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(is paper proposes a super-twisting terminal sliding mode-based robust impedance controller to improve the compliance and
robustness in robot-environment interaction. Based on the desired impedance dynamics, an impedance reference trajectory is
constructed.(en, based on a super-twisting terminal sliding-mode, the robust impedance controller is designed to guarantee the
achievement of the desired impedance dynamics in finite-time through the finite-time convergence of an impedance error. (e
main contribution of this paper is that the proposed control improves impedance control robustness by using the super-twisting
nonsingular terminal sliding-mode without causing the chattering problem. (e finite-time stability of the closed-loop control
system is validated by theoretical analysis based on the Lyapunov theory, and the control effectiveness is illustrated by simulations
on a two-link robot manipulator.

1. Introduction

Compliant behavior of a robot is required in its interaction
with its environment to ensure safe interaction [1] but
cannot be provided by traditional position control of rigid-
link robots. Impedance control proposed by Hogan in 1980s
is one of the most popular used active compliance control
approaches [2]. In this approach, the desired spring-
damping dynamics between robot positions and interaction
forces is constructed to improve interaction compliance.
(is active compliance control has been applied in service
robots and industrial robots. In applications, one difficulty in
impedance control design comes from robot modeling
uncertainties, which hinders the convergence of impedance
errors to zero or its small neighborhood and affects the
control stability and control robustness. How to improve
impedance control robustness has always been a significant
research topic.

In the last decades, varieties of robust impedance control
approaches including iterative learning impedance control
[3–5], adaptive impedance control [6–9], neural network
impedance control [10–15], and fuzzy impedance control
[16] were proposed to improve impedance control

robustness. However, these control strategies have the fol-
lowing deficiencies. (i) (e desired impedance dynamics
requires to be factorized in the real space, which restricts the
application ranges. (ii) Iterative learning impedance control
is mainly applied in repetitive motions, adaptive impedance
control requires linear factorization of robot dynamics,
while neural/fuzzy impedance control only obtains finite-
ness of impedance errors and cannot get the convergence of
impedance errors to zero.

Sliding-mode control is well known for its strong robust.
In [17], a sliding-mode impedance control strategy was
proposed based on robust passivity. However, the inherent
chattering problem in sliding-mode control severely affects
the impedance control performances. To alleviate the
chattering problem, a dead-zone strategy was used in de-
signing sliding-mode impedance control [18]. However, this
strategy may not effectively decrease chattering. What is
worse, the used dead-zone strategy may hinder arriving at
the desired sliding surface, which further affects the im-
pedance control performances.

By traditional sliding-mode control, tracking errors
asymptotically converge to zero after related variables ar-
riving at the desired sliding surfaces. Terminal siding mode
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control with a nonlinear sliding-mode can guarantee the
finite-time convergence of tracking errors, which is better
than the asymptotic convergence to some extent [19]. Super-
twisting algorithm considered as second-order sliding-mode
control has strong control robustness to modeling uncer-
tainties without causing chattering problems [20]. (is
paper proposes a robust impedance control approach for
robots by exploiting the advantages of super-twisting ter-
minal siding mode. Based on the desired impedance dy-
namics, an impedance trajectory is constructed. (en, based
on a super-twisting siding mode, a robust impedance
controller is designed to guarantee the achievement of the
desired impedance through the finite-time convergence of
an impedance error. (is proposed control approach im-
proves the impedance control robustness using the super-
twisting sliding-mode without causing the chattering. (e
finite-time control stability and the control effectiveness are
validated by theoretical analysis and simulation results.

2. Robot Dynamics

Consider the robot arm with the following dynamics:

€q � f(q, _q) + Δ(q, _q) + M
− 1

(q) τ + τe( 􏼁, (1)

where q and _q denote the robot angular vector and velocity
vector, respectively; M(q) denotes the inertial matrix; f(q, _q)

denotes a known robot function; Δ(q, _q) denotes robot
modeling uncertainties; τ is the control input; and τe � JTfe

is the interaction force in joint space with J being the Ja-
cobian matrix and fe the interaction force in work space.

Assumption 1. (e desire trajectory qd and its first- and
second-order time derivative are bounded.

Assumption 2. On a compact set Ω, the uncertainty term
Δ(q, _q) satisfies dΔ � dΔ1, . . . , dΔn􏼂 􏼃

T
� _Δ, where

|dΔi|≤ dmax, i � 1, 2, · · · , n and dmax is a positive constant.
(e objective of this paper is to design a robust im-

pedance controller for (1) based on a super-twisting non-
singular terminal sliding-mode control approach to achieve
the following desired impedance dynamics:

−τe � Md €qd − €q( 􏼁 + Dd _qd − _q( 􏼁 + Kd qd − q( 􏼁, (2)

where Md, Dd, andKd denote the desired inertial matrix,
the desired damping matrix, and the desired stiffness matrix,
respectively.

3. Super-Twisting Terminal Sliding-Mode
Impedance Control

Passing τe through the following filter:

Md €qe + Dd _qe + Kdqe � τe, (3)

then the desired impedance dynamics in (2) can be
expressed as

Md €qr − €q( 􏼁 + Dd _qr − _q( 􏼁 + Kd qr − q( 􏼁 � 0, (4)

where qr � qd + qe is the constructed impedance trajectory.

Remark 1. In (2), Md, Dd, and Kd are usually chosen as
positive definite diagonal matrices that guarantees the fol-
lowing: (i) qd − q in (2) converges to zero when τe equals to
zero; (ii) given τe ∈ L∞, q, _q, and €q in (2) are bounded and
qe, _qe, and €qe in (3) are bounded. Combining qe, _qe, €qe ∈ L∞
and Assumption 1, one can obtain qr, _qr, €qr ∈ L∞.

Define e1 � qr − q, e2 � _qr − _q. (e impedance error has
the following form:

eim � Md €qd − €q( 􏼁 + Dd _qd − _q( 􏼁 + Kd qd − q( 􏼁 + τe,

� Md €qr − €q( 􏼁 + Dd _qr − _q( 􏼁 + Kd qr − q( 􏼁.
(5)

From (5), the desired impedance dynamics in (2) can be
realized through the convergence of eim, if e1, e2, _e2 converge
to zero. In the following, super-twisting-based robust
control is designed to make e1, e2, _e2 converge to zero.

Define the following terminal mode:

s � ce
α1/α2
1 + e2, (6)

where s � [s1, · · · , sn]T and α1, α2 are odd and satisfy
1〈α1/α2〈2. Based on the dynamics in (1), the dynamics of s
satisfies

_s � c
α1
α2

e
α1/α2−1
1 e2 − f(q, _q) − Δ − M

− 1
(q) τ + τe( 􏼁 + €qr . (7)

Design the following super-twisting mode control:

τ � −τe + M(q) c
α1
α2

e
α1/α2−1
1 e2 + €qr + k1|s|

1/2sgn(s)􏼢

+ k2 􏽚
t

0
sgn(s(τ))dτ − f(q, _q)􏼣.

(8)

where k1 and k2 are positive constants and satisfy
k
2
1〉4k2, k2〉dmax . Substituting (8) into (7) yields

_s � −k1|s|
1/2sgn(s) − k2 􏽚

t

0
sgn(s(τ))dτ − Δ. (9)

Theorem 1. Design the super-twisting sliding-mode con-
troller in (8) for the robot with dynamics (1). -en, the errors
e1, e2, _e2 converge to zero in finite-time, which further
guarantees the finite-time convergence of eim and the reali-
zation of the impedance dynamics in (2).

Proof. Define

z1i � si,

z2i � k2 􏽚
t

0
sgn si(τ)( 􏼁dτ + Δi,

x � x1, x2􏼂 􏼃
T

� z1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌sgn z1i( 􏼁, z2i􏽨 􏽩

T
.

(10)

From (9), the dynamics of x satisfies

_x �
1
x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Ax + BdΔ􏼐 􏼑, (11)

where dΔ � |x1|dΔ and satisfies |dΔ|≤dmax|x1|，and ma-
trices A and B are defined by
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A �

−k1

2
1
2

−k2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B �

0

1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (12)

Define C � [1, 0]. (en， d2
maxx

TCTCx − d
T

ΔdΔ ≥ 0，
and there exist a positive matrix P and a positive constant
ε，such that

A
T
P + PA + d

2
maxC

T
C + ϵP PB

B
T
P −1

⎡⎢⎣ ⎤⎥⎦〈0. (13)

Consider the following Lyapunov function:

V � x
T
Px. (14)

Taking the time derivative of V with respect to the time t
and substituting (13) and (15) into it yields

_V �
1
x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

x
T
, d

T

Δ􏼔 􏼕

A
T
P + PA PB

B
T

P 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ x

T
, d

T

Δ􏼔 􏼕
T

,

≤
1
x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

x
T
, d

T

Δ􏼔 􏼕

A
T
P + PA PB

B
T
P 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ x

T
, d

T

Δ􏼔 􏼕
T

+ d
2
maxx

T
C

T
Cx − d

T

ΔdΔ,

�
1
x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

x
T
, d

T

Δ􏼔 􏼕

A
T
P + PA + d

2
maxC

T
C PB

B
T
P −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ x

T
, d

T

Δ􏼔 􏼕
T

,

≤
−ϵ
x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
x

T
Px � −

−ϵ
x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
V.

(15)

Since |x|≤V1/2/λ1/2min(P)，then

−1
|x|
≤ −

λ1/2min(P)

V
1/2 . (16)

From (15) and (16), one can obtain

_V≤ − ϵλ

1
2
min(P)V

1
2.

(17)

Based on (17), V converges to zero in finite-time T0
which is defined by

T0 �
2V

1/2
(x(0))

ϵλ1/2min(P)
. (18)

From the finite-time convergence of V(x), x, si, z2i, i �

1, 2, · · · , n converge to zero in finite-time. From the defi-
nitions of si and s，we can further obtain the finite-time
convergence of e1, e2 in the finite-time T0. (e dynamics of
e2 can be expressed as

_e2 � c
α1
α2

e

α1
α2

− 1
1 e2 − k1|s|

1
2sgn(s) − k2 􏽚

t

0
sgn(s(τ))dτ − Δ.

(19)

As e1, e2, s, z2i converge to zero in the finite-time T0,
from (19), _e2 converges to zero in the finite-time T0. (e
finite-time convergence of e1, e2, and _e2 implies the finite-
time convergence of the impedance error which guarantees
the achievement of the dynamics in (2). □

Remark 2. If x1i � 0, then z1i � si � 0 and _si � 0 which
imply e1 � 0, e2 � 0, and _e2 � 0. (en, the desired imped-
ance dynamics is achieved.

Remark 3. In comparison with nonfinite-time control, fi-
nite-time control can make the robot converge to the desired
signal in finite-time. It has been illustrated that finite-time
control has faster convergence, better robust, and anti-
disturbance performances.

Remark 4. Neural networks (NNs), fuzzy logic (FL), and
sliding-mode control can be applied to improve impedance
control robustness. However, neural networks- and fuzzy
logic-based control typically only achieves infinite-time
uniformly ultimately bounded stability owing to the in-
herent approximation errors of NNs and FL. Compared with
NNs- and FL-based impedance control, the proposed super-
twisting impedance control can obtain finite-time control
stability and has better control robustness.

4. Simulation Results

To show the control effectiveness，simulations are con-
ducted on a two-link robot manipulator (see Figure 1) with
the dynamics in (1), where f(q, _q) � 0,

Δ(q, _q) � M
− 1

(q)(C(q, _q) _q + G(q) + F _q),

M(q) �
M11 M12

M21 M22
􏼢 􏼣,

C(q, _q) �
−w3sin q2( 􏼁 _q2 −w3sin q2( 􏼁 _q1 + _q2( 􏼁

w3sin q2( 􏼁 _q1 0
􏼢 􏼣,

G �
g1

g2
􏼢 􏼣, F �

v1 0

0 v2
􏼢 􏼣,

J �
−l1sin q1( 􏼁−l2sin q1+q2( 􏼁 −l2sin q1+q2( 􏼁

l1cos q1( 􏼁+l2cos q1+q2( 􏼁 l2cos q1+q2( 􏼁
􏼢 􏼣,

M11� w1+2w3cos q2( 􏼁,

M22� w2,

M12� w3cos q2( 􏼁+w2, M21 � M12,

g1� w4gcos q1( 􏼁+w5gcos q1+q2( 􏼁, g2� w5gcos q1+q2( 􏼁.

(20)

(e related parameters in the above equations are de-
fined by
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Figure 1: Two-link robot arm.
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Figure 2: Performances of auxiliary errors e1 and e2.
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Figure 3: Performances of the impedance error.
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w1� I1+I2+m1l
2
c1+m2l

2
1+m2l

2
c2,w2� m2l

2
c2+I2,w3� m2l1lc2,w4� m1lc1+m2l1,w5� m2lc2,w6� v1,w7� v2,

m1 � m2 � 1.5kg, l1 � l2 � 0.8m lc1� lc2 � 0.4m I1 � I2 � 0.3kg.m2
,

v1� v2 � 0.3N.m.s, g � 9.8
m
s2

.

(21)

Choose the interaction force
fe � [5 sin(0.2t), 5 cos(0.2t)]T，the robot initial position
q(0) � _q(0) � [0, 0]T，the desired trajectory
qd � [0.5 + 0.2 cos(πt/3)]T，and the desired inertial ma-
trix, the desired damping, the desired stiffness as I, 10I, and
20I, respectively. Design the control parameters as
c � 3, α1 � 5, α2 � 3, k1 � 8, and k2 � 10. Figures 2 and 3
depict the performances of tracking errors e1, e2 and the
impedance error eim by the proposed super-twisting sliding-
mode impedance control in Figure 4. Under the proposed
robust impedance controller, the auxiliary tracking errors e1
and e2 converge to zero after 10 second, which guarantees
the convergence of the impedance error eim. From the
simulation results, the super-twisting terminal sliding-mode
impedance control effectively improves the impedance
control robustness without causing the chattering problem
in sliding-mode control.

5. Conclusions

(is paper proposes a super-twisting terminal sliding-mode
impedance controller for robots to improve the compliance
and robustness of robot-environment interaction.

By finite-time control theory, we validate the finite-time
control stability and the impedance control robustness by
theoretical analysis. (e control effectiveness is illustrated by
simulations on a two-link robot arm.(emain contribution and
innovation of this paper lie in the super-twisting terminal
sliding-mode impedance controller which improves the im-
pedance control robustness without causing chattering.

(e desired impedance dynamics in (2) has infinite-time
stability. In the near coming future, we will construct finite-
time impedance dynamics and design robust impedance
control to achieve the desired finite-time impedance dy-
namics using sliding-mode control or sliding-mode
observer.
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