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In this study, two modified gradient descent (GD) algorithms are proposed for time-delayed models. To estimate the parameters
and time-delay simultaneously, a redundant rule method is introduced, which turns the time-delayed model into an augmented
model. +en, two GD algorithms can be used to identify the time-delayed model. Compared with the traditional GD algorithms,
these two modified GD algorithms have the following advantages: (1) avoid a high-order matrix eigenvalue calculation, thus, are
more efficient for large-scale systems; (2) have faster convergence rates, therefore, are more practical in engineering practices. +e
convergence properties and simulation examples are presented to illustrate the efficiency of the two algorithms.

1. Introduction

System identification plays an important role in control
theory and application [1–3]. When the model of a dynamic
system is established, one can design robust controllers for
such a model to predict its dynamics in the future. +ere
exist many identification algorithms, for example, the least
squares (LS) algorithm [4, 5], the gradient descent (GD)
algorithm [6, 7], and the particle swarm optimization (PSO)
algorithm [8, 9]. When the considered model has a high
order, the LS algorithm and the PSO algorithm are inefficient
for their heavy computational efforts [10–12]. +e GD al-
gorithm has few computational efforts, but with slow
convergence rates [13, 14]. To increase the convergence rate
of the GD algorithm, two ways are usually performed: (1)
design a more suitable direction [15–17]; (2) calculate a
better step size [18, 19]. In [20], the best step size of a GD
algorithm is given, which involves the eigenvalue calcula-
tion. For a high-order matrix, computing its eigenvalues is
challenging. To deal with this problem, plenty of suboptimal
step size calculating methods are developed, for example, the
stochastic GD algorithm [21, 22], the forgetting factor GD
algorithm [18, 19], the projection algorithm, and the steepest
GD algorithm [23, 24]. Although these algorithms can

increase the convergence rates, they are all sensitive to the
considered model. +at is, one should design different step
sizes for different kinds of models.

Time delay is normal in engineering practices. +e data
of a dynamic system are usually collected by a sensor and
then transmitted via a communication channel; they may
encounter time-delay due to network congestion [25, 26].
For the time-delayed model identification, Chen proposed a
redundant rule-based off-line algorithm that can estimate
the parameters and time delay simultaneously [27]. Since the
off-line algorithm cannot update the parameters with newly
arrived data, Zhang et al. developed a redundant rule-based
recursive LS (RLS) algorithm for bilinear time-delayed
systems, the RLS algorithm is an online algorithm [28]. +is
paper focuses on time-delayedmodel identification and aims
to develop some novel identification algorithms which have
fast convergence rates and less computational efforts.

Inspired by the PSO algorithm and the power method
[29], we propose two modified GD algorithms for time-
delayed models: one is an exhaustive search method which
chooses the step size based on the PSO algorithm, and the
other is the power-based GD algorithm which computes the
step size using power method. +ese two algorithms can get
a better step size in each iteration without eigenvalue
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calculation. +erefore, the proposed algorithms have faster
convergence rates when compared with the traditional GD
algorithm.

+is paper is organized as follows: Section 2 describes the
time-delayed model and the traditional LS and GD algo-
rithms. In Section 3, two modified GD algorithms are
proposed. Section 4 proves the convergence properties of the
two algorithms. Section 5 gives two simulation examples.
Finally, conclusions are presented in Section 6.

2. Problem Statement

First, some notations are denoted as follows: I denotes an
identity matrix of the appropriate sizes; ‖X‖ means the norm
of the matrix X and is written as ‖X‖ :�

�������

ρ(XTX)

􏽱

; ρ(XTX)

stands for the spectral radius of the matrix XTX; the su-
perscript T is defined as the matrix transpose; λmax[M] and
λmin[M] denote the maximum and minimum eigenvalues of
a matrix M, respectively.

2.1. Time-Delayed Model. Consider the following time-
delayed model,

y(t) � 􏽘
N

i�1
giu(t − i − τ) + v(t), (1)

where y(t) and u(t) are the output and input, respectively;
v(t) is a Gaussian white noise, and satisfies v(t)∼N(0, δ2);
gi, i � 1, . . . , N are the unknown parameters need to be
estimated; τ is an unknown time delay.

Since the time-delay τ is unknown, the corresponding
information vector [u(t − 1 − τ), . . . , u(t − N − τ)] of y(t)

is unavailable which leads to the traditional GD algorithm
being impossible. To deal with this dilemma, we use the
redundant rule method. Assume that the upper bound of the
time delay is M , and this assumption is rational and feasible.
For example, when using the RIP protocol in the network,
the maximum flop is 16.

Rewrite the time-delayed model as follows:

y(t) �g1u(t − 1) + g2u(t − 2) + · · · + gτu(t − τ)

+ g(τ+1)u(t − τ − 1) + · · · + g(τ+N)u(t − τ − N)

+ g(τ+N+1)u(t − τ − N − 1) + · · ·

+ g(τ+N+M)u(t − N − M) + v(t).

(2)

Define the parameter vector G and the information
vector ψ as

G � g1, . . . , gτ , gτ+1, . . . , gτ+N, gτ+N+1, . . . , gN+M􏼂 􏼃
T ∈ RM+N

,

ψ(t) � [u(t − 1), . . . , u(t − τ), u(t − τ − 1), . . . , u(t − τ − N), u(t − τ − N − 1), . . . , u(t − N − M)]
T ∈ RM+N

.
(3)

+e augmented parameter vector is decomposed into the
following three parts:

1. redundant part: G1 � g1, . . . , gτ􏼂 􏼃
T
,

2. true part: G2 � gτ+1, . . . , gτ+N􏼂 􏼃
T
,

3. redundant part: G3 � gτ+N+1, . . . , gN+M􏼂 􏼃
T
.

(4)

Remark 1. Since the two corresponding information vectors
of the parameter vectors play a less role in the output, the
redundant parts G1 and G2 are both zero vectors. If the
parameter estimates ofG converge to the true values, the two
redundant parts equal zero vectors, and then we can obtain
the time-delay estimates based on this special structure.

2.2. LS andGDAlgorithms. Rewrite the augmented model of
the time-delayed model as

y(t) � ψT
(t)G + v(t). (5)

Collect L sets of input and output data and define

Y(L) � [y(L), y(L − 1), . . . , y(1)]
T ∈ RL

,

ΦT
(L) � [ψ(L),ψ(L − 1), . . . ,ψ(1)]

T ∈ RL×P
, P � (M + N),

V(L) � [v(L), v(L − 1), . . . , v(1)]
T ∈ RL

.

(6)

It gives rise to

Y(L) � ΦT
(L)G + V(L). (7)

Define the cost function as follows:

J(G) �
1
2
Y(L) − ΦT

(L)G
����

����
2
. (8)

Using the LS algorithm to estimate the parameters, it
follows that

G
∧

� Φ(L)ΦT
(L)􏽨 􏽩

−1
Φ(L)Y(L). (9)

+e LS algorithm should perform a matrix inverse
calculation which may lead to heavy computational efforts,
especially for large-scale systems, e.g., P is large.

To avoid the matrix inverse calculation, the traditional
GD (T-GD) algorithm is introduced [20],
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G
∧ k � G

∧
k−1 + ckΦ(L) Y(L) − ΦT

(L)Gk−1􏽨 􏽩,

0< ck〈
2

λmax Φ(L)ΦT
(L)􏽨 􏽩

.

(10)

+e T-GD algorithm does not need to compute the
inverse of the information matrix [Φ(L)ΦT(L)], but it re-
quires calculating the eigenvalues of the information matrix
to choose a suitable step size to keep the T-GD algorithm
convergent. When [Φ(L)ΦT(L)] has a high order, com-
puting its eigenvalues is also a challenging problem.

3. Two Modified GD Algorithms

In this section, two modified GD algorithms are developed
which aim to avoid eigenvalue calculation and to increase
the convergence rate.

3.1. Exhaustive Search-Based GD Algorithm. +e PSO al-
gorithm is an intelligent search algorithm, which assigns
plenty of particles (initial parameter estimates) first, and
then computes the personal best estimates and the global
best estimates in each iteration [30, 31]. If the number of the
particles is larger, the estimates can easily achieve the true
values. Inspired by the PSO algorithm, an exhaustive search-
based GD algorithm is developed in this subsection. Its basic
idea is to assign several step sizes for a negative direction in
each iteration, and the smallest cost function has the best
step size.

Assume that the parameter estimate in the iteration (k −

1) is G
∧

k−1, the parameter estimate in the iteration k is
computed by

G
∧

k � G
∧

k−1 + cΦ(L) Y(L) − ΦT
(L)Gk−1􏽨 􏽩. (11)

If we assign a random step size for the above GD al-
gorithm, we can find that (1) a small step size will have a slow
convergence rate; (2) a large step size may lead to divergence
of the GD algorithm. To choose a suitable step size and to
avoid the eigenvalue calculation, we assign S step sizes for
the GD algorithm in each iteration.

Define an interval in an iteration k as

Tk � 0, Sk􏼂 􏼃. (12)

Choose S uniformly distributed terms between [0, Sk],
that is

c
1
k �

Sk

S
, · · · , c

i
k � i

Sk

S
, · · · , c

S
k � Sk. (13)

Based on the S step sizes, we have S parameter estimates,
that is

G
∧ 1

k � G
∧

k−1 + c
1
kΦ(L) Y(L) − ΦT

(L)Gk−1􏽨 􏽩

⋮

G
∧ s

k � G
∧

k−1 + c
S
kΦ(L) Y(L) − ΦT

(L)Gk−1􏽨 􏽩.

(14)

Among the S parameter estimates, we will choose the
best one. Once the S parameter estimates in iteration k have
been obtained, the S corresponding cost functions are
computed by

J G
∧ 1

k􏼠 􏼡 �
1
2
Y(L) − ΦT

(L)G
∧ 1

k

��������

��������

2

⋮

J G
∧ S

k􏼠 􏼡 �
1
2
Y(L) − ΦT

(L) 􏽢GS

k

�����

�����
2
.

(15)

Let

G
∧ best

k � argmin
G
∧ i

k

J G
∧ 1

k􏼠 􏼡, . . . , J G
∧ S

k􏼠 􏼡􏼢 􏼣. (16)

+at is, the smallest cost function has the best parameter
estimate in iteration k.

+en, the steps of the exhaustive search-based GD (ES-
GD) algorithm are listed as follows:

Remark 2. +e same as the PSO algorithm, a larger S can
lead to a more accurate parameter estimate G

∧
k. However,

two problems exist for a poor Sk: (1) if Sk is small, all the
step sizes can make J(G

∧ i

k)〈J(G
∧

k−1), i � 1, 2, . . . , S, in this
case, the step.size is quite small, we then assign Snewk � 2Soldk ;
(2) if Sk is too large, all the step sizes lead to
J(G
∧ i

k)〉J(G
∧

k−1), i � 1, 2, . . . , S , in this case, we should
assign Snewk � 1/2Soldk to keep the ES-GD algorithm
convergent.

Remark 3. +e ES-GD algorithm uses the exhaustive search
method to choose the step size; the “best” step size in each
iteration is better than the step size which is randomly
chosen. However, we have no confidence in the “best” step
size because it is not the best one. In addition, a larger S can
make the “best” step size closer to the true one, but a larger S

also leads to heavier computational efforts.

3.2. Power-Based GD Algorithm. In [20], the authors have
given the best step size for the cost function

J(G) �
1
2
Y(L) − ΦT

(L)G
����

����
2
, (17)

is

cbest �
2

λmax Φ(L)ΦT
(L)􏽨 􏽩 + λmin Φ(L)ΦT

(L)􏽨 􏽩
. (18)

+erefore, to get the actual best step size cbest, one should
compute both the maximum and minimum eigenvalues of
the information matrix [Φ(L)ΦT(L)].

Since the eigenvalues of a high-order matrix are difficult
to compute, next, we introduce the power method. +e
power method can get the maximum eigenvalue of a matrix
using an iterative method.

For simplicity, let
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Φ � Φ(L)ΦT
(L)􏽨 􏽩. (19)

Assign an initial non-zero vector x0, and use the fol-
lowing iterative function to get a sequence xk􏼈 􏼉,

xk � Φxk−1. (20)

Let

xk � x
1
k, . . . , x

M
k􏽨 􏽩

T
. (21)

+e following lemma is obtained.

Lemma 1. For a symmetric positive definite (SPD) matrixΦ,
the sequence xk􏼈 􏼉 is computed by (4). 7en, the maximum
eigenvalue of Φ is computed by

λmax[Φ] �
x

i
k

x
i
k−1

, i � 1, or, 2, 3, . . . , M. (22)

Proof. Since Φ is SPD, it has M eigenvalues λ1, . . . , λM, and
their corresponding eigenvectors are d1, . . . , d2. Let

di

����
���� � 1, i � 1, 2, . . . , M, (23)

and d1, d2, . . . , dM are linearly independent. +ere exist M

constants α1, α2, . . . , αM which are not all equal to zero, and
the initial vector x0 can be written by

x0 � 􏽘
M

i�1
αidi. (24)

Without loss of generality, assume that the eigenvalues of
Φ satisfy

λ1〉λ2〉· · · 〉λM〉0. (25)

Based on (20), it gives rise to

xk � Φxk−1

� Φkx0

� 􏽘
M

i�1
αiΦ

k
di

� 􏽘
M

i�1
αiλ

k
i di.

(26)

It follows that

xk � λk
1 α1d1 + 􏽘

M

i�2

λi

λ1
􏼠 􏼡

k

αidi
⎡⎣ ⎤⎦. (27)

Since λ1〉λi, i � 2, 3, . . . , M, when k⟶∞, we have

lim
k⟶∞

λi

λ1
􏼠 􏼡

k

� 0. (28)

+en, (27) can be rewritten by

xk � λk
1α1d1. (29)

+erefore, we can get that

λ1 �
x

i
k

x
i
k − 1􏼐 􏼑

, k⟶∞. (30)

+e proof is completed.
+e power method can only get the maximum eigenvalue

of Φ. However, to get the best step size, one also should
compute theminimum eigenvalue ofΦ. Next, we introduce an
effective method to compute the minimum eigenvalue of Φ.

Once the maximum eigenvalue ofΦ is obtained, we then
assign a new term λ as follows:

λ � λ1 + δ( 􏼁, δ〉0, (31)

where δ is a positive constant which is chosen on a case by
case basis.

Define a new matrix Ψ

Initialise G
∧
0 � 1/p0, p0 � 106, 1 is a vector whose entries all equal to 1

Collect measurable data u(1), . . . , u(L) and y(1), . . . , y(L)

Assign the value for S

repeat
for k � 1, 2, · · ·, do

Assign [0, Sk],
Choose c1k, . . . , cS

k

Update G
∧ i

k, i � 1, . . . , S

Compute J(G
∧ i

k), i � 1, . . . , S

Compare J(G
∧ i

k), i � 1, . . . , S and choose G
∧ best

k

Let G
∧

k � G
∧ best

k

end
until convergence

ALGORITHM 1: ES-GD algorithm.
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Ψ � λI −Φ. (32)

+en, the following lemma can be obtained. □

Lemma 2. For a symmetric positive definite matrix Φ , its
eigenvalues are λ1〉λ2〉· · · 〉λM〉0. A matrix Ψ is defined by
(6). 7en, the eigenvalues of the matrix Ψ are

λΨi � λ − λi, i � 1, 2, . . . , M,

0〈λΨ1 〈λ
Ψ
2 〈 · · ·〈λΨM.

(33)

Proof. For an SPD matrix Φ, there exists a nonsingular
matrix Q which can guarantee

Φ � Q−1diag λ1, λ2, . . . , λM􏼈 􏼉Q. (34)

+en, the matrix Ψ is written by

Ψ � Q−1diag λ, λ, . . . , λ􏽮 􏽯Q − Q−1diag λ1, λ2, . . . , λM􏼈 􏼉Q

� Q−1diag λ − λ1, λ − λ2, . . . , λ − λM􏽮 􏽯Q

� Q−1diag λΨ1 , λΨ2 , . . . , λΨM􏽮 􏽯Q.

(35)

Since λ � (λ1 + δ) and δ〉0, we have

0〈λΨ1 〈λ
Ψ
2 〈 · · ·〈λΨM. (36)

For the SPD matrix Ψ, using the power method can
obtain its maximum eigenvalue λΨM, and then the minimum
eigenvalue λM of the matrix Φ can be computed by

λM � λ − λΨM. (37)

When the maximum and minimum eigenvalues of the
matrix Φ are obtained, we can get the best step size.

+e steps of the power-based GD (P-GD) algorithm are
listed as follows: □

Remark 4. If the maximum eigenvalue λ1 is not much bigger
than λ2, to compute the maximum eigenvalue λ1 is time-
consuming. Because the value of [λ2/λ1]

k will take more
iterations to converge to zero.

Remark 5. +e choice of the positive constant δ is very
important; to get the maximum λΨM quickly, we would do
better to choose a small δ. On the other hand, due to the
estimation error, a small δmay leadΨ not be an SPDmatrix.

Remark 6. Recently, a novel GD algorithm, termed as
fractional stochastic GD algorithm, has been proposed for
parameter estimation. +is algorithm is a well complement
to the traditional GD algorithm, which can be widely used
for different kinds of models [32–34].

4. Convergence Properties of the Two Modified
GD Algorithms

+e convergence properties of the two modified GD algo-
rithms are given in the following which offer theory guid-
ance for researchers.

4.1. Convergence Analysis of the ES-GD Algorithm.
Rewrite the ES-GD algorithm as follows:

G
∧

k � G
∧

k−1 + cΦ(L) Y(L) − ΦT
(L)Gk−1􏽨 􏽩. (38)

Subtracting G on both sides of the above equation yields

E
∧

k � E
∧

k−1 − cΦ(L) ΦT
(L)Ek−1􏽨 􏽩 + cΦ(L)V(L)

� I − cΦ(L)ΦT
(L)􏽨 􏽩Ek−1 + cΦ(L)V(L),

(39)

where E
∧

k � (G
∧

k − G). Since V(L) is a Gaussian white noise
and is independent onΦ(L), the above equation is simplified
as

E
∧

k � I − cΦ(L)ΦT
(L)􏽨 􏽩Ek−1. (40)

Based on the exhaustive search-based, in each iteration,
we will find an optimal c which guarantees

I − cΦ(L)ΦT
(L)

����
����≤ 1. (41)

It gives rise to

E
∧

k

�������

�������
≤ Ek−1

����
����. (42)

+erefore, the ES-GD algorithm is convergent.

4.2. Convergence Analysis of the P-GD Algorithm. +e P-GD
algorithm is written by

G
∧

k � G
∧

k−1 +
2

λmax Φ(L)ΦT
(L)􏽨 􏽩 + λmin Φ(L)ΦT

(L)􏽨 􏽩

· Φ(L) Y(L) − ΦT
(L)Gk−1􏽨 􏽩.

(43)

Subtracting the true value G on both sides of the above
equation yields

E
∧

k � E
∧

k−1 −
2

λmax Φ(L)ΦT
(L)􏽨 􏽩 + λmin Φ(L)ΦT

(L)􏽨 􏽩

· Φ(L) ΦT
(L)Ek−1􏽨 􏽩

� I −
2Φ(L)ΦT

(L)

λmax Φ(L)ΦT
(L)􏽨 􏽩 + λmin Φ(L)ΦT

(L)􏽨 􏽩
⎡⎢⎣ ⎤⎥⎦E

∧
k−1.

(44)
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For simplicity, let

λ1 � λmax Φ(L)ΦT
(L)􏽨 􏽩,

λM � λmin Φ(L)ΦT
(L)􏽨 􏽩.

(45)

Equation (44) is simplified as

E
∧

k � I −
2Φ(L)ΦT

(L)

λ1 + λM

􏼢 􏼣E
∧

k−1. (46)

For an SPD matrix Φ(L)ΦT(L), there exists a matrix Q
which can ensure

Φ(L)ΦT
(L) � Q−1diag λ1, λ2, . . . , λM􏼂 􏼃Q. (47)

It follows that equation (46) can be transformed into

E
∧

k � Q− 1Q −
2

λ1 + λM( 􏼁
Q− 1diag λ1, λ2, . . . , λM􏼂 􏼃Q􏼢 􏼣E

∧
k−1

� Q−1diag 1 −
λ1

λ1 + λM( 􏼁
, 1 −

λ2
λ1 + λM( 􏼁

, . . . , 1 −
λM

λ1 + λM( 􏼁
􏼢 􏼣Q􏼢 􏼣E

∧
k−1

� Q−1diag
λM − λ1( 􏼁

λ1 + λM( 􏼁
, . . . ,

λ1 − λM( 􏼁

λ1 + λM( 􏼁
􏼢 􏼣Q􏼢 􏼣E

∧
k−1.

(48)

Clearly, all the absolute values in the diagonal matrix are
smaller than 1, then we have

E
∧

k

�������

�������
≤ E
∧

k−1

�������

�������
. (49)

+erefore, the P-GD algorithm is convergent.

Remark 7. In the P-GD algorithm, the maximum absolute
value in the diagonal matrix is (λ1 − λM)/(λ1 + λM), that
is,

E
∧

k

�������

�������
�

λ1 − λM( 􏼁

λ1 + λM( 􏼁
E
∧

k−1

�������

�������
�

(τ − 1)

(τ + 1)
E
∧

k−1

�������

�������
, (50)

where τ � λ1/λM is the conditioned number of the matrix
[Φ(L)ΦT(L)]. If the matrix [Φ(L)ΦT(L)] is ill-conditioned,
no matter what the step size is, the convergence rates are
always very slow. In this case, we can try to reconstruct a new

information matrix [Φ(L)ΦT(L)] or use the fractional
stochastic GD algorithm proposed in [32–34] to increase the
convergence rates.

5. Examples

Example 1. Consider the following time-delayed model,

y(t) � g1u(t − τ − 1) + g2u(t − τ − 2) + g3u(t − τ − 3)

+ g4u(t − τ − 4) + g5u(t − τ − 5) + v(t)

� 0.5u(t − τ − 1) + 0.67u(t − τ − 2)

− 0.34u(t − τ − 3) + 0.23u(t − τ − 4)

+ 0.76u(t − τ − 5) + v(t).

(51)

Assume that the time delay is τ � 2 and assign M � 5, we
have

y(t) � g0,1u(t − 1) + g0,2u(t − 2) + g1u(t − 3)

+ g2u(t − 4) + g3u(t − 5) + g4u(t − 6)

+ g5u(t − 7) + g1,1u(t − 8) + g1,2u(t − 9)

+ g1,3u(t − 10) + v(t),

G � [0, 0, 0.5, 0.67, −0.34, 0.23, 0.76, 0, 0, 0]
T
.

(52)

In simulation, we collect 500 sets of input and output
data, where u(t) ∼ N(0, 1) and v(t) ∼ N(0, 0.1)2. Use the
T-GD, ES-GD, and P-GD algorithms for the time-delayed
model. +e parameter estimates and their estimation errors
ς � ‖G − Gk‖/G are shown in Figure 1 and Table 1. +e
elapsed times of these three algorithms are illustrated in
Table 2: the second row means that all the three algorithms
run the same iteration, and the third row shows that the
three algorithms have almost the same estimation error.

Assign a threshold ϱ � 0.005. Compare the estimates
(20-th iteration) with the threshold, if the absolute value of
the estimate is smaller than the threshold, then it will be
assigned as zero. We can get that the time-delay is 2.

In addition, we use the power method to compute the
maximum and minimum eigenvalues of the information

Initialise G
∧
0 � 1/p0 , p0 � 106, 1 is a vector whose entries all equal to 1

Collect measurable data u(1), . . . , u(L) and y(1), . . . , y(L)

Use the power method to compute λ1
Assign a positive constant δ based on λ1
Construct an SPD matrix Ψ
Use the power method to compute the maximum eigenvalue λΨM of Ψ
Calculate λM based on λΨM
Compute the best step size cbest
repeat
for k � 1, 2, · · ·, do

Update G
∧

k

end
until convergence

ALGORITHM 2: P-GD algorithm.

6 Complexity



matrix [Φ(L)ΦT(L)], and the estimates are shown in
Figure 2.

From this simulation, we can obtain the following
conclusions:

(1) +e P-GD algorithm has the fastest convergence
rates, then is the ES-GD algorithm, and the T-GD
algorithm has the slowest convergence rates; this can
be shown in Figure 1;

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

k

ς

T−GD
ES−GD
P−GD

Figure 1: +e parameter estimation errors ς versus k.

Table 1: +e parameter estimates and their estimation errors.

Algorithms k g0,1 g0,2 g1 g2 g3 g4 g5 g1,1 g1,2 g1,3 ς(%)

T-GD

1 −0.00076 0.00014 0.04923 0.06527 −0.03305 0.02249 0.07435 0.00028 −0.00061 0.00039 90.22459
2 −0.00139 0.00027 0.09359 0.12417 −0.06288 0.04280 0.14142 0.00050 −0.00111 0.00070 81.40546
5 −0.00268 0.00062 0.20209 0.26859 −0.13612 0.09259 0.30580 0.00092 −0.00205 0.00134 59.79451
10 −0.00351 0.00104 0.32227 0.42938 −0.21783 0.14806 0.48858 0.00109 −0.00248 0.00172 35.76318
15 −0.00354 0.00132 0.39373 0.52564 −0.26688 0.18129 0.59784 0.00096 −0.00227 0.00171 21.39891
20 −0.00328 0.00150 0.43622 0.58328 −0.29632 0.20121 0.66316 0.00073 −0.00186 0.00157 12.81303

ES-GD

1 0.01755 −0.02912 0.31694 0.47762 −0.26669 0.15867 0.52597 −0.04381 0.01115 0.02908 31.10412
2 0.01217 −0.01885 0.43294 0.61302 −0.32675 0.20761 0.68377 −0.02656 0.00853 0.01859 10.47646
5 0.00153 −0.00351 0.49623 0.66886 −0.34469 0.22932 0.75506 −0.00126 0.00332 −0.00035 0.78800
10 0.00023 −0.00230 0.49948 0.67068 −0.34518 0.23005 0.75812 0.00101 0.00266 −0.00251 0.59350
15 0.00021 −0.00229 0.49951 0.67069 −0.34519 0.23005 0.75815 0.00103 0.00265 −0.00254 0.59388
20 0.00021 −0.00229 0.49951 0.67069 −0.34519 0.23005 0.75815 0.00103 0.00265 −0.00254 0.59389

P-GD

1 0.02557 −0.04243 0.46184 0.69598 −0.38862 0.23121 0.76643 −0.06384 0.01625 0.04237 9.53122
2 0.00246 −0.00123 0.49699 0.66530 −0.33847 0.22943 0.75110 0.00198 0.00327 0.00074 0.96875
5 0.00022 −0.00229 0.49950 0.67070 −0.34520 0.23005 0.75814 0.00102 0.00266 −0.00253 0.59415
10 0.00021 −0.00229 0.49951 0.67069 −0.34519 0.23005 0.75815 0.00103 0.00265 −0.00254 0.59389
15 0.00021 −0.00229 0.49951 0.67069 −0.34519 0.23005 0.75815 0.00103 0.00265 −0.00254 0.59389
20 0.00021 −0.00229 0.49951 0.67069 −0.34519 0.23005 0.75815 0.00103 0.00265 −0.00254 0.59389

True values 0.00000 0.00000 0.50000 0.67000 −0.34000 0.23000 0.76000 0.00000 0.00000 0.00000 0.00000

Table 2: +e elapsed times of the three algorithms.

Algorithm T-GD ES-GD P-GD
Elapsed time (second) 0.2482 (k� 20) 0.3125 (k� 20) 0.2876 (k� 20)
Elapsed time (second) 0.3516 (k� 40) 0.1325 (k� 6) 0.1008 (k� 4)
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Figure 2: +e maximum and minimum eigenvalue estimates versus k.
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Figure 3: A water tank system.
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Figure 4: +e parameter estimation errors ς versus k.
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(2) All the three algorithms can obtain the parameter
estimates and the time-delay estimates simulta-
neously, as shown in Table 1;

(3) +e P-GD algorithm is the most effective algorithm,
follows the ES-GD algorithm, and the last one is the
T-GD algorithm; this can be shown in Table 2;

(4) +e power method can obtain the maximum ei-
genvalue and the minimum eigenvalue of the in-
formation matrix, as shown in Figure 2.

Example 2. A water tank system with a communication
channel is proposed for simulation, see Figure 3, where u(t)

is the position of the inlet water valve, and y(t) is the water
level of Tank 2 and sampled by a pressure sensor.+ere exists
a time-delay τ � 3. +e water tank system is modeled by the
following model [35]:

y(t) � 0.3y(t − 1 − 3) − 0.1y(t − 2 − 3)

+ 0.15y(t − 3 − 3) − 0.3u(t − 1)

+ 0.2u(t − 2) + 0.13u(t − 3) + v(t).

(53)

Using the T-GD, ES-GD, and P-GD algorithms for this
model, the parameter estimates and their estimation errors
are shown in Figure 4.

+is example also shows that the two modified GD al-
gorithms have faster convergence rates than those of the
T-GD algorithm.

6. Conclusions

Two modified GD algorithms are proposed for systems with
time-delay in this paper. +e first is the ES-GD algorithm
that does not require the eigenvalue calculation. +e second
is the P-GD algorithm, that can get the best step size by using
the power method. +ese two modified GD algorithms have
faster convergence rates than those of the T-GD algorithm,
and can obtain the parameter estimates and time-delay
estimates simultaneously. +us, they can be widely used in
engineering practices.

In this paper, we only use the modified GD algorithms
for the time-delayed systems. If the systems have other kinds
of hidden variables, e.g., missing outputs and model iden-
tities, can these two algorithms be also effective? this topic
will remain as an open issue in future.
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