow and heat transport of nanomaterial
with quadratic radiative heat flux and aggregation kine-
matics of nanoparticles reported byMahanthesh [7] revealed
that the suspension of the nanoparticles increases the
thermal conductivity and, thus, improves the temperature
and reduces the heat flux at the plate. ,e Rayleigh-Bénard
convection in nanofluid submerged with dust particles was
investigated by Shalini and Mahanthesh [8]. ,ey pointed
out that the inclusion of nano and dust particles reduces the
Rayleigh number while the rotation postpones the onset of
convection and stabilizes the system.

Ahuja and Sharma [9] conducted a comprehensive re-
view of the instability of Rayleigh-Bénard convection in
nanofluids by summarizing in their work the studies related
to the instability of a horizontal nanofluid layer under the
impact of various parameters such as rotationmagnetic field,
Hall currents, and LTNE (local thermal nonequilibrium)
effects in porous and nonporous media. ,e thermal con-
vection in a rotating fluid layer provides a system to study
hydrodynamic instabilities, pattern formation, and spatio-
temporal chaos in nonlinear dynamical systems with many
practical applications in engineering, such as food pro-
cessing, chemical processes, solidification, centrifugal cast-
ing of metals, and rotating machines [10].

To compensate for the defect and all the disadvantages of
mono nanofluids, it is essential to combine several nano-
particles to prepare a hybrid nanofluid [11]. Natural mag-
netohydrodynamic convection in a triangular cavity filled
with a hybrid (copper-alumina)/water nanofluid with lo-
calized heating from below and internal heat has been in-
vestigated by Rashad et al. [12].,ey concluded that a hybrid
nanofluid composed of equal amounts of copper and alu-
mina nanoparticles dispersed in water has no significant
improvement on the average Nusselt number compared to
the mono nanofluid and that the effect of increasing the
hybrid nanoparticles becomes significant in the case where
natural convection is very low. Aladin et al. [13] also studied
the significant effects of suction and magnetic field on a
moving plate containing a hybrid (copper-alumina)/water
nanofluid. ,ey have proved that the hybrid nanofluid gives
better results than the mono nanofluid.

According to Myson and Mahanthesh [14], the hybrid
nanofluid delays the convection and will further enhance the
heat transfer rate, but the Casson parameter advances the
convection while reducing the heat transfer rate. Mackolil
and Mahanthesh [15] illustrated the optimization of heat
transfer in the thermal Marangoni and nonlinear convective
flow of a hybrid nanomaterial with sensitivity analysis. It is
shown that the hybrid nanomaterial possesses enhanced
thermal fields for nanoparticle volume fractions less than
0.02. ,e sensitivity computation of nonlinear convective
heat transfer in hybrid nanomaterial between two concentric
cylinders with irregular heat sources was also made by
,riveni and Mahanthesh [16].

Given its advantages and industrial applications, espe-
cially in chemical reactions, biological systems, crystal
production, petroleum reservoir modeling, and packed-bed
catalytic filtration, chaotic convection in a hybrid nanofluid
layer should receive considerable attention due to the per-
formance of nanofluids. Jawdat et al. [17], Moaddy et al.
[18, 19], and Bhardwaj and Chawla [20] all contributed well
to nonlinear dynamical analysis of the thermal convection in
a horizontal nanofluid layer heated from below in the
presence or absence of a magnetic field. ,ey studied the
effect of nanoparticles on chaotic convection in a layer of
fluid (water) heated from below and noticed that the stability
region can be increased by using nanofluids and that the
onset of chaotic convection can be delayed under the in-
fluence of nanoparticles. Also, variations in temperature and
magnetic field strength cause the system to transition from a
steady state to chaos and back to a steady state. ,e case of
hybrid nanofluid was first presented by Dèdèwanou et al.
[21] with the Fourier law. ,ey found that the copper
nanofluid makes it possible to quickly switch from chaotic to
periodic regimes compared to the alumina nanofluid, and
the use of hybrid nanoparticles allows further control of the
chaos in the base fluid by expanding the convective flow and
reducing the chaotic flow.

Furthermore, Maxwell and Cattaneo modified Fourier’s
law by taking into account the aspect of thermal relaxation
time in the propagation of heat [22]. In order to eliminate
the heat flow and thus obtain a single equation for the
temperature field, Christov [23] proposed a generalization of
the material-invariant Maxwell–Cattaneo law, in which the
relaxation time of the heat flow is given by the convex
Oldroyd upper derivative. ,is new law was used by
Straughan [24] to study thermal convection in an ordinary
fluid. He concluded that the thermal relaxation time is
significant if the Cattaneo number is large enough, and the
convection mechanism changes from stationary to oscilla-
tory convection with narrower cells. Indeed, some re-
searchers used the Cattaneo–Christov model to appreciate
the effects of temporal relaxation on the thermal behavior of
a nanofluid [25–31]. Alebraheem and Ramzan [26] have
studied the heat and mass transfer of Casson nanofluid flow
containing gyrotactic microorganisms past a swirling cyl-
inder by considering the Cattaneo-Christov heat flux model.
According to their numerical solution of the subject system,
which is framed via the bvp4c technique of MATLAB
software, the concentration of the fluid is reduced owing to
the increase in values of the brownianmotion parameter and
local Reynolds number, but the diminishing density of
microorganisms is perceived for mounting estimates of the
bioconvection Péclet number. Multiple slip impacts in the
MHD hybrid nanofluid flow with Cattaneo–Christov heat
flux and autocatalytic chemical reaction were investigated by
Gul et al. [32]. ,ey found that the fluid temperature is
diminishing function of the thermal slips parameters but
increased for high estimates of the heat source-sink and
nanoparticle volume concentration parameters while en-
tropy number augmented for higher thermal relaxation
parameter and Reynolds number. Lu et al. [33] have also
studied a thin film flow of nanofluid comprising carbon
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nanotubes influenced by Cattaneo–Christov heat flux and
entropy generation. ,ey showed that the velocity and
temperature distributions increase as the solid volume
fraction escalates. Recently, a three-dimensional flow of
gold-silver/engine oil hybrid nanofluid owing to a rotating
disk of variable thickness with Cattaneo–Christov heat flux
has been addressed by Zhang et al. [34].,ey proved that the
performance of the hybrid nanofluid is far better than the
common nanofluid according to the surface temperature
and heat transfer rate. ,is same remark is made from the
results obtained for the model-based comparative study of
magnetohydrodynamics unsteady hybrid nanofluid flow
between two infinite parallel plates with particle shape effects
[35]. Considering hybrid nanofluid Yamada-Ota and Xue
flow models in a rotating channel with the modified Fourier
law, it is observed that the velocity profile decreases for the
higher rotation parameter while it increases for the escalated
slip parameter, but the fluid concentration and temperature
are on the decline for higher surface catalyzed reaction and
thermal relaxation parameters respectively [36]. Ramdan
et al. [37] have analyzed the hydrodynamic and heat
characteristics of the three-dimensional flow of a steady,
laminar, and incompressible convective graphene-copper
oxide/water and graphene-silver/water hybrid nanofluids
(used as a solar energy absorber) with varied particle shapes
in a porous medium.,eir study revealed that the rotational
parameter has declined the velocity profiles but enhanced
the temperature profiles, and the decline effect is significant
in the case of graphene-copper oxide/water whereas the
enhancement effect of temperature is significant for gra-
phene-silver/water. A comparative analysis of magnetized
partially ionized copper, copper oxide-water, and kerosene
oil nanofluid flow with Cattaneo–Christov heat flux was
made by Abid et al. [38]. ,ey noted the greater effective
thermal conductivity for copper-water partially ionized
nanofluid as compared to other given partially ionized
nanofluids (copper-kerosene oil, copper oxide-water/kero-
sene oil partially ionized nanofluids). Ramzan et al. [39]
developed a mathematical model for the nanofluid flow
containing carbon nanotubes with ethylene glycol as a base
fluid in a rotating channel with an upper permeable wall by
adding the Cattaneo–Christov heat flux’s impact with
thermal stratification. ,e displacement of the lower plate at
variable velocity, caused by the rotation of the fluid, pro-
duces forced convection with rotation and centripetal im-
pact. Nevertheless, the upper plate is porous. Chu et al. [40]
investigated a numerical solution for MHD Maxwell
nanofluid with gyrotactic microorganisms, a higher-order
chemical reaction in the presence of variable source/sink,
and Newtonian heating in a rotating flow on a deformable
surface and noted that on incrementing the conjugate heat
parameter and thermal relaxation time, the rate of heat
transfer augments, but the rate of heat transfer decreases on
varying the fluid relaxation time.

Despite all the above, the study of nanoparticles requires
more attention due to their industrial uses. After inspecting
the scientific literature, we noted that no work has yet
addressed the chaotic aspect of thermal convection in hybrid
nanofluids, taking into account the thermal relaxation time,

although this would be very useful in some applications like
petroleum reservoir modeling, chemical reactions, thermal
transport in biological tissue, and surgical operations.
Nevertheless, Layek and Pati [41] studied the effects of
thermal lag on the onset of convection, its bifurcations, and
the chaos of a horizontal layer of the heated Boussinesq fluid
underneath via a five-dimensional nonlinear system. A
comparative study of the five-dimensional system obtained
for the case of a hybrid nanofluid was made by Dèdèwanou
et al. [42]. ,erefore, the objective of the present paper is to
investigate the effects of hybrid nanoparticles on the oc-
currence of thermal convection instability and chaos in a
rotating fluid layer heated from below with the Cattaneo–
Christov heat flux model. A specific objective is to determine
the analytical expression for the stationary Rayleigh number
that can be used to study the nonlinear dynamics of thermal
convection in rotating hybrid nanofluid flow in the presence
of thermal relaxation time. ,is work aims to study the
different transition regimes as a function of the thermo-
physical properties of nanofluids and then to show the effects
of hybrid nanoparticles, Taylor number, and Cattaneo
number on the chaotic behavior of natural convection in a
basic fluid such as water via dynamical systems.

In the next section, the thermal convection in an
infinite horizontal rotating hybrid nanofluid layer with the
hyperbolic Cattaneo–Christov heat flux is outlined. Section
3 discusses the theory of conduction, stationary convection,
and oscillatory convection, where we generalize and sim-
plify the expression for the Rayleigh number by deriving a
number of new analytical results. In order to reduce the set
of equations governing the dynamic behavior of thermal
convection in the hybrid (alumina-copper)/water nano-
fluid, discretized models in four and six dimensions are
developed in Section 4 using the Galerkin expansion. We
have studied the nature of the nonlinear dynamics of the
obtained dynamical systems and determined the fixed
points by analyzing the stability of the stationary solutions.
,ese analyses have allowed us to justify the influence of the
hybrid alumina-copper nanoparticle, the Cattaneo num-
ber, and the Taylor number on number on the transition
from chaos to periodicity and vice versa in the fluid. In
Section 5, we present the different simulations performed,
and the results obtained are discussed. ,e conclusions are
drawn in Section 6.

2. Mathematical Modeling

2.1. Problem Formulation. We consider an infinite rectan-
gular cavity with two horizontal walls maintained at different
temperatures. ,is cavity, heated from below with a thermal
relaxation time, is filled with a hybrid nanofluid (water and
nanoparticles), subject to gravity acting downwards and to
rotation. In order to develop our numerical model, it is
necessary to adopt certain assumptions, namely, the flow is
assumed to be permanent and incompressible, the mixture is
assumed to be homogeneous, single-phase, Newtonian, the
nanoparticles are spherical, and the mass transfer between
the particles and the fluid is negligible. ,e Cartesian co-
ordinate system used is such that the y-axis follows the
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horizontal and the vertical z-axis is collinear with gravity.
,e geometry of our problem is presented in Figure 1.

2.2. Governing Equations. In this section, we have studied
the equations governing the dynamic and thermal fluxes
with boundary conditions and nondimensional parameters
characterizing the thermal convection in a rotating hybrid
nanofluid layer in the presence of thermal relaxation time.
Taking into account the listed assumptions and using the
hybrid nanofluid model proposed in Section 3, the equations
governing the conservation of mass, momentum, energy,
and heat flux for a laminar flow of the hybrid nanofluid are
written in their dimensional form respectively as follows
[10, 42]:

zvi

zxi

� 0, (1)

ρhf

zvi

zt
+ vj

zvi

zxj

   � −
zp

zxi

− ρgei

+ μhf∇
2
vi + 2ρhfΩj

zvi

zxj

ei,

(2)

(ρCp)hf

zT

zt
+ vj

zT

zxj

   � −
zQj

zxj

, (3)

zQi

zt
+ vj

zQi

zxj

   + Qi � − khf

zT

zxi

. (4)

In equation (2), ei � (0, 0, 1) is the unit vector and ∇2 �

(z2/zx2) + (z2/zy2) + (z2/zz2) is the Laplacian operator.
,e use of the Boussinesq approximation allows us to define
the density as a function of temperature as

ρ � ρhnf 1 − βhf T − T0(  . (5)

,e density, thermal expansion coefficient, heat capacity,
dynamic viscosity, thermal conductivity of the dynamic
viscosity, and thermal conductivity of the hybrid nanofluid,
respectively, are defined as follows:

ρhf � 1 − φ2(  1 − φ1( ρf + φ1ρs1  + φ2ρs2,

(ρβ)hf � 1 − φ2(  1 − φ1( (ρβ)f + φ1(ρβ)s1  + φ2(ρβ)s2,

(ρCp)hf � 1 − φ2(  1 − φ1( (ρCp)f + φ1(ρCp)s1  + φ2(ρCp)s2,

(ρCp)hf � 1 − φ2(  1 − φ1( (ρCp)f + φ1(ρCp)s1  + φ2(ρCp)s2,

μf � μhf 1 − φ1( 
− 2.5 1 − φ2( 

− 2.5
,

khf � kgf

ks2 + ηkgf  − ηφ2 kgf − ks2 

ks2 + ηkgf  + φ2 kgf − ks2 
⎡⎢⎣ ⎤⎥⎦,

(6)

to

khnf � khf

ks1 + ηkhf  − ηφ1 khf − ks1 

ks1 + ηkhf  + φ1 khf − ks1 
⎡⎢⎣ ⎤⎥⎦, (7)

where

η � m − 1. (8)

,e thermophysical properties of nanoparticles and
water used in this work are summarized in Table 1 (see [13]).

3. Linear Stability Analysis

We consider a classical Rayleigh-Bénard problem of linear
stability of convective rolls in a horizontal fluid layer with
unconstrained boundary conditions. ,us, the temperature
boundary conditions are T � Tc at z� 0 and T � T0 at z� 1
with Tc >T0. As for the velocity, its component along the z
axis is zero at the boundaries.

3.1. Steady-State Solutions. A time-independent quiescent
solution of equations (1)–(4) with temperature and heat flux
varying in the z direction only, is obtained by reducing
equations (2)–(4) to

ρhf vj

zvi

zxj

  +
zp

zxi

+ ρgei − μhf∇
2
vi − 2ρhfΩj

zvi

zxj

ei � 0,
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zT
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(9)

,en, the steady state solutions are given

vb(z) � 0,

Tb � Tc − χxjej,

Qb(z) � χkhf andPb(z) � P0,

(10)

with the temperature gradient χ and the profile of P0 defined
by

Tc

T0

y

H

z

Ω

Hybrid nanofluid

g

Figure 1: Configuration of the problem.
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χ �
zT

zxi




and

zp0

zxi

� ρ Tb( gei.

(11)

3.2. Simplified Set of Equations. In order to simplify the
parametric representation of this physical problem and to
find the characteristic properties of the system, it is necessary
to recast the flow equations. ,us, the following normalized
quantities are introduced:

xi �
xi

H
,
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ρfH.vi
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,
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2
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,
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����������
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T

T
 Qi.

(12)

Considering small perturbations on the basic solutions
as follows:

vi � vb + vi
′,

T � Tb + T′,

Qi � Qb + Qi
′,

P � Pb + P′,

(13)

and neglecting the products of the primed quantities, we
obtain the following dimensional equations:
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′
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′
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where the dimensionless parameters are defined by

Prf �
μf

ρfαf

,

Cf �
αfτ

2H
2,

Raf �
g.H

4βfχ
αf]f

.

(18)

Nowwe eliminate the pressure from the nondimensional
equations (14)–(17) by taking the curl-curl of equation (15),
the divergence of equation (15), the inner product of any
vector equation with ei;, and denoting the divergence of the
heat flux Q � (z Qi/zxi), to obtain, after dropping the tilde
notation for brevity, the equations

z

zt
∇2w  �

����
Raf

 (ρβ)hf

(ρβ)f

z
2
T

zx
2 +

z
2
T
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+
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zQ
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+ Q � −

khf

khf

 ∇2T.

(21)

which describe the evolution of the conduction steady state
perturbations in a conveniently simplified form with four
variables such as the z-component of the velocity field, the
vorticity ζ � zv/zx − zu/zy, the heat flux Q, and the tem-
perature T.

An evolutionary equation for the vorticity can be ob-
tained from the equation of motion by taking curl, then the
dot product with e3 for the vertical component. ,us,
eliminating the pressure and introducing the vorticity in
equation (2) allows us to obtain the following:

μhf

μf

ρf

ρhf

 ∇2 −
z

zt
 ζ � −

���
Ta

√ zw

zz
. (22)

From equations (19) and (22), we obtain the following:

Table 1: ,e thermophysical properties of the water and nanoparticles at 293K.

ρ Cp k β × 10− 5

Water 997.1 4179 0.613 21
Alumina 3970 765 40 0.85
Copper 8933 385 401 1.67
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z
2
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(23)

3.3. Normal Modes and Analytical Solution. ,e linear sta-
bility of the conduction solutions is studied by writing the
perturbations in separable form and assuming an expo-
nential time dependence

w � W(z)h(x, y)e
σt

,

T � Θ(z)h(x, y)e
σt

,

Q � Φ(z)h(x, y)e
σt

,

(24)

with the plane tiling function satisfying

∇2h(x, y) � − κ2h(x, y), (25)

where W,Θ,Φ are eigenfunctions. ,e substitution of
equation (24) into the differential equations (20), (21), and
(23) leads to

D
2

− κ2  c1 D
2

− κ2  − σ 
2

+ TaD
2

 

W � κ2c2

����
Raf


c1 D

2
− κ2  − σ Θ,

(26)

σPrfΘ �
����
Raf


W − c3Φ, (27)

2σPrfCfΦ +Φ � − c4 D
2

− κ2 Θ, (28)

where D � d/dt, D2 � d2/dt2 and

c1 �
μhf

μf

ρf

ρhf

,

c2 �
(ρβ)hf

(ρβ)f

,

c3 �
(ρCp)f

(ρCp)hf

,

c4 �
khf

khf

. (29)

Equations (26)–(28), which represent the starting point
for analytical and numerical calculations on thermal con-
vective instability are used to study the occurrence of sta-
tionary and oscillatory convection in nanofluids. ,ey are
equivalent to those obtained by Straughan [24] and Bissell
[43, 44] in the case of an ordinary fluid not subjected to a
Coriolis force, i.e. when φ1 � φ2 � 0 and Ta � 0. ,e dis-
appearance of tangent shear stresses at the free surface and
the conservation of the mass equation allow us to obtain the
boundary conditions of the free surface defined by

W � 0,

D
2
W � 0 and

Θ � 0 at z � 0, 1.

(30)

In order to obtain an approximate solution of equations
(26)–(28), we used the Galerkin weighted residual method
by choosing the test function written as

W � W0 sin(πz),

Θ � Θ0 sin(πz),

Φ � Φ0 sin(πz),

(31)

which fulfill the conditions at the borders mentioned in
equation (30).

By substituting the test functions defined in equation
(31) into equations (26)–(28) and performing some inte-
grations, we obtain the following matrix equation:

J c1J + σ(  +
π2Ta

c1J + σ( 
  − κ2c2

����
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−
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×

W0

Θ0

Φ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(32)

where J � D2 − κ2. For this matrix equation (32) to admit a
nontrivial solution, the Rayleigh number of the base fluid
must be in the following form:

Raf �
c3c4J + σPrf 2σPrfCf + 1   J c1J + σ(  + π2

Ta/ c1J + σ(   

κ2c2 2σPrfCf + 1 
. (33)
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For the following, let σ � jω with j2 � − 1 and ω the real
frequency. ,us, the expression for the Rayleigh number
defined in equation (33) becomes

Raf � Δ1 + jωΔ2, (34)

with

Δ1 � κ2c2 1 + 4ω2
Pr

2
fC

2
f  

− 1

· J c1c3c4J
2

− ω2
Prf  +

π2Ta c1c3c4J
2

+ ω2
Prf 

c1J( 
2

+(ω)
2

⎡⎣

+ 2Jω2
PrfCf c3c4J − 2ω2

Pr
2
fCf  +

2π2ω2
PrfCfTa 2ω2

Pr
2
fCf − c3c4J 

c1J( 
2

+(ω)
2

⎤⎥⎦,

(35)

Δ2 � κ2c2 1 + 4ω2
Pr

2
fC

2
f  

− 1

· J
2

c3c4 + c1J(  +
π2JTa c1 − c3c4( 

c1J( 
2

+(ω)
2 + 2JPrfCf 2c1Jω

2
Pr

2
fCf − c1c3c4J

2
  +

2π2c1JPrfCfTa 2ω2
Pr

2
fCf − c3c4J 

c1J( 
2

+(ω)
2

⎡⎢⎣ ⎤⎥⎦.

(36)

Since the Rayleigh number is a real and positive physical
quantity, then for the expression equation (33) to exist, ω
must be zero or Δ2 � 0.

3.4. Stationary Convection. According to the stability ex-
change principle for the stationary case, the stability margin
is characterized by the frequency equal to zero. ,is con-
dition allows to obtain from the expression equation (33),
the Rayleigh number of the base fluid of the stationary
convection expressed as follows:

Ra
st
f �

c3c4

κ2c2
c1 κ2 + π2 

3
+
π2Ta

c1
 . (37)

If c1 � c2 � c3 � c4 � 1 and the cavity is not rotating, i.e.
φ1 � φ2 � 0 and Ta � 0, equation (37) is equivalent to the
classical Rayleigh number of stationary convection in or-
dinary fluids [42].

In the absence of the rotation force, we have

Ra
st
f �

c1c3c4

c2

κ2 + π2 
3

κ2
. (38)

,e absolute critical Rayleigh number of the hybrid
nanofluid in this case is defined as

Ra
st
f �

27π4

4
c1c3c4

c2
, (39)

with the corresponding wavenumber

κst
c �

π
�
2

√ . (40)

We note that the Rayleigh number obtained for sta-
tionary convection in nanofluids is not a function of the
Prandtl number or the Cattaneo number of the base fluid.
,us, the same results can be associated with the more
usual Fourier law for mono nanofluids or hybrid
nanofluids.

3.5. Oscillatory Convection. Now, we study the effects of the
Cattaneo number, the nanoparticles, and the rotation on the
oscillating convection. In this case, we must have ω≠ 0 and
Δ2 � 0. ,erefore, the Rayleigh number of the base fluid for
oscillatory convection is given by

Ra
os
f � κ2c2 1 + 4ω2

Pr
2
fC

2
f  

− 1

· J c1c3c4J
2

− ω2
Prf  +

π2Ta c1c3c4J
2

+ ω2
Prf 

c1J( 
2

+(ω)
2

⎡⎣

+ 2Jω2
PrfCf c3c4J − 2ω2

Pr
2
fCf 

+
2π2ω2

PrfCfTa 2ω2
Pr

2
fCf − c3c4J 

c1J( 
2

+(ω)
2

⎤⎥⎦.

(41)

,e corresponding oscillatory frequency ω must verify
the following equations:
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4c1J
2
Pr

3
fC

2
f ω4

+ J
2

c3c4 + c1Prf 

+ 4c1JPr
3
fC

2
f c1J

3
+ π2

Ta  − 2c1c3c4PrfCfJ
3
ω2

+ c
2
1J c3c4 + c1Prf  + π2

JTa c1 − c3c4( 

− 2c1c3c4PrfCfJ
2

c3c4 + c1Prf  � 0.

(42)

For oscillatory instability to be possible, the value of ω2

generated by equation (42) must be positive.

4. Dynamical System Analysis

In order to explore how thermal relaxation time, hybrid
nanoparticles, and rotation affect the nonlinear stability of
the onset of thermal convection in a horizontal layer of
ordinary fluid such as water, we reduce the problem to the
classical case of two-dimensional convective rolls in a fluid
layer with unconstrained horizontal boundaries. ,us, we

assume that all physical quantities are independent of x. We
consider the early stages of nonlinear convection when the
basic structure of the convective rolls is still determined by
the dynamic behavior of the linearized solution. ,e real
components of the fluid velocity are expressed in terms of
partial derivatives of the stream function as follows:

u � −
zψ(y, z, t)

zz
,

w �
zψ(y, z, t)

zy
.

(43)

Eliminating the pressure from equation (2) and intro-
ducing the expressions of the stream function defined in
equations (43) into the resulting equation and equations (3)
and (4), we obtain with the appropriate dimensionless
variables [10, 42], the following new equations:

1
Prf

z

zt∗
− c5∇

2
 

2

− Ta
z
2

zz
2
∗

⎡⎣ ⎤⎦
z
2ψ∗

zy
2
∗

� c6Raf

1
Prf

z

zt∗
− c5∇

2
 

z
2
T∗

zy
2
∗

, (44)

1 + 2Cf

d

dt∗
 

dT∗
dt∗

−
zψ∗
zy∗

  � c7
z
2
T∗

zy
2
∗

+
z
2
T∗

zz
2
∗

 , (45)

with

d

dt∗
�

z

zt∗
−

zψ∗
zz∗

z

zy∗
+

zψ∗
zy∗

z

zz∗
,

Raf �
g.H

3βf Tc − T0( 

αf]f

,

Prf �
]f

αf

,

Cf �
ταf

2H
2,

c5 �
μhf

μf

ρf

ρhf

kf

khf

(ρCp)hf

(ρCp)f

,

c6 �
(ρβ)hf

(ρβ)f

ρhf

ρhf

,

c7 �
khf

kf

(ρCp)f

(ρCp)hf

.

(46)

,e ratio of the Rayleigh number of the hybrid nanofluid
to that of the base fluid gives the effective Rayleigh number
of the hybrid nanofluid as a function of the thermophysical
properties and Rayleigh number of the heat transfer fluid
defined as

Raf �
(ρβ)hf

(ρβ)f

 
kf

khf

 
(ρCp)hf

(ρCp)f

 
μf

μhf

 Raf. (47)

Similarly, the Cattaneo number of the hybrid nanofluid
is defined as follows:

Chf � c7Cf. (48)

4.1. Reduced Set of Equations. ,e solution of the coupled
nonlinear system of partial differential equations (44) and
(45) will be obtained by representing the current function
and the temperature using the Galerkin expansion in the
following form [42]:

ψ∗ y∗z∗t∗(  � A11 t∗( sin κy∗( sin πz∗( ,

T∗ y∗z∗t∗(  � B11 t∗( cos κy∗( sin πz∗( 

+ B02 t∗( sin πz∗( .

(49)

,is representation is equivalent to a Galerkin expansion
of the solution in the y and z directions, truncated when
i + j � 2, where i is the Galerkin summation index in the y

direction and j is the Galerkin summation index in the z

direction. Substituting equations (49) into equations (44)
and (45), multiplying the equations by the orthogonal
eigenfunctions corresponding to equations (44), and inte-
grating over the domain and wavelength of the convection
cell in the vertical and horizontal directions respectively, i.e.,

π/κ
0 dy 

1
0 dz(.), we obtain a set of three ordinary differential
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equations for the time evolution of the second-order am-
plitudes expressed by

d
2
A11

dt
2
∗

� − 2c5Prf κ2 + π2
 

dA11

dt∗
− c

2
5Pr

2
f κ2 + π2

 
2
A11 − π2Pr

2
fTaA11 +

c6κ
2
PrfRaf

κ2 + π2 
A11 + c6κ

2
PrfRaf c5Prf − c7 ,

d
2
B02

dt
2
∗

�
1

2Cf

dB02

dt∗
+
πκ
2

A11B11 − 4π2c7B02  −
πκ2

2
A
2
11 +

πκ
2

A11
dB11

dt∗
+ B11

dA11

dt∗
  + π2κ2A2

11B11 + πκA11
dB11

dt∗
,

d
2
B02

dt
2
∗

�
1

2Cf

dB02

dt∗
+
πκ
2

A11B11 − 4π2c7B02  −
πκ2

2
A
2
11 +

πκ
2

A11
dB11

dt∗
+ B11

dA11

dt∗
  + π2κ2A2

11B11 + πκA11
dB11

dt∗
.

(50)

After introducing new variables of amplitudes defined as

U �
κ/κc( A11

κ/κc( 
2

+ 2
,

Y � κRfB11,

Z � πRfB02,

(51)

and the expressions

Rf �
Raf

Rafc

,

t∗ � κ2 + π2 t,

λ �
8

κ/κc( 
2

+ 2 
,

Rafc �
ϵ κ2 + π2
 

3

κ2
,

δ �
1

2Cf κ2 + π2 
,

Tf �
π2Ta

κ2 + π2 
3,

ϵ �
(ρβ)f

(ρβ)hf

αhf

αf

μhf

μf

,

κc �
π
�
2

√ , (52)

in equations 50, we obtain the following system:

€U � − 2c5Prf
_U + Prf c6ϵRf − Prf Tf + c

2
5  U − c6Prf UZ − c5Prf − c7  Y,

€Y � ϵRf
_U + U

2
Y − 2U _Z − _UZ + δ ϵRfU − _Y − UZ − c7Y ,

€Z � _UY + 2U _Y − ϵRfU
2

+ U
2
Z + δ UY − _Y − λc7Z .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(53)

,erefore, we can reduce the amplitude equations of
system (53) to a system of first-order nonlinear equations by
introducing the amplitudes V � _U, P � ϵRfU − _Y − UZ,
and S � UY − _Z.,us, we obtain the six-dimensional system

by describing the nonlinear dynamic behavior of thermal
convection in mono or hybrid nanofluids, presented as
follows:

_U � V,

_Y � ϵRfU − P − UZ,

_Z � UY − S,

_P � US − δ P − c7Y( ,

_S � UP − δ S − λc7Z( ,

_V � − 2c5PrfV + Prf c6 ϵRf − Prf Tf + c
2
5  U − c6Prf UZ − c5Prf − c7  Y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)
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where the dot (.) denote the time derivative d/dt.
When φ1 � φ2 � 0, φ1 ≠ 0 and φ2 � 0, φ1 � 0 and φ2 � 0,

system equation (63) corresponds to the base fluid, alumina-
water nanofluid, copper-water nanofluid, respectively.

When Tf � 0, system (63) is equivalent to the system
obtained by Dèdèwanou et al. [42]. When φ1 � φ2 � 0,

Cf � 0, system (54) is equivalent to the system obtained by
Gupta et al. [10].

When φ1 � φ2 � 0, Tf � 0, system (54) is equivalent to
the system obtained by Layek and Pati [41].

In the absence of the thermal relaxation time, (54) and
(46) are reduced to the following system:

_U � V,

_Y � ϵRfU − c7Y − UZ,

_Z � UY − λc7Z,

_V � − 2c5PrfV + Prf c6 ϵRf − Prf Tf + c
2
5  U − c6Prf UZ − c5Prf − c7  Y.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(55)

Lorenz [45] has investigated the nonlinear analysis of
convection in pure fluid confined in a nonporous cavity by
using the Fourier law. His nonlinear dynamic system has
been analyzed and solved for Prf � 10, so that there are
convection cells in the domain and that the boundary
conditions are satisfied [45, 46]. Bissell [43] analyzed the
oscillatory convection with the Cattaneo–Christov hyper-
bolic heat-flow model and included the effects owing to
Prandtl number, which in some circumstances can be used
as a control parameter. He showed that the Cattaneo
threshold can be conceived equivalently as a Prandtl
threshold, so that system bifurcations could potentially be
triggered by varying the Prandtl number. For small values of
Cattaneo number, a five-dimensional nonlinear system
obtained by Layek and Pati [41] undergoes a subcritical
transition to chaos similar to the Lorenz system but un-
dergoes a period-doubling transition to chaos when Prf � 5
and Cf � 0.001. For increasing values of Prandtl number, he
found that the fine-structure of the period-doubling cascade
is interrupted and that this is due to the generation of in-
ternal noise that fastens the transitional process. With the
critical value of the wavenumber corresponding to the
convection threshold, the expression of the Rayleigh number
of the base fluid defined in equation (53) gives:
Rafc � 27π4ϵ/4.

4.2. Dissipation Effect. ,e nonlinear dynamical system
(54) has the reflection symmetry
(U, Y, P)⟶ − (U, Y, P) and

∇
→

. ϑ
→

�
z _U

zU
+

z _Y

zY
+

z _Z

zZ
+

z _P

zP
+

z _S

zS
+

z _V

zV
,

∇
→

. ϑ
→

� − Prf 2c5 + c6(  + 2δ .

(56)

We note that ∇
→

. ϑ
→
< 0 whatever the values of Prf, c5, c6

and δ. ,en system (54) is dissipative and its solutions are
bounded in phase space. ,erefore, if a set of initial points in
phase space occupies the region ϑ(0) at t � 0, then after

some time, t, the end points of the corresponding trajectories
will fill a volume

ϑ(t) � exp − Prf 2c5 + c6(  + 2δ t . (57)

4.3. Equilibrium Points and Heir Stability. In this section,
the nature of the nonlinear dynamics of systems (54) and
(55) is determined around the fixed points by analyzing the
stability of stationary solutions. ,e hybrid nanofluid is
confined in a nonporous cavity so that there are convection
cells in the domain and the boundary conditions are
satisfied.

4.3.1. He Case of Cf � 0. Considering the general form of
system (54) defined by _X � F(Xs) and the equilibrium
(stationary or fixed) points Xs defined by F(Xs) � 0, we
obtained three fixed equilibrium points of the system, in-
cluding the first one

U1 � Y1 � Z1 � P1 � S1 � V1 � 0, (58)

is the stationary solution and the other two

U2,3 � ±

�����������������������������

− λc5c6c7

Tf + c
2
5 

c7

c5c6
Tf + c

2
5  − ∈ Rf 




,

Y2,3 � ±

���������������������������������
− λc7

c5c6
Tf + c

2
5 

c7

c5c6
Tf + c

2
5  − ∈ Rf 



,

Z2,3 � ∈ Rf −
c7

c5c6
Tf + c

2
5 ,

V2,3 � 0,

(59)

are the convection solutions.,e linear stability of the points
can be obtained by linearizing the nonlinear dynamical
system equation (55). ,us, the resulting Jacobian matrix is
as follows:
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M �

0 0 0 1

εrf − Z − c7 − U 0

Y U − λPrf 0

Prf c6εrf − Prf Tf + c
2
5   c6Prf c5Prf − c7  − c6PrfU 2c5Prf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

Using test solutions of the form exp(ξt), ξ ∈ C, the
stability of the fixed point corresponding to the conduction

solution is controlled by the roots of the following char-
acteristic polynomial equation:

λc7 + ξ(  ξ3 + 2c5Prf + c7 ξ2 + Pr
2
f Tf + c

2
5  + Prf 2c5c7 − c6ϵRf  ξ2 + Pr

2
f Tf + c

2
5  − c5c6 ϵRf   � 0. (61)

,is equation (61) generates four eigenvalues. ,e first
one given by ξ � − λc7 is always negative, and the other three
are the solutions of the following equation:

ξ3 + 2c5Prf + c7 ξ2 + Pr
2
f Tf + c

2
5  + Prf 2c5c7 − c6 ϵRf  ξ + Pr

2
f c7 Tf + c

2
5  − c5c6 ϵRf  � 0. (62)

From this equation, the fixed point of the stationary
solution is stable if and only if c5c6 ϵRf < c7(Tf + c2

5).,us,
the critical value of the rescaled Rayleigh number of the base
fluid at which the fixed point of the stationary solution loses
its stability and that of the convection solution takes over is
expressed by

Rfc1 �
c7

ϵc5c6
Tf + c

2
5 . (63)

,is expression is a function of the thermophysical
properties of the hybrid nanofluid and the rescaled Taylor
number, so the transition from conduction to stationary
convection depends on the volume fraction of the nano-
particles and the effect of rotation as shown in Figure 2.

Data analysis of the curves constructed in Figure 2 shows
that when the value of Taylor number is less than about 0.33,
0.315, 0.30, and 0.293 for φ1 � φ2 � 0.01, 0.02, 0.03, and
0.04, respectively, Rfc1 decreases but increases for higher
values of Tf. Taking Tf � 0 for example, we found Rfc1 �

1.2 like Gupta [10] for the ordinary fluids (φ � 0). But when
φ1 � φ2 � 0.01, 0.02, 0.03, 0.04; we have Rfc1 ≈ 1.176, 1.157,

1.142, 1.13. ,us, it is then possible to reduce or increase
conduction in a heat transfer fluid using hybrid nano-
particles under the effect of rotation. Using the same test
solutions of the form exp(ξt), ξ ∈ C, the stability of the fixed
points corresponding to the convection solution is con-
trolled by the roots of the following characteristic polyno-
mial equation:

ξ4 + c7(1 + λ) + 2c5Prf ξ3 +
λc5c6c7εRf

Tf + c
2
5 

+ 2c5c7Prf(1 + λ) + Prf Prf −
c7

c5
  Tf + c

2
5 ⎡⎢⎣ ⎤⎥⎦ξ2

+
2λc

2
5c6c7εRf

Tf + c
2
5 

+ λc7Prf Prf −
2c7

c5
  Tf + c

2
5  + c6εRf 

⎧⎨

⎩

⎫⎬

⎭ξ � 0.

(64)

,is equation is solved numerically for different values of
the parameters to study the stability of the fixed points of the
convection solutions.

4.3.2. He Case of Cf ≠ 0. In the presence of the thermal
relaxation time, the elimination of a quadratic factor, which
is not associated with the beginning of the instability,
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allowed us to find the characteristic polynomial equation of
the fixed point corresponding to the immobile support at the

origin whose roots control its stability, which is presented as
follows:

ξ4 + 2c5Prf + δ ξ3 + δ 2c5Prf + δ  − Prf c6ϵRf − Prf Tf + c
2
5   

ξ2 + 2c5c7δPrf − c6Prf 2c5Prf − c7  ϵRf − δPrf c6ϵRf − Prf Tf + c
2
5   

+ δPr
2
f c7 Tf + c

2
5  − c5c6 ϵRf  � 0.

(65)

When ξ � 0, a stability exchange occurs and stationary
convection takes over. ,e corresponding critical rescaled
Rayleigh number of the base fluid from which this phe-
nomenon is observed is equivalent to equation (63).

5. Results and Discussion

We performed numerical simulations to investigate the
influence of hybrid nanoparticles and rotation on the dy-
namic behavior of thermal convection in a base fluid (water)
in the presence of thermal relaxation time. Using free
boundary conditions, we determined the analytical ex-
pressions of Rayleigh numbers of the base fluid for stationary
and oscillatory convection as a function of the thermo-
physical properties of the hybrid nanofluid. We observe that
the stationary Rayleigh number of the base fluid does not
depend on the Prandtl number and the Cattaneo number.
Figure 3 shows the variation of the stationary Rayleigh
number of the base fluid as a function of wavelength for
different values of the volume fraction of the hybrid
nanoparticles (alumina-copper) with a fixed value of Taylor
number. From these plotted curves, we find that the sta-
tionary Rayleigh number increases with the value of the
volume fraction of hybrid nanoparticles. ,us, the addition
of the hybrid nanoparticles (alumina-copper) to the base
fluid (water) subjected to the rotation stabilizes the

stationary convection. Figure 4 shows the variation of the
stationary Rayleigh number of the base fluid as a function of
the wavelength for different values of the Taylor number
with a fixed value of the volume fraction of the hybrid
nanoparticles (alumina-copper).

From these plotted curves, it can be seen that the sta-
tionary Rayleigh number increases with an increasing Taylor
number. ,us, the rotation stabilizes the stationary con-
vection in the hybrid nanofluid.

,e fourth-order Runge–Kutta method, the polynomial
companion matrix, and the standard eigenvalue solver of the
Lapack method are used to numerically solve systems equa-
tions (54) and (55). We took the initial conditions U(0) �

Y(0) � 0.8, Z(0) � 0.92195, P(0) � 0.8, S(0) � 0.92195 and
V(0) � 0.8. In order to guarantee the results, our different
numerical simulations are compared with the results obtained
by Dèdèwanou et al. [42] and Gupta [10]. We present in
Figures 5–8, the bifurcation diagrams representing the minima
andmaxima of the posttransient regimes of the solutions of the
amplitude Z(t) as a function of function of Rf when the-
thermal relaxation time is zero using Prf � 10 and λ � 8/3.
,ese diagrams show that system equation (55) can have
chaotic, periodic, or multiperiodic behavior depending on
the parameter values chosen. By comparing the diagrams
in Figures 5–7, we notice that, for Tf � 0.2, when the
volume fraction of the hybrid nanoparticles increases, the
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Figure 2: Variation of the critical Rayleigh number of the stationary solution as a function of the Taylor number with increasing
nanoparticle volume fraction.
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domain of the chaotic behavior chaotic behavior decreases
with the increase of the values of the rescaled Rayleigh
number of the number of the base fluid. On the other
hand, comparison of the plots in Figures 6 and 8 shows
that, for φ1 � φ2 � 0.02, increasing the values of the Taylor

number increases the domain of chaotic behavior with
increasing values of the rescaled Rayleigh number of the
base fluid.
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Figure 3: Variation of the stationary Rayleigh number of the base fluid as a function of the volume fraction of hybrid (aluminum-copper)
nanoparticles.

2 4 6 8 10
0

5000

10000

15000

20000

25000

30000

φ1 = φ2 = 0.02

Ta = 500, 1000, 1500, 2000, 2500
Raf

κ

Figure 4: Variation of the stationary Rayleigh number of the base
fluid as a function of the Taylor number.
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Figure 6: Bifurcation diagram of Z versus Rf representing maxima
and minima of the posttransient solution of Z(t) for hybrid
nanofluid φ1 � φ2 � 0.02) with Tf � 0.5.
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To confirm this prediction of the bifurcation diagrams,
we constructed in Figure 9, the chaotic behavior of the
system in the base fluid case by choosing Rf � 80 and

Tf � 0.5. As shown in Figure 10, we set the values of the
rescaled Taylor and Rayleigh numbers by varying the volume
fraction of the hybrid nanoparticles to construct the in-plane
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Figure 9: Phase portrait and its corresponding time story for φ1 � φ2 � 0), Rf � 80 and Tf � 0.5.
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phase spaces with their corresponding time evolutions. For
φ1 � φ2 � 0, 0.02 and 0.04, the system is chaotic in period 2
and period 1, respectively. ,erefore, by analyzing these
curves shown in Figure 10, it can be deduced that the ad-
dition of the hybrid nanoparticles in a heat transfer fluid
makes the convection periodic. On the other hand, in the
case of Figure 11, we have fixed the values of the volume
fraction of hybrid nanoparticles and the rescaled Rayleigh
number of the base fluid by varying the value of the rescaled
Taylor number. ,e analysis of these curves shows that the
system leaves the chaotic regime to the periodic regime when
the value of the rescaled Taylor number decreases.,erefore,
increasing the rescaled Taylor number increases the peri-
odicity of the system.

Furthermore , we present in Figures 12–15, the bifurcation
diagrams representing the minima and maxima of the post-
transient regimes of the solutions of the amplitude Z(t) as a
function of Rf when the thermal relaxation time exists using
Prf � 5 like Layek and Pati [41]. ,ese diagrams show that
system 63 can also have chaotic, periodic, or multiperiodic
behavior depending on the parameter values chosen. Com-
paring the diagrams in Figures 12–14, it can be seen that, for

Tf � 0.2 and Cf � 0.001, increasing the volume fraction of the
nanoparticles hybrid nanoparticles decreases the domain of
chaotic behavior with the increase of the Rayleigh number
values of the base fluid. On the other hand, the comparison of
the diagrams in Figures 13 and 15 show that, forφ1 � φ2 � 0.02
and Tf � 0.2, increasing the values of the Cattaneo number
largely increases the range of chaotic behavior with increasing
values of the Rayleigh number of the base fluid. Referring to
Figure 14, for φ1 � φ2 � 0.04, Tf � 0.2 and Cf � 0.001, the
system is chaotic for 14<Rf < 16.

In Figures 16 and 17, we have constructed the phase
spaces in the X − Z plane for different values of the control
parameters of system equation (54). When we set Tf � 0.2
and Cf � 0.001 (see Figure 16), we notice in the base fluid
case (φ1 � φ2 � 0) that the system is in period 4 for
Rf � 166. For φ1 � φ2 � 0.02, the system is in period 2 and
for φ1 � φ2 � 0.04, the system has quasi-chaotic behavior.
For φ1 � φ2 � 0.02 and Rf � 100 fixed, the system is in
period 1 for Tf � 0.2 and Cf � 0.001. On the other hand, for
Tf � 0.2 and Cf � 0.003, Tf � 0.2 and Cf � 0.005, Tf � 0.3
and Cf � 0.005, Tf � 0.5 and Cf � 0.001, and Tf � 1.7 and
Cf � 0.005, the system is chaotic.
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Figure 10: Phase portrait and its corresponding time story for Rf � 250, Tf � 0.5 and φ1 � φ2 � 0, 0.02, 0.04.
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Figure 13: Bifurcation diagram of Z versus Rf representing maxima and minima of the posttransient solution of Z(t) for hybrid nanofluid
(φ1 � φ2 � 0.02) with Tf � 0.2 and Cf � 0.001.
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6. Conclusions

We have studied the occurrence of thermal convective in-
stabilities and chaos in a rotating infinite horizontal hybrid
nanofluid layer heated from below with the Cattaneo–
Christov heat flux model and subjected to unconstrained
boundary conditions. ,e linear study of the mass, mo-
mentum, energy, and heat flow equations governing natural
convection allowed us to find the general expression for the
stationary Rayleigh number of the base fluid that can be used
for the nonlinear dynamic analysis of thermal convection in
nanofluids. We noticed that the rotation and the addition of
nanoparticles in the base fluid have stabilizing effects on the
stationary convection. With the obtained low-dimensional
dynamical systems, we notice that the addition of hybrid
nanoparticles in the heat transfer fluid subjected to rotation
and/or in the presence of the thermal relaxation time reduces
the domain of chaos and enlarges the domain of periodicity
with the increase of the Rayleigh number of the base fluid.
On the other hand, the increase of the Taylor number and
Cattaneo number increases the chaotic domain with the
increase of the Rayleigh number of the base fluid. ,e
obtained nonlinear system depends on the parameters of the
base fluid and the thermophysical properties of the hybrid
nanofluid; it will be very useful to predict or control the
chaotic behaviour of thermal convection in dynamic and
biological systems. ,us, the hybrid nanofluid confers a
great advantage for chaos control in many industrial ap-
plications like food processing, chemical processes, solidi-
fication and centrifugal casting of metals, and rotating
machines to achieve the desired results. Obtained results and
comparative studies show that the use of hybrid nano-
particles can be useful to control the small thermal relaxation
time due to thermal inertia for thermal transport in bio-
logical tissues and surgical operations.

Latin symbols

A11: Stream function amplitude
B11, B02: Temperature amplitude
C: Cattaneo number
Cp: Specific heat at constant pressure

(J.kg− 1: K− 1)
d/dt: Material derivative
e

→
n: Unit vector normal to the boundary

h(x; y): Plane tiling function
g
→, g: Acceleration vector of gravity, gravity

intensity (m.s− 2)
k: ,ermal conductivity (W.m− 1.K− 1)
m: Particle shape factor
M: Matrix associated to the origin fixed point
P: Pressure (Pa)
Pr: Prandtl number
Q: Heat flux
Ra: ,ermal Rayleigh number
Rf: Rescaled Rayleigh number of the base fluid
t: Time (s)
Ta: Taylor number
Tf: Rescaled Taylor number

Tc: Hot temperature (K)
T0: Cold temperature (K)
T: Temperature at time t (K)
U; Y; Z; P; S; V: Rescaled amplitudes
v
→: velocity vector
W: Velocity eigenfunction
(x, y, z): Cartesian coordinates

Greek symbols

α: ,ermal diffusivity of the fluid (m− 2.s− 1)
β: Coefficient of thermal expansion (K− 1)
ci: Nanofluid parameters
δ: Rescaled Cattaneo number
ϵ: Parameter related to nanofluid properties
ζ: Vorticity
ϑ: Volume
κ: Wavenumber
μ: Dynamic viscosity (kg.m− 1.s− 1)
ξ: Eigenvalues
ρ: Density (kg.m− 3)
τ: ,ermal relaxation time
φ1: Alumina volume fraction
φ2: Copper volume fraction
χ: Temperature gradian
ω: Oscillatory frequency
Θ: Temperature eigenfunction
Φ: Heat-flux eigenfunction
ψ: Stream function
Ω: Angular velocity

Subscripts

∗ : Dimensionless
∼ : Small quantity

b: Basic solution
c: Critical
f: Base fluid
hf: Hybrid nanofluid
s: Nanoparticle
0: Reference.
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