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Cancer therapy optimization is an issue that can be solved using the control engineering approach. An optimal therapy generation
algorithm is presented and tested using a tractable mouse model of breast cancer. The optimized therapeutic protocol is calculated
in a closed-loop manner at fixed time instants, twice in a week. The controller consists of a nonlinear model predictive controller
which uses the state estimation of a moving horizon estimator. The estimator also computes parameter estimates of the prediction
model such that the time varying nature of tumor evolution can be captured. Results show that remission can be induced in a 28-

day interval using the algorithm.

1. Introduction

Control of physiological systems is often challenging due to
significant inter and intrapatient variability, large time
constants of the controlled processes, and limitations in
measurement and control input characteristics. Optimiza-
tion of cancer chemotherapy is no exception as it has yet
been an unsolved problem. There are a number of potential
benefits of a robust optimization algorithm that can indi-
vidualize treatment strategy. For example, by minimizing
the dose of the drug, the side effects can be mitigated in
theory. Various schemes have been proposed in the litera-
ture, which aim to optimize the time instants of the treat-
ment, the amount of drug administered to the patient, or
even both [I, 2]. Some recent results involve impulsive
systems, reinforcement learning, or other model-based
approaches [3-6]. The proper mathematical treatment of the
problem often involves impulsive control actions, which has
been researched extensively [7, 8] and has vast importance in

cases where the drug is administered by injections. A closely
related issue in chemotherapy is that drug resistance can
occur during the therapy whose mechanism is not fully
understood in the present. Optimization of the therapies
could provide a partial remedy in this matter [9]. A specific
approach is metronomic therapy, which utilizes small doses
more frequently, as opposed to conventional therapeutic
schemes.

Our goal is to implement metronomic chemotherapy
where we optimize the amount of drug that is given at fixed
time instants. Specifically, we utilize a nonlinear model
predictive controller (NMPC) which uses a moving horizon
estimator (MHE) as a state observer and parameter esti-
mator. Our method is similar to [10], which uses the same
control structure in a discrete-time setting. Both the NMPC
and the MHE use a simple model for prediction and esti-
mation, with four state variables, developed in [11]. Pa-
rameters of the model were identified using the stochastic
approximation expectation-maximization (SAEM)
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algorithm on experimental data, which showed that the
model can describe the primary mechanisms of the tumor
behavior. Nevertheless, mutations in the tumor during its
evolution lead to changes in the model parameters, which
must be accounted for. Using the MHE developed in [12],
the problem can be effectively tackled and intrapatient
variability can be handled. It was shown that the MHE can
estimate a subset of the model parameters such that the
estimated tumor volume remains in the vicinity of the ex-
perimental data.

In separate work, the NMPC was designed using direct
multiple shooting and impulsive input action in the pre-
diction model [13]. The impulsive action was realized using a
continuous approximation of Dirac impulses leading to
continuously differentiable trajectories of the system. While
the algorithm was effective in reducing the tumors in silico,
numerical errors were still present in the computations.

Our current goal is to connect the two algorithms and
investigate their behavior in in vivo mice experiments to
prove the effectiveness of the scheme. We assume fixed
therapy dates on which we optimize the amount of drug for
each subject. The duration of the treatments during the
experiments was 28 days in each case, which was enough to
induce partial remission in mice. The treatment period was
preceded by a period where standard therapy was applied
and data were gathered for parametric identification that was
used for personalization of the therapy generation. We also
assumed that there is a measurement on each administration
day so that the fresh state estimations can be supplied to the
NMPC.

The main contribution of our work is that we show the
viability of model-based metronomic therapy in in vivo
using mice experiments. Since the vast majority of current
research in model-based chemotherapy optimization mostly
demonstrates in silico results [2, 3, 10], an experimental
validation showing the feasibility of the approach can bring
more attention to this field from other researchers.

In Section 2, we discuss the applied tumor model and the
control algorithm including the parameter and state esti-
mation. We also discuss the details of the animal experiment.
In Section 3, we show the experimental results and compare
them with numerical studies. We also compare them with
conventional therapies and show the differences. In Section
4, we summarize our results and also discuss future direc-
tions of research.

2. Control Algorithm

2.1. Model. The main component of the control algorithm is
the model which we use to forecast the tumor evolution in
the NMPC and to correct the measurements in the MHE. In
previous numerical studies, we used a model whose states
were the living and dead tumor volumes and the drug
concentration in the blood [14]. Research showed that by
augmenting the model with a fourth state that relates to the
drug concentration in the peripheral compartment, the
model can describe the pharmacokinetics of the drug more
accurately [11]. Hence, here we use the following tumor
growth model described by the differential equations.where
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x, is the time function of the living tumor volume (mm?), x,
is the time function of the dead tumor volume (mm?), x; is
the time function of the drug level in the central com-
partment (mg/kg), and x, is time function of the drug level
in the peripheral compartment (mg/kg). The input u is the
time function of the injection rate (mg/(kg - day)), while the
output y (mm?) is given as the total tumor volume. The
parameters of the model and their physiological meaning are
described in Table 1. The model is solved in the algorithm
using the ode45 routine of MATLAB with default settings.

. XX
%, =(a-n)x, —b—
EDgy + x5
) XX
Xy = nx; +b—12 —wx,,
EDqy + x5

(1)

X3 = —(c+k))xs + kyxy +u,
Xy = kx5 —kyxy,
Y =x + X,

The first possibility is to reintroduce the term u in the
context of an impulsive control system. Let us denote the
time of administrations with t;,i € Ny with t,<t; < ... <t;
<ty < ..., which restrict the solutions of the differential
equations of the model to be defined on the intervals
(to, 1], (b5 5], -5 (£ t41], - - .. The dosing is defined by the
rule

x(t)=x(t;)+(0010)"d,, (2)

where d; is the amount of drug injected into the subject at
time ¢; and the impulsive effects are x (t]) = lim;,__ . x (¢; +
h) in conjunction with x(¢;) = lim,__,,.x(t; — h). Equation
(2) means that the system is simulated from t; to t;,, with the
initial condition, that is, the endpoint of the previous
simulation, modified with the input value d;.

Another approach to model impulsive action is to re-
define the input in equation (1) such that

ﬂ<1 +cos(n(t7_£)>>, L;<t<t; + 2
2¢ 3

0, t+2e<t<t

u(t,d;) =

i+1>
(3)

where ¢ controls the approximation, & = t; + ¢ is the shifting
term, d; is responsible for the scaling, and ¢, is the starting
time of the impulse. This is a smooth approximation of the
Dirac delta distribution where the smoothness property
could be favorable in the case of using gradient-based op-
timizers where the cost function is based on the differential
equation model. This means that the formalism essentially
places a Dirac impulse in the beginning of each interval
(t;>t;41]. Since the integral of (3) with d; = 1 is one, we can
interpret d; as the amount of drug that is injected into the
patient. In order to determine the approximation parame-
ters, we can take into account that one administration takes
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TaBLE 1: Model parameters and their dimensions.

Parameter Unit Description

a 1/day Tumor growth rate

n 1/day Tumor necrosis rate

b 1/day Drug efficacy rate
EDq, mg/kg Median effective dose

w 1/day Dead tumor cell washout
c 1/day Clearance rate of the drug
k, 1/day Pharmacokinetic parameter
k, 1/day Pharmacokinetic parameter

approximately 15 seconds in mice which yields the choice
€ = (15/86400)/2 (day).

2.2. Moving Horizon Estimation. An MHE was designed to
provide parameter and state estimations of the process. In
model equation (1), the parameters are assumed to be
constant, which is not a realistic assumption physiologically,
due to intrapatient variability. This entails that during the
identification, we get a single set of parameters for each
measurement time-series data, as can be seen in [11].
However, by utilizing an MHE, a subset of the parameters
can be estimated and updated online, thus obtaining
better predictions in the NMPC as opposed to using the
fixed parameters. In [12], it was determined that the subset
P = (a,b,n,w)" of the original parameters in equation (1)
can be identified online with great accuracy, hence we es-
timate these parameters with the MHE. The identification
problem at each measurement time instant ¢; can be posed as

o 1 ¢ L A& (apY _
pIv(pit;) = M k_ZM w Ay + 1 ; o »stpe [E’p]’
(4)

where M >0 is the length of the horizon, A >0 is a scalar
tuning parameter, and w; = (3,/ (¥ + 50))® is a weighting
term where ¥, is the measured tumor volume with noise.
The term AY; = ¥; — Jy is the estimation error, where ¥, is
the estimated volume, that is, the output of model (1),
obtained from the solution X (t),t € (t,_j,t;] at the mea-
surement time instants t;. The second term penalizes the
deviation of the estimated parameters using the error
Ap, = p;— P, where p; ep is the I-th element of the
nominal parameter vector p, and p; € p is the parameter
vector which we optimize. The computation of the nominal
parameter vector p is detailed in Section 3.1. In the MHE, the
model is solved in the impulsive sense, such that the input
history is represented in the model using rule (2) instead of
(3).

The lower and upper bounds of the parameters were
determined to be p= (00.010.10)" and p= (2111)7,
respectively. By using the experimental time series in [15],
the parameters of the MHE were determined to be A = 200
and M = 14 based on in silico experiments. The reason for
the high gain is to track the tumor growth in a delay-free
manner, which is important since the tumors can grow
aggressively in a number of cases (meaning hundreds of

mm? in a week). Once the optimal set of parameters p is

found, we can use the simulation results to obtain the state
estimate as X (t;) for the NMPC. During the experiment, we
used the fmincon routine of MATLAB to solve problem (4)
using the standard settings of the solver.

2.3. Model Predictive Controller. In order to optimize the
treatment protocols, we use an NMPC to calculate the
optimal dosage. We assume that the measurements and the
dosages are on the same day, and thus the optimization is
performed on each t;. We also use a direct multiple shooting
(DMS) formulation of the optimization problem which can
boost the speed of the computation by integrating the model
in parallel during the prediction [16]. In contrast to the
MHE, where we only have four parameters to optimize, we
have potentially a higher number of optimized controls in
the NMPC case which is important to ensure the stability of
the scheme so that computational speed is not negligible. We
discretize the controls on the full prediction horizon
[titin] such that for each subinterval
(ti>trer ),k € {i, ..., N}, a constant d; is assigned which will
be the subject of the optimization. For each constant, we
assign model (1) with input definition (3) such that

X (8) = £ (x (1), u(td))s £ € (totin]s

X (1) = Seo

(5)

where s, is an artificial initial value assigned to the starting
point of each interval. We define the cost function to be the
usual quadratic penalization of the predicted tumor volume
and the input action as

" 2

l(Sk, dk) _ J kit (yk (t)~_ yref) + r(u(t’_dk))zdt, (6)

y Yo u

where r > 0 is a scalar control parameter. The output y, (¢) is
defined by the solution of equation (5) (using the estimated
parameters p), denoted by x(¢;sy,d;), according to
equation (5). The constants y,., ¥, 4 are the reference tu-
mor volume, the measured tumor volume at the beginning
of the treatment (at t = f;), and the maximum injection rate,
respectively. Since the scaling of the variables y, (t) and
u (t, d,) differs significantly, the normalization term ¥, and &
can improve the conditioning of the functional. The opti-
mization problem at time f; can be stated as

N-1
s, dJy (dit;) = Z 1(8i0disk)>
k=0

S.t.si - i(t,) = 0, (7)
Skr1 — Xk (tee158di) = 0,
d e [0,d],

where s = (s],8],,---s], ) and d = (d;, d;,,, ... d;, ) are
the vectors of optimized states and controls. Each element of
the control vector is constrained to be positive as 0 < d,; <d
which yields the uniform bound d =d1 (where 1 is an
N-dimensional column vector containing 1 at each entry).
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TaBLE 2: Identified parameter values before the smart therapies using the SAEM method.
a b c EDs, k, ky n w
S1 0.24 0.43 5.49 0.0035 138.88 2.04 0.0054 0.18
S2 0.22 0.46 5.15 0.0033 136.64 1.72 0.0055 0.23
S3 0.22 0.34 7.6 0.0044 147.26 1.68 0.0056 0.21
S4 0.22 0.47 4.77 0.0034 147.32 1.66 0.0058 0.22
S5 0.23 0.48 5.69 0.0033 144.06 1.94 0.0056 0.23
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FiGure 1: Experimental data of mouse S1. The first plot shows the evolution of the tumor volume, where each red cross is a measurement, the
blue line is the linear interpolation of the measurements, the purple line is the simulated tumor volume, and the black dots are the estimates
of the MHE. The second plot shows the computed doses, and the last plot shows the evolution of mass of the mice, where the red crosses are
the measurements and the yellow line is their linear interpolation.

The control and prediction horizon is the same in this al-
gorithm and is denoted by N. One can see that the esti-
mation X(#;) of the MHE explicitly appears in the first
constraint. Since keeping the continuity of the state vector is
essential for the DMS approach, as the second set of con-
straints indicates, the use of function (3) is thus justified.
Since each d; can be interpreted as the amount of drug
given to the patient at each administration time instant, their
value was limited with an upper bound that was chosen to be
8 (mg/kg). This value corresponds to the maximal tolerable
dosage (MTD) of pegylated liposomal doxorubicin [15] that
is administered to the mice during the experiments, dis-
cussed in Section 3. Using this upper bound, we can de-
termine the normalization factor % in equation (6) by
computing the maximal value of function (3). Hence, the
maximal  injection rate is = max{u(t,8)} = 11520

corresponding to the previous choice of ¢ for a 15-second
injection.

In practice, problem (7) is solved by combining the
optimized variables into a single vector as
w=(s],d,s],,dis>- - > Shn_p din-1>Sy)- For the ini-
tialization of w, we used the MHE estimation such that
wy = (x7,0.1,X7,0.1,...,X7,0.1) with 0.1 as initial admin-
istration for each optimized control. For the prediction
horizon, we used N = 3 in previous works [13]; however, in
order to improve the stability of the scheme, we choose N =
6 in this article. The prediction intervals At =t,, —t; =3
were set according to the time between each injection during
the experiment. The motivation behind our choice is that
more frequent administrations would stress the tail vein of
the mice excessively, which must be avoided completely [17].
We use the fmincon routine here as well to solve problem (7)
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F1GURE 2: Experimental data of mouse S2. The first plot shows the evolution of the tumor volume, where each red cross is a measurement, the
blue line is the linear interpolation of the measurements, the purple line is the simulated tumor volume, and the black dots are the estimates
of the MHE. The second plot shows the computed doses, and the last plot shows the evolution of mass of the mice, where the red crosses are

the measurements and the yellow line is their linear interpolation.

with default settings, except the MaxFunctionEvaluations
which was modified to 5000 due to slow convergence. We
denote the optimal solution of equation (7) by w*, from
which the first control d; = wi is injected into each subject
at time t;, according to the NMPC principle.

3. Experimental Validation

We validated the proposed algorithm with mice experiments
which we detail here. We describe the experiment timeline
and the choice of parameters and show the time series of the
measurements. We discuss the limitations of the experiment
in conjunction with analysis of the results.

All animal housing and breeding processes and ex-
perimental protocols were approved by the Hungarian
Animal Health and Animal Welfare Directorate according
to the EU’s most recent directives. All surgical and treat-
ment procedures were performed according to the Com-
mittee on the Care and Use of Laboratory Animals of the
Council on Animal Care at the Institute of Enzymology,
Research Centre for Natural Sciences in Budapest, Hungary
(001/2574-6/2015).

3.1. Experimental Setup. Optimized treatment protocols
were tested on a clinically relevant, genetically engineered

mouse model of breast cancer. In this model, Brcal, a DNA
repair gene, and p53, a regulator of cell cycle and genome
stability, were knocked out in breast epithelial cells. The
resulting mammary tumors highly resemble the Brcal-
linked, triple-negative, hereditary breast cancer in humans:
the molecular, immunohistochemical, morphological, and
genetic characteristics are almost indistinguishable from its
human counterpart [18]. Moreover, these tumors respond to
chemotherapy very similarly, as initial treatment with
doxorubicin, docetaxel, or cisplatin significantly reduces
tumor size and induces remission. Nevertheless, long-term
therapy often fails due to the emergence of drug resistance
[19, 20], and most of the novel therapeutic approaches to
tackle it are in the early developmental phase [21-23]. Al-
though we showed previously that pegylated liposomal
doxorubicin (PLD) increases relapse-free and overall sur-
vival by 6 and 3-fold, respectively, these tumors cannot be
cured using conventional chemotherapy regimens [15].
Findings obtained by using this model are frequently
translated to human cancer clinic due to its similarity to
human breast cancer.

Using the aforementioned tumor model, we optimized
therapy protocols for 6 mice receiving PLD treatment during
our experiment. After the measured tumor volumes have
exceeded 200 mm?, the mice received a single dose of either
4mg/kg or 6mg/kg of PLD. The goal of this initial
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F1GURE 3: Experimental data of mouse S3. The first plot shows the evolution of the tumor volume, where each red cross is a measurement, the
blue line is the linear interpolation of the measurements, the purple line is the simulated tumor volume, and the black dots are the estimates
of the MHE. The second plot shows the computed doses, and the last plot shows the evolution of mass of the mice, where the red crosses are
the measurements and the yellow line is their linear interpolation.

administration was to observe the controlled tumor dy-
namics so that the parameters of model (1) can be identified
with the SAEM algorithm more precisely as opposed to
uncontrolled growth. After the identification phase, we
waited for the tumors to enter into a relapse phase, and then
we initiated a 30-day-long therapy using the algorithm. The
reason why we started the treatment at the same time for
each mice is to reduce the logistic expenses of the experiment
and to cover a wide range of initial tumor sizes at the be-
ginning of the therapies. After 28 days, we stopped the
treatment so that the observed results can be compared on
the same time scales. During the 30 days, the tumor in one of
the mice was in complete remission, so we omitted it from
the discussion here. We denote the remaining five mice with
identifiers S1-S5. To obtain volume estimates, we used
calipers to measure the width and length of the tumor
approximated the tumor volume [24] as
y= g(length x width) ¢/, (8)

Mice S1-S3 received a single dose of 4 mg/kg PLD on
days 2, 3, and 4, respectively. Mice S4 and S5 received a
higher dose of 6 mg/kg on days 3 and 8. At day 32, we
identified the parameters of model (1) using the SAEM
algorithm [11, 14], and the results can be seen in Table 2.
Note that since the mice are genetically identical and the

source of the tumor is the same and the applied drug is the
same, the parameters have similar values. We used these
parameters to create the nominal parameter vector p in the
MHE. We computed the estimated states for each mea-
surement from day O to 32 and used this estimation to
initialize the NMPC. Weights of the NMPC were set by
varying r until we got a stable closed-loop simulation re-
sponse where the first dose is smaller than the MTD, which is
8 mg/kg for PLD [15]. The r value for mice S1-S5 was found
to be 107,10%,107, 10°, and 10, respectively. The reference
volume to be tracked was y,.; = 1 because the model cannot
be steered to zero states, and y, was the tumor volume
measurement on day 32. During the 28-day treatment pe-
riod, there were 9 fixed administration times for each mice in
total, which was weekly injected on Mondays and Thursdays,
such that we can comply with the rule that there must be at
least 3 days between the injections.

3.2. Limitations. During the experiment, the value of r was
increased by an order of magnitude in the case of S1, S4, and
S5. This is due to the effect of cumulative toxicity, which is
related to the total administered drug in the past which we
did not account for during the optimization. This means that
in the case of S1, we set r = 10% on day 35. For S4, we
changed r to 107 on day 38 and 10® on day 56. Finally, the r
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F1GURE 4: Experimental data of mouse S4. The first plot shows the evolution of the tumor volume, where each red cross is a measurement, the
blue line is the linear interpolation of the measurements, the purple line is the simulated tumor volume, and the black dots are the estimates
of the MHE. The second plot shows the computed doses, and the last plot shows the evolution of mass of the mice, where the red crosses are
the measurements and the yellow line is their linear interpolation.

value of S5 was modified to r = 107 on day 35. We also want
to point out that the parameter estimation did not capture
the process accurately in the case of S4 and S5. One can see in
Table 2 that the obtained ED, parameters have very low
values, which directly indicates that the tumor can be ef-
fectively treated with small doses. Excluding the MHE and
generating an open-loop therapy for example lead to doses
in the 0.1 — 1 (mg/kg) regime, which is insufficient for the
treatment of the tumor. Nevertheless, using an MHE could
significantly alleviate this problem during a closed-loop
control, as the results indicate a partial remission in each
mice. The last potential issue with the mentioned experiment
could be the use of an initial identification phase. It would be
beneficial to observe the behavior of the algorithm by itself,
using a preidentified average patient parameter set as the
nominal parameter vector p. By doing so, the MHE could
solely individualize the treatment iteratively with each new
measurement.

3.3. Results. Results of the experiment can be seen in
Figures 1-5. The first plot depicts the measured tumor
volumes (red crosses) linearly interpolated (blue lines) in
conjunction with the simulation of the model for the
identified parameters and the calculated input (purple line)
and the estimation results of the MHE (black dots). The plot

in the middle contains the applied dosages (green), and the
last plot shows the change in the mass of the mouse (yellow).
One can see qualitatively that in each case, the controllers
were able to reduce the size of the tumors. We have gathered
several statistics of the time series in Table 3. The first
column shows the total amount of administered drug during
the 30-day period which we denoted by u,,. The second
column (Ay) shows the difference between the starting
tumor volume and the end volume (AY = 75, — Vo) AV max
is a similar measure which indicates the deviation between
the maximum volume and the end volume, ie,
AV ax = Vmax — Yeo» and these values are also shown in
percentage as Ay, (%) = AV /P ax-

Since the time series is corrupted by significant noise due
to the nature of caliper measurements, we regressed the time
series with a second-order polynomial to extract a more
accurate measure of the volume decrease. Hence, the fifth
column represents the difference between the maximum of
the regression polynomial and the endpoint of it (Ay,,.),
and the same data are presented in percentages as well.
Furthermore, we have also calculated a simple linear cor-
relation coefficient between the first difference of the
measured volume ¥ and the measured mass m of the mice
which can be seen in the seventh column (r5, ).

In previous experiments with PLD, the therapy protocol was
initiated at 200 mm? with 8 mg/kg MTD given in every 10 days
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FIGURE 5: Experimental data of mouse S5. The first plot shows the evolution of the tumor volume, where each red cross is a measurement, the
blue line is the linear interpolation of the measurements, the purple line is the simulated tumor volume, and the black dots are the estimates
of the MHE. The second plot shows the computed doses, and the last plot shows the evolution of mass of the mice, where the red crosses are
the measurements and the yellow line is their linear interpolation.

TABLE 3: Statistics obtained from the time series.

utot Aj(/ Aj}max Aj’jmax (%) A7max A7max (%) T}‘)m
S1 102 678 1200 89 1139 97 0.04
S2 673 89 99 98 86 94 0.01
S3 827 847 1124 83 1288 89 0.07
S4 718 =75 177 70 73 41 -0.17
S5 11.36 157 601 67 497 65 -0.72

until the tumor volume has reached 50 percent of its original
volume [15]. If we assume that a single dose of 8 mg/kg is ef-
fective, then comparing u,,, with this value indicates that our
approach did not use less drug than in a conventional case in
general. However, this can be attributed to the fact that in this
study, the treatments were initiated at tumor volumes other than
200 mm®. As one can see, in the case of S2 and $4, the total doses
were smaller than the MTD which reinforces such a claim. It can
also be seen both qualitatively and quantitatively that the
generated protocols can induce remission in the subjects, in-
variant to the size of the tumor on the first day of the treatment.
AY oy (%) shows that in almost every case, we have a significant
reduction in the size of the tumor as well, which is reinforced by
AV ax (%) (where a larger value indicates better response to the
therapy).

Also, there is a slight correlation between the tumor
volume and the mass of the mouse. By inspection, one can

see similar patterns in both time series (a drop between days
42-46 in the case of S2 for example). By taking the first
difference of the daily interpolated time series and com-
puting its correlation coeflicients, we obtained the values in
the last column in Table 3. While the obtained results only
show a strong relationship in S5, a more elaborate statistical
analysis might reveal additional correspondence; however, it
is out of the scope of the current paper.

4. Conclusion

We have presented a control-theoretic approach of optimal
chemotherapy protocol generation which we have validated
with animal experiments. The combined MHE-NMPC ap-
proach was able to shrink the size of the tumor by using a
similar amount of drug as in the case of conventional
therapy. A limitation of the experiment was the change in
the control parameters during the therapy generation. This
entails that in the future, a constraint on the cumulative
toxicity must be introduced in the optimization problem,
and the bounds on the maximum admissible drug should be
also lowered. The estimation of the model parameters could
also be improved so that the model has better predictive
capabilities. The best solution would be to identify a reliable
population average, instead of individualized parameter sets
for each mouse, which then could be improved with the
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MHE. Another issue is the relatively small number of mice
used during the experiment, which is inadequate for the full
validation of the scheme. Nevertheless, as a proof of concept,
the results showed that the approach has potential, and the
experiment also revealed the flaws of the algorithm which
must be corrected in a future version.
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