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)e spread of epidemics, especially COVID-19, is having a significant impact on the world. If an epidemic is not properly
controlled at the beginning, it is likely to spread rapidly and widely through the coexistence relationship between natural and
social systems. A university community is a special, micro-self-organized social system that is densely populated. However,
university authorities in such an environment seem to be less cautious in the defence of an epidemic. Currently, there is almost no
quantitative research on epidemic spreading and response strategies in universities. In this paper, a case study of a university
community is considered for a simulation of an infection evolving after an epidemic outbreak based on the method of system
dynamics of the three stages.)e results show the following: (1) By improving the speed of the initial emergency response, the total
number of patients can be effectively controlled. (2) A quarantine policy helps to slow down the evolution of infection.)e higher
the isolation ratio, the higher the cost; therefore, the isolation ratio should be optimized. (3) It is important to make emergency
plans for controlling epidemic spreading and carry out emergency drills and assessments regularly. According to the results of this
study, we suggest an emergency management framework for public health events in university communities.

1. Introduction

In the 21st century, the world has suffered from frequent
public health emergencies, such as SARS, H1N1, H7N9
avian influenza, dengue fever, and coronavirus disease 2019
(COVID-19). In particular, the rapid epidemic spread and
wide range of infections from COVID-19 have seriously
threatened people’s lives and health, disrupted social life and
production order, and affected the development of the world
economy [1]. In the face of a sudden pandemic, the public is
ill-prepared to prevent infection, particularly in densely
populated and self-organized social systems such as uni-
versity communities. Universities are the frontlines for
talent training, scientific research, and technological inno-
vation. )erefore, safety and stability are important

foundations for the self-management of universities and are
also key factors for national development and social stability
[2]. Previous research has shown that many university au-
thorities did not take emergency response management
seriously [3], which has led to deficiencies in emergency
response capabilities, especially in the field of public health
event prevention. For the reasons above, it is important for
the university authorities to construct an effective emer-
gency response management system on the basis of which to
improve the effectiveness of prevention and control of public
health events.

In China, the COVID-19 outbreak occurred during a
winter vacation, and most students had returned home
safely. Although it did not cause large-scale infection on
campus, it inevitably disturbed routine teaching plans and
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academic exchanges. It should be noted that there are a
number of people in university communities, and in the
event of a public health outbreak, the consequences are
unpredictable. COVID-19 is undoubtedly among the few
viruses that are extremely harmful, widespread, and have a
long impact duration in the world. Due to various internal
and external influences, the evolution of an infection is often
complex and has uncertain consequences, and it is difficult
to describe the process by using regular experimental
methods, which makes it hard to provide experimental
reference for subsequent decisions. )erefore, a systematic
model of evolution is needed for simulation and to find the
way of epidemic prevention and control in the future.

Since the outbreak of COVID-19, researchers have given
considerable attention to emergency management issues.
)e main purpose of this research is to achieve policy op-
timization. However, among which, a qualitative analysis
does not go beyond the previous policy framework, and a
quantitative analysis does not reveal the full picture of
evolutionary mechanisms either. )erefore, in order to
predict the evolutionary trend and scope of impact of an
event promptly and provide effective methods to control
epidemic spread, there is a need to use COVID-19 as an
object to study the basic prevention policies and control
systems based on the simulation of epidemic evolution. In
this study, we assume that a university community in China
is affected by the epidemic and adopt a system dynamics
methodology to simulate the three stages after an epidemic
outbreak, then observe the number of infections and the
epidemic spreading process to learn the feedback mecha-
nism of infection. As compared with traditional mathe-
matical modeling and simulation, the result is much closer to
the real, evolving circumstances. A model based on system
dynamics also provides useful tools for decision-makers to
learn, analyze, and efficiently respond to future public health
events. As compared with a general qualitative analysis, the
countermeasures of this study are more logical and
persuasive.

2. Literature Review

2.1. Emergency Management. Emergency management
mainly deals with emergencies such as natural disasters,
accidents, public health events, and social security incidents
[4]. Modern emergency management was started in western
developed countries, such as the establishment of the Federal
Emergency Management Agency of the United States in
1979, which marked the formal establishment of a modern
emergency management mechanism in the United States
[5]. Since then, countries have begun to study the basic issues
of modern emergency management, which mainly include
two categories.

)e first issue concerns the public health emergency
management system. Sang and Brower discussed the gap
between the formal plans of the US local government
emergency services and actual networks, and provided a
simplified network analysis process to assist decision-makers
in planning effective emergency activities [6]. Brand et al.
developed a six-step model to improve the emergency

response ability of public health agencies [7]. Jenine et al.
investigated the coordination ability between personnel of
Missouri’s public health emergency plan system and related
agencies [8]. Asch et al. reviewed and assessed the prepa-
rations of California’s local public health departments to
respond to health threats such as bioterrorism and found
significant differences among different tools [9]. Manley
et al. used the survey method to quantitatively describe the
experience of emergency departments in rural hospitals in
the United States in dealing with emergencies and made it
clear that preparation activities were helpful in improving
the hospital’s response capacity [10]. Ha et al. investigated
the role of South Korean rural community organizations in
local emergency management and their effective coping
methods [11].

)e second issue concerns the research on emergency
resource management, ability training, and personnel
evacuation. Larson discussed the resource allocations of
police, fire, emergency medical, and other spatially dis-
tributed emergency service systems [12]. Bianchi and
Church used the coverage model to investigate the posi-
tioning of emergency services in ambulances and firefighting
systems [13]. Sundaramoorthi et al. used a data integration
simulation model to evaluate the nurse-patient configura-
tion of a hospital in Northeast Texas [14]. Nezir developed a
two-stage stochastic model and considered the number and
locations of field hospitals in order to effectively deal with
large-scale disasters [15]. Lucchese et al. established a hybrid
model to minimize the cost of medical supply chains, which
was verified by the distribution of medical supplies in
Apulia, Italy [16].

2.2.Models of Epidemic Spreading. )ere are two main types
of research methodologies on models of epidemic spreading.
)e first method is to establish a mathematical model for
theoretical analysis. Lloyd established an ordinary differ-
ential equation system for the spread of diseases [17]. Ball
further added randomness to develop a stochastic model
[18]; Lipsitch et al. and Riley et al. used this type of stochastic
model to analyze the spread of SARS in Singapore and Hong
Kong [19, 20]. However, a stochastic model is limited by the
defects in the data and the model itself. Subsequently, Xu
et al. used the “scale-free network model” to discuss how
infectious disease outbreaks were affected by the tendency of
geographic links and proved that this model could be used to
effectively study the spread and prevalence of infectious
diseases based on social contact networks [21]. Salathe et al.
focused on the spread of diseases in social contact networks
[22]. )ese models mentioned above can partially reproduce
the nature of social contact networks, but it is difficult to
satisfactorily show the significant behavioral heterogeneity
of different risk groups.

)e second method is to use the simulation method-
ology. Leslie and Brunham used a box model to simulate the
spread of AIDS [23]. Fuentes and Kuperman established a
homogeneous individual CA model using a cellular
automata approach based on a classic dynamics model of
traditional diseases [24]. Eubank developed an urban
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epidemic simulation system that relied on empirical esti-
mates of social networks or contact patterns that were
produced by TRAN-SIMS [25]. Subsequently, more and
more scholars have paid attention to the application of
simulation methodology in the  eld of public health, such as
the simulation of the SARS epidemic process. Some scholars
have also explored policy simulation decision support sys-
tems. Harper and Shahani used a simulation model to
predict the number of AIDS patients and medical expenses
in Mumbai, India, which helped to provide e�ective care for
AIDS patients in Mumbai [26]. Lee et al. developed a
simulation and decision support system for planning large
emergency dispensing clinics that responded to biological
threats and infectious disease outbreaks [27]. Mohamed
considered the data from the emergency department of a
private hospital in Zagazig, Egypt, and proposed a discrete
event simulation model, which showed that patients’ wait
and hospitalization times could be signi cantly improved
[28]. But the simulation methodologies above did not
consider the feedback mechanism. �erefore, they were
unable to completely reveal the network relationships in the
infection evolving.

3. Introduction of Basic Models

3.1. Traditional Infectious Disease Model. �e traditional
infectious disease model is the compartment model, which is
also called the susceptible-infected-recovered (SIR) model.
�e SIR model was originally proposed by Kermack and
Mckendrick in 1927 and has also been called the Ker-
mack–Mckendrick model [29]. It is the earliest and most
classic mathematical model used to study infectious diseases.
�e SIR model (Figure 1) describes the number of people in
three di�erent infection states when time changes, namely:
susceptible, infected, and recovered. �is model assumes
that the total population is  xed and does not take into
consideration changes in the population due to other dis-
eases or other natural causes of death, and the population
does not di�er in age and demographic structure. �e in-
cubation period of the disease is  xed and does not change
over time, and patients who recover from infection are not
reinfected (J, Zou) [30].

dS(t)
dt

� −βI(t)S(t), (1)

dI(t)
dt

� βI(t)S(t) − cI(t), (2)

dR(t)
dt

� cI(t), (3)

dS(t)
dt

+
dI(t)
dt

+
dR(t)
dt

� 0, (4)

N(t) � S(t) + I(t) + R(t), (5)

R0 �
β
c
, (6)

S(t) represents the group that is susceptible to infection, I(t)
represents the infected group R(t), which represents the
recovered group , N(t) represents the total group of pop-
ulation in the system, β is the contact rate, c is the recovery
rate, and R0 is the basic reproduction number.

Equations (1), (2), and (3) represent the instantaneous
spreading velocity between the chambers. Equation (4) rep-
resents the �ow conservation in the system. �e R0 (basic
reproduction number) in equation (6) is derived from the SIR
model, which includes β (contact rate) and c (recovery rate) as
the twomain parameters. In epidemiology, R0 is often used to
measure the dynamics of disease transmission and is the
average number of secondary cases caused by an initial onset
in a population without immunity. When R0 > 1, the disease
will continue to spread in the crowd and the diseasefree
equilibrium in the system is unstable; ifR0 < 1, the result is the
opposite (Dreessche and Watmough) [31]. �e SIR model
based on the di�erential equation system can  t the curve
more accurately according to the existing data and can use the
phase trajectory analysis to obtain the measures to prevent
epidemic spread, and the theoretical basis is su£cient.

However, the SIR model is not detailed enough for the
classi cation of a population, especially when the quarantine
factor is not explicitly considered. In practice, quarantining
suspected patients is an e�ective way to control epidemic
spread. �e model does not introduce a feedback mecha-
nism, which inevitably reduces its accuracy if it is only based
on existing data for predicting situations in the future.
Because quarantine practices or recovered factors are not
present in previous data, it is di£cult to identify the impact
of these factors on epidemic control, which means that, due
to the lack of a feedback mechanism, a traditional model is
unable to help the system achieve the function of self-ad-
justment. In this study, the feedback mechanism of system
dynamics is more suitable for describing the possible situ-
ations of epidemic spread.

3.2. System Dynamics Model. System dynamics (SD) mod-
eling was  rst proposed in 1956 by Forrester, a professor at
the Massachusetts Institute of Technology in the United
States. It was originally used to analyze the system simu-
lation method of production management and inventory
management, and then it was applied in many  elds. System
dynamics refers to the behavior of the system as determined
by the information feedback mechanism within the system.
�is model analyzes the structure, behavior, and causality of
the system, simulates the dynamic changes of the system,
establishes a structural model, and then performs computer
simulation operations under di�erent assumptions to pre-
dict the dynamics of the system’s behavior under various
conditions. Classic system dynamic model is wild boar
population model (Figure 2).

Susceptible, S (t) Infected, I (t) Recovered, R (t)

γβ

Figure 1: �e SIR model.
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System dynamics modeling can also be used to solve
public health problems with complex dynamics. It can
represent a society a�ected by multiple interactions of
disease risk, a diseased population, prevention, and control
policies. Since 1970, system dynamics models have been
applied to many public health problems (Homer and
Hirsch) [32], which have included: (1) heart disease, dia-
betes, AIDS, and cervical cancer; (2) drug abuse, including
heroin, methamphetamine, and smoking cessation; (3)
emergency medical systems in cases of natural disasters or
terrorist acts; (4) organizational planning of population-
based health maintenance such as dental care and mental
health; and (5) public health issues and epidemiological
research. Regarding the study of infectious diseases, food,
and other public health problems, system dynamics models
can simulate conditions that may occur for certain variables
that may a�ect the overall behavior of the system, can de-
scribe problems caused by di�erent policies or without
previous data, and can predict what might happen in the
future, thus, helping to  nd an e�ective solution.

4. Modeling and Simulation

Since the university community is a densely populated place,
in the early stages of an epidemic spreading, the reasonable
decision is to close campus to isolate the university com-
munity from outside contacts and to prevent students from
going outside the campuses to reduce the infection rate.
Close contacts should be quarantined in a centralized place
or in rooms to e�ectively reduce the crossinfection rate. For
this study, we chose a university community that was not
infected by the infection evolving simulation. In the closed
environment of university communities, when an infection
case is found, each stage of simulation prediction is shown a
changes in the number of infected, susceptible, and con-
 rmed numbers in the university community in the next
step. �e analysis of each stage is also based on the initial
state, rather than a continuation of the previous state.

For this study, we will take a university in China as an
example, which accommodates a total of 6743 teachers and
resident students. For the infection evolving simulation, we
assumed that a student had been infected with an infectious
disease. Modeling with system dynamics methodology, the
Vensim PLE8.1.0 operating software was selected for the
simulation analysis. By the way, due to the characteristics of
the system dynamics methodology, we de ne the simulation
parameters of each stage below, like “FINAL TIME,” “TIME

STEP,” and “Contact rate,” etc., according to actual cir-
cumstances and speci c modeling needs. �erefore, there
are no  xed rules or patterns for parameter settings; the
main purpose is to observe the evolutionary trends based on
these chosen parameters.

4.1. �e First Stage

4.1.1. Logical Frame Diagram. In this study, for the analysis
of the simulation model, we refer to the university as a
school. First, we con rm whether or not there is an
emergency response plan for public health events. If the
answer is no, we collect as much information as possible and
identify what resources can be used to e�ectively control an
infectious disease. �e school is a micro-self-organized
social system in society. �erefore, we assume that in the
event of an infectious disease, the school must be closed. If
there were no interventions in the public health event, the
spread of disease would have been extremely rapid. We
construct a logical framework diagram based on system
dynamics theory (Figure 3).

4.1.2. Simulation Parameter Settings

(01) FINAL TIME� 2.5 (unit, week);
(02) INITIAL TIME� 0 (unit, week);
(03) TIME STEP� 0.0625 (unit, week [0, ?]);
(04) Infected people� total number of patients ∗ un-

infected ∗ contact rate ∗ exposure to sickness
ratio (unit, person/week);

(05) Total number in school� 6743 (unit, person);
(06) Exposure to sickness ratio� 0.012 (unit, 1/person);
(07) Contact rate� 0.1 (unit, 1/week);
(08) Uninfected� total number in school – total number

of patients (unit, person);
(09) Total number of patients� INTEG (infected people,

1) (unit, person).

Among them, the “infected people” is the �ow in the
model, and the “total number of patients” is the stock in the
model. �e “contact rate” indicates that the probability of a
person being in contact with others is 10% each day, and the
“exposure to sickness ratio” indicates that with each contact
with a patient, there is a 1.2% probability that an uninfected
person will be infected.

4.1.3. Infection Evolving Simulation. Each variable in the
system dynamics model can be assigned a dimension. In the
computing process, it is necessary to test whether the di-
mensions in the logical framework diagram are consistent.
�erefore, after themodel is completely built and assigned to
each variable, a dimensional consistency test is performed. If
“units are OK” is displayed, it indicates that the model
passed the consistency test, which means that the units of all
dimensions in the model are reasonable. �e simulation
results of the model are shown in Figure 4.

Death quantityBirth quantity

Density influence
coefficientbirth rate

area density

death rate

boar

Figure 2: Feedback diagram of a system dynamics model of a wild
boar population.
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�e simulation results show that the number of “in-
fected people” reaches a peak value of 12,940 in 1.25 weeks,
because “infected people” is the �ow in the model, the unit
is person/week, and there is a situation of superposition.
�e number of “uninfected” reaches a minimum at
2.25 weeks, and the “total number of patients” also reaches
a maximum at the same time, which means that 6743
students are infected.

4.1.4. What Should Be Done in the First Stage?

(1) If there is no emergency response plan, a plan needs
to be formulated for public health events. Consid-
ering that a university is a micro-self-organized
social system, when an infection happens, it is im-
portant to access outside help; therefore, university
authorities are expected to immediately report in-
fection information. In the meantime, they must also
establish an emergency management center and set
up special teams to collect as much infection in-
formation as possible, as well as send and receive
information in a short period of time.

(2) �e beginning of an infection is the critical phase.
When the  rst infected person is identi ed, reducing
public gatherings is important. An e�ective com-
munication plan and volunteer team should be
launched and established to assist professionals to
help control the epidemic’s spread as soon as possible.

(3) Infection information should be reported to the local
center for disease control and prevention (CDCP) in
time to help  nd the source of infection. Medical
teams and equipment should be organized and
immediately dispatched. Teachers and students with
initial infections should be transferred and treated.

(4) University authorities should prepare for early
warning at the right time and information should be
released step-by-step that people care about, to re-
duce people’s fears and suspicions.

4.2. �e Second Stage. Depending on the speci c circum-
stances of infection, more and more doctors and anti-
epidemic personnel will be allocated to help infected
students and teachers with restorative treatment.

Contact rate

Infected people

Exposure to
sickness ratio Uninfected

Total
number of

patients Total number of
school

Figure 3: Logical framework diagram of an infection in the  rst stage.
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Figure 4: Simulation results of an infection evolving in the  rst stage.
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4.2.1. Logical Frame Diagram. On the basis of the  rst stage,
the number of people who have recovered and the reha-
bilitation crowd are further considered in the second stage.
�en we construct a logical framework for the second stage,
as shown in Figure 5.

4.2.2. Simulation Parameter Settings. In order to seek a
better simulation e�ect, the following new variables should
be changed/added:

(01) FINAL TIME� 10 (unit, week);
(02) TIME STEP� 0.125 (unit, week [0, ?]);
(03) Number of people recovered� INTEG (rehabilita-

tion crowd, 0), (unit, person);
(04) Average recovery time� 1 (unit, week);
(05) Rehabilitation crowd� total number of patients/

average recovery time (units, person/week);
(06) Uninfected� total number in school− number of

people recovered− total number of patients (unit,
person);

(07) Total number of patients� INTEG (infected peo-
ple-rehabilitation crowd,1) (unit, person).

Note: (1) among the simulation parameters, the “reha-
bilitation crowd” and the “infected people” are the �ow,
while the “total number of patients” and the “number of
people recovered” are the stock. (2) Considering the “re-
habilitation crowd” and “number of people recovered” were
added, parameters “uninfected” and “total number of pa-
tients” will change, as demonstrated in (06) and (07).

4.2.3. Infection Evolving Simulation. We perform a di-
mensional consistency test on the model, and it shows that
the units are OK, indicating that the model passed the
consistency test. �at is, all the dimensional units in the
model are reasonable. �e simulation results are shown in
Figure 6. �e number of infected people reaches a peak of
11,511 at 1.625 weeks, as compared with a peak of 12,940 at
1.25 weeks in the  rst stage, and the “number of people
recovered” reaches 6743 in the sixth week. �e number of
“uninfected” people decreases with an increase in the
“number of people recovered”. �e “total number of pa-
tients” reaches a peak of 4596 in the second week and then
gradually decreases until the sixth week.

4.2.4. What Should be Done in the Second Stage?

(1) Adjust daily management a�airs as needed, in-
cluding teaching programs, academic exchanges, and
some public activities. Meanwhile, some basic
measures such as disinfection and ventilation mea-
sures should be implemented to keep the campus
environment safe.

(2) During the process of preventing and controlling
infection, decision-makers and rescuers should hold
their positions to ease the pressure and panic of
teachers and students, communicate and collaborate
with the local CDCP to set up temporary treatment
and rehabilitation areas, and prepare temporary
quarantine rooms for further use.

(3) An emergencymanagement center should promote a
common sense of epidemic prevention on the
campus radio and push useful noti cations about
self-protection, ensure people keep calm and know
how to defend against infection by themselves, guide
teachers and students to reduce outdoor stays as
short as possible.

(4) University authorities should prepare supplies that
are needed for epidemic prevention, such as masks
and disinfectants, etc., to reduce the possibility of
potential risk exposure. In order to prevent further
spread, enough food and necessities should be
purchased. Volunteers should be prepared to allocate
food, medicine, and other supplies to teachers and
students in the way of no touch.

4.3. �e �ird Stage

4.3.1. Logical Frame Diagram. In the third stage, the
quarantine factor is considered �e number of people
quarantined and the recovery rate of infected patients need
to be introduced. We construct a logical framework diagram
as shown in Figure 7.

4.3.2. Simulation Parameter Settings

(01) FINAL TIME� 8 (unit, week);
(02) INITIAL TIME� 0 (unit, week);
(03) SAVEPER� 0.125 (unit, week [0, ?]);

Infected people Rehabilitation
crowd

Total number of
patients

Total number of
school

Number of people
recovered

Uninfected

Average
recovery time

Exposure to
sickness ratio

Contact rate

Figure 5: Logical framework diagram of an infection in the second stage.
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(04) TIME STEP� 0.125 (unit, week [0, ?]);

(05) Infected people� total number of patients ∗ un-
infected ∗ contact rate ∗ exposure to sickness
ratio (unit, person/week);

(06) Total number in school� 6743 (unit, person);
(07) Number of people recovered� number of people

recovered1 + number of people recovered2 (unit,
person);

(08) Number of people recovered1� INTEG (rehabili-
tation crowd1, 0) (unit, person);

(09) Number of people recovered2� INTEG (rehabili-
tation crowd2, 0) (unit, person);

(10) Number of people quarantined � INTEG (quarantine
population - rehabilitation crowd2, 0)(unite, person);

(11) Average recovery time� 1 (unit, week);
(12) Rehabilitation crowd1� total number of patients/

average recovery time (unit, person/week);
(13) Rehabilitation crowd2� number of people quar-

antined/average recovery time (unit, person/week);
(14) Exposure to sickness ratio� 0.012 (unit, 1/person);

8000

6000

4000

2000

0
0 2 4 6 8 10

Time (Week)

pe
rs

on

Number of people recovered : Current

Total number of patients : Current

Uninfected : Current

Figure 6: Simulation results of an infection evolving in the second stage.
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<Number of people
recovered1>

Total number of
school

Uninfected

Total number
of patientsInfected people Rehabilitation

crowd1

Contact rate Exposure to
sickness ratio

Quarantined people

Isolation ratio

Average recovery
time

Rehabilitation
crowed2

Figure 7: Logical framework diagram of an infection in the third stage.
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Number of people quarantined : Isolation ratio30%
Number of people recovered : Isolation ratio30%
Total number of patients : Isolation ratio30%
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Figure 8: Simulation results of an infection evolving in the third stage.
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Figure 9: Continued.
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(15) Contact rate� 0.1 (unit, 1/week);
(16) Uninfected� total number in school− total number

of patients− number of people recover-
ed1− number of people recovered2− number of
people quarantined (unit, person);

(17) Total number of patients � INTEG (infected
people-rehabilitation crowd1 −quarantine people,1)
(unit, person);

(18) Quarantine people� total number of patients ∗
isolation ratio (unit, person/week);

(19) Isolation ratio� 0.9 (unit, 1/week);

4.3.3. Infection Evolving Simulation. We perform a di-
mensional consistency test on the model, and it shows
that the units are OK, indicating that the model passed
the consistency test. �at is, all the dimensional units in
the model are reasonable. �e simulation results are
shown in Figure 8. On the assumption of an isolation
ratio of 30%, the “number of people quarantined” reaches
a peak of close to 700 at 2.625 weeks, and the “total
number of patients” reaches a peak of 4137 at 2.125 weeks.
As compared with the second stage, due to the emergence
of quarantine, the number of patients at the peak will
reduce slightly.

In order to con rm what the optimal isolation ratio will
be, we observe the simulation changes of each index as the
isolation ratio is adjusted. When the isolation ratio is 0%, the
total number of patients reaches a peak of 4596 in the second
week. When the isolation ratio is 30%, the total number of
patients reaches a peak of 4137 in the second week.When the
isolation ratio is 60%, the total number of patients reaches a
peak of 3679 in the second week. When the isolation ratio is

90%, the total number of patients reaches a peak of 3211 at
week 2.125. It can be seen that, as the isolation ratio
gradually increases, the total number of patients reduces
accordingly. Other indices of “uninfected,” “number of
people quarantined,” and “number of people recovered” are
observed, with varying degrees of bene cial change under
di�erent isolation ratios as well. However, a quarantine
policy is a very expensive solution in the real world, �e
speci c isolation ratio needs to be analyzed in detail if
necessary. �e speci c simulation graphs are shown in
Figure 9.

4.3.4. What Should Be Done in the �ird Stage?

(1) University authorities should launch an emergency
quarantine policy to deal with deteriorating condi-
tions that may occur, while paying attention to other
people who are not infected. It is important to de-
termine a suitable isolation ratio. If the quarantine
proportion is 100%, the cost will be too high.
Considering that the epidemic condition is dynamic
and unstable, the quarantine policy must be �exible
in practice.

(2) Once the isolation ratio is con rmed, there is a need
to allocate su£cient professional sta�, including
o£cers, doctors, volunteers, etc. To ensure that
stability and orderliness in the process of epidemic
control, a supporting security plan is also needed. In
addition, authorities can recruit people who have no
symptoms of infection and have passed the safety
quarantine period to serve as temporary part-time
security personnel besides the full-time security
personnel.
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Figure 9: Simulation prediction results of di�erent quarantine strategies.
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(3) In addition to quarantine measures for infected
people, self-isolation policies for other healthy
people should be implemented as well until the risk is
dismissed. In this period, it is necessary to supply
extensive and targeted psychological assistance.

5. Conclusions and Countermeasures

5.1. Conclusions. )e results of the sensitivity analysis at
each stage show that there are many parameters that greatly
affect the overall behavior. )is study focuses on whether
epidemic spread can be effectively controlled under different
epidemic prevention policies. )e first stage of the simu-
lation is an extended version of the combined SIR model
without reasonable feedback. In the second stage, the re-
covered population is added to reduce the chance of the

uninfected people in the susceptible group coming into
contact with other infectious groups. In the third stage,
quarantine measures are added at different stages of the
infection’s evolution to reduce the infection rate among
susceptible groups.

When an epidemic is spreading in a university, it is
important to have a rapid initial response. )e faster the
response rate, the lower the rate of infection spread. From
the case study, we found the following: First, it takes
2.25 weeks from the initial infection of one person to infect
all 6743 people if there is no intervention. Second, if
emergency response and medical care are considered, the
peak arrival time can be shortened to 2 weeks and the peak
number of infections can be reduced to 4596 people. In
addition, if a quarantine policy is considered, when the
isolation ratio is 90%, the total number of patients will
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Figure 10: )e framework of the emergency management system in universities.
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reach a peak of 3211 in 2.125 weeks. Without considering
the cost of isolation, 90% of the isolation ratio is the optimal
value. In fact, regarding the COVID-19 outbreak in China,
the government quickly launched an emergency response
plan and implemented very strict quarantine policies at the
beginning (the isolation ratio was almost 100%), which
restrained the epidemic’s spread in a very short time. )is
proved the effectiveness of a quarantine policy and sup-
ported the conclusions of this study from a practical point
of view.

5.2. Countermeasures

5.2.1. Establish an Emergency Management Framework.
An infection evolving simulation of epidemic spreading
shows that university communities should establish an
effective emergency management framework for
responding to epidemics, including COVID-19 and some
other public health events. )e emergency response
system of a university should follow the rules of the
National Emergency Response Plan for Public Health
Emergencies and include at least three levels of plans. )e
first level is the general emergency plan of a university; the
second level is the special plan for emergency public
health events; and finally, the third level is the specific
plans in detail. )e general emergency plan contains five
basic rules that need to be followed. )e special plan
contains at least four small specific plans, and each plan
includes its own response actions (including but not
limited to the 19 kinds of actions in Figure 10). )ere is no
order of priority among the actions of the four plans,
which means that some actions in each specific plan can be
implemented at the same time, forming linkages in the
emergency response in practice.

5.2.2. Regular Emergency Drills and Assessment.
Emergency drills are one of the most effective ways to
control infectious diseases. In the process of university
education and management, fire drills and natural disaster
escape drills are often used as training subjects, but emer-
gency drills for infectious disease outbreaks are usually ig-
nored. After formulating an effective emergency
management system, it is necessary to carry out regular drills
to improve the emergency response capabilities of author-
ities, teachers, and students. In addition, the emergency
management system should carry out a classified stress test
at least each year, as a basis for an effective assessment of the
system. Authorities should revise parts of the system that are
not applicable according to the assessment.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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