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In this study, complex dynamics of Briggs–Rauscher reaction system is investigated analytically and numerically. First, the
Briggs–Rauscher reaction system is reduced into a new nonlinear parametric oscillator. .e Melnikov method is used to
derive the condition of the appearance of horseshoe chaos in the cases ω � Ω and ω≠Ω. .e performed numerical
simulations confirm the obtained analytical predictions. Second, the prediction of coexisting attractors is investigated by
solving numerically the new nonlinear parametric ordinary differential equation via the fourth-order Runge–Kutta al-
gorithm. As results, it is found that the new nonlinear chemical system displays various coexisting behaviors of symmetric
and asymmetric attractors. In addition, the system presents a rich variety of bifurcations phenomena such as symmetry
breaking, symmetry restoring, period doubling, reverse period doubling, period-m bubbles, reverse period-m bubbles,
intermittency, and antimonotonicity. On the contrary, emerging chaotic band attractors and period-1, period-3, period-9,
and period-m bubbles routes to chaos occur in this system.

1. Introduction

Nonlinear oscillations remain up to now an attractive topic
of research due to their applications to physics, biology,
chemistry, and engineering [1–4]. To that end, various
analytical methods and numerical tools have been proposed
and successfully used in study of nonlinear dynamics of
oscillatory systems [4–10]. Recently, nonlinear chemical
oscillations have received attention of many researchers
from theoretical and experimental point of view [11–27].
.is is due to dynamic complexities that can exhibit the new
nonlinear chemical oscillators and their potential applica-
tions in engineering. For example, Cassani et al. [19] studied
the nonlinear behavior of Belousov–Zhabotinsky-type re-
actions focusing on modeling under different operating
conditions, from the simplest to the most widely applicable

models. .e stability analysis of simplified models as a
function of bifurcation parameter has been studied.
Adéchinan et al. [20] studied the dynamics and active
control of chemical oscillations governed by a forced gen-
eralized Rayleigh oscillator. .e condition of the appearance
of chaos has been derived using the Melnikov method. .e
control efficiency has been shown through the control gain
parameter on the behavior of the system. Monwanou et al.
[21] investigated the effect of an amplitude modulated ex-
citation on the nonlinear dynamics of reactions between four
molecules. .e stability analysis of the autonomous system
has been made in detail. .e dynamics of the nonautono-
mous chemical system showed various routes to chaos.
Olabodé et al. [22] used the Melnikov method and derived
analytically the domains boundaries where horseshoe chaos
appears in chemical oscillations. .ey afterward controlled

Hindawi
Complexity
Volume 2022, Article ID 9350516, 16 pages
https://doi.org/10.1155/2022/9350516

mailto:fkpomahou@gmail.com
https://orcid.org/0000-0003-4496-818X
https://orcid.org/0000-0002-2106-4586
https://orcid.org/0000-0003-0142-7703
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9350516


chaotic oscillations by subjecting the nonlinear chemical
system to fluctuation hydrodynamic drag forces. On the
contrary, the effects of passive hydrodynamics force on
harmonic and chaotic oscillations in nonlinear chemical
oscillations governed by a forced modified Van der
pol–Duffing oscillator have been analyzed by Olabodé et al.
[23]. Recently, Ghosh and Ray [24] showed that a class of
arbitrary, autonomous kinetic equations in two variables,
describing chemical and biochemical oscillations, can be
reduced to the form of a Liénard oscillator. Binous and
Bellagi [25] studied various important aspects of nonlinear
dynamics such as limit cycles, quasi-periodic and chaotic
behaviors, time series and phase portraits, power spectra, the
time-delay reconstruction diagrams, Hopf bifurcation, bi-
furcation diagrams, steady-state multiplicity of four prob-
lems drawn from the chemical, and biochemical engineering
field of study. Shabunin et al. [26] modeled chemical re-
actions by the forced limit-cycle oscillator and studied
synchronization phenomena and transition to chaos.

.e most theoretical studies on nonlinear dissipative
chemical systems in general and on Briggs–Rauscher re-
action system in particular have been performed with pe-
riodically external excitation [20, 22, 23, 27]. However, the
aspects of nonlinear dynamics of Briggs–Rauscher reaction
system under the influence of the parametric and two ex-
ternal periodic excitations have not been yet studied. Such a
study will be important to perform since it is well known that
the dynamics of a nonlinear system subjected to parametric
and external excitations exhibits complex and rich dy-
namical behaviors [9, 28–30]. .us, the problem of interest
is to show that the Briggs–Rauscher reaction system can be
modeled by the following new nonlinear parametric
oscillator:

x + μ 1 + x
2

+ pc cosωt􏼐 􏼑 _x

+(1 + p cosωt) α1x + α3x
3

􏼐 􏼑

� −α0(1 + p cosωt) + f cosΩt,

(1)

where the dots indicate differentiation with respect to time t

and μ, p, αi f, ω, and Ω are real system parameters.
.e originality of this work is brought by the parameter

p which controls the presence of the parametric and external
excitations of frequency ω. It is important to point out that
Si-yu and Jin-yan [29] considered a particular case of this
strong nonlinear parametric equation in the study of the
parameter stability and global bifurcations. It is now easy to
see through this equation that when p � 0, the classical
nonautonomous Van der Pol–Duffing oscillator is obtained.
.is classical driven oscillator has been widely studied in the
context of various physical, chemical, and engineering
problems. Some theoretical and numerical results for some
particular cases of the strong nonlinear parametric system
(1) have been found in the open literature. .erefore, the
dynamics study of system (1) is of a crucial importance in
nonlinear chemical oscillations for a better understanding of
the dynamical behaviors of the system. In addition, the

investigation of nonlinear phenomena in dynamical system
(1) is even significance in practical applications.

In order to predict the chaotic behavior in a driven
nonlinear system, the Melnikov theory is often used
[9, 27, 42]. From this theory, the condition for the existence
of homoclinic bifurcation to occur in the case where the
potential is an asymmetric or symmetric double well exists in
the open literature for p � 0. However, for p≠ 0, the pre-
diction of horseshoe chaos in a new nonlinear parametric
system (1) under two periodic external excitations has not
been investigated up to now. .us, the presence of the
parameter p would contribute to nonlinear dynamics of
Briggs–Rauscher reaction system modeled by equation (1).

.e coexisting attractors exist in many natural and ar-
tificial systems. .is phenomenon has received the attention
of many investigators in nonlinear dynamics fields
[13, 20, 21, 31]..is is due to the fact that it provides multiple
optional steady states for the system to respond to different
needs. To that end, various studies on some driven nonlinear
systems have shown the existence of multiple coexisting
attractors [32–39]. In nonlinear chemical dynamics, the
coexistence of two or more stable dynamical states (steady
state, periodic oscillation, and chaos) of a system, under the
same set of external constraints-input concentration of re-
actants, temperature, pressure, and so on, is one of the most
interesting and significant phenomena. Although the co-
existence of attractors offers important advantages to sys-
tems to respond to different solicitations, it also affects the
performance of the system to some extent. For this reason,
its prediction is become a necessity for the scientific com-
munity in recent years. .erefore, the study of coexisting of
symmetric and asymmetric attractors in a new parametric
chemical oscillator described by (1) is of fundamental and
even practical interest. Furthermore, the prediction of
coexisting attractors in a Briggs–Rauscher reaction system
modeled by a strong nonlinear oscillator with damping and
stiffness time-varying described by (1) has not yet been
studied. So, the second problem that attracts our attention in
this work is the prediction of chaos and coexisting attractors
in a new nonlinear parametric chemical system governed by
equation of motion (1).

In order to attain our objective, we firstly show that the
Briggs–Rauscher kinetic equations can be reduced to a new
nonlinear parametric oscillator given by equation (1), and we
apply the Melnikov method for deriving the condition of the
appearance of horseshoe chaos (Section 2). Second, we
investigate the existence of coexisting of attractors by solving
numerically the equation of motion (1) via the fourth-order
Runge–Kutta algorithm (Section 3). Finally, we end with a
conclusion (Section 4).

2. Mathematical Model and Melnikov Analysis

2.1. Mathematical Model. We consider in this work the
Briggs–Rauscher reaction system [40] which represents a
simple model for designing a chemical oscillator. Such a
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reaction was proposed by Boissonade and de Kepper [41].
.e governing equations are defined as follows:

_u � −u
3

+ μ0u − kv − λ,

_v �
1
s

(u − v),

(2)

where μ0 and k are the positive parameters, s is the char-
acteristic evolution time of the feedback −kv, and λ is here
considered as constant negative feedback for the system. In
theoretical studies performed up to now, system (2) has been
transformed into a Liénard-type oscillator by considering s

as a constant parameter [20, 22–24, 27]. .e novelty of this
work constitutes to express the characteristic evolution time
s under the following form:

s
−1

� s
−1
0 (1 + p cosωt). (3)

By differencing the first equation of system (2) and
taking into account its second equation and equation (3), we
obtain after some mathematical manipulations the following
equation:

x + μ 1 + x
2

+ pc cosωt􏼐 􏼑 _x

+(1 + p cosωt) α1x + α3x
3

􏼐 􏼑

� −α0(1 + p cosωt),

(4)

where μ � (1/s0) − μ0, α0 � (λ/s0)
�����
(3/μ)

􏽰
, α1 � (k − μ0)/s0,

α3 � (μ/3s0), c � 1/s0μ, A �
������������
3s0/(μ0s0 − 1)

􏽰
, and

u � (1/A)x.
Now, taking into account the influence of the external

excitation of the form g cosΩ t, we finally obtain the desired
equation of motion (1). It is easy to see that when p � 0, a
similar equation (1) has been used to describe the nonlinear
chemical oscillations of Briggs–Rauscher reaction system
[22, 27]. After establishment of the equation of motion (1),
we use in the next section the Melnikov method for deriving
the condition of the appearance of horseshoe chaos in the
cases, where ω � Ω and ω≠Ω.

2.2. Melnikov Analysis. .e Melnikov method is a powerful
analytical tool widely used to predict the existence of
horseshoe chaos in a nonautonomous system [9, 27, 42]. In
order to perform such a prediction, we rewrite (1) under the
form of a first ordinary differential equation, that is,

_x � y,

_y � −α0 − α1x − α3x
3

− εμ 1 + x
2

+ pc cosωt􏼐 􏼑y

− εp α0 + α1x + α3x
3

􏼐 􏼑cosωt + εf cosΩt,

(5)

where ε is a small perturbation quantity, that is, 0< ε< 1.
From the system of (5), the unperturbated system obtained
with ε � 0 becomes

_x � y,

_y � −α0 − α1x − α3x
3
.

(6)

System (6) is Hamiltonian, and the potential function
and associated Hamiltonian are

V(x) � α0x +
1
2
α1x

2
+
1
4
α3x

4
,

H(x, y) �
1
2
y
2

+ V(x),

(7)

respectively. .e homoclinic orbits corresponding to system
(6) are given by the following expressions [27]:

xh � x0 +

�
2

√
σ2

α3 x0 ± δ cosh στ( 􏼁
,

yh � ∓
�
2

√
δσ3sinh(στ)

α3 x0 ± δ cosh(στ)( 􏼁
2,

(8)

where x0 � α0/2α1
�������
−3α3/α1

􏽰
, δ2 � −α1/α3 − 1/2x2

0,
σ2 � −α1 − 3/2α3x2

0, τ � t − t0, and t0 is the cross-section
time of the Poincaré and can be considered as the initial time
of the forcing time. When ε≠ 0, the Melnikov method can be
applied. .us, the Melnikov integral function is defined as
follows:

M t0( 􏼁 � −μ 􏽚
+∞

−∞
y
2
hdτ + 􏽚

+∞

−∞
x
2
hy

2
hdτ􏼒 􏼓

−
p

s0
􏽚

+∞

−∞
y
2
h cos(ωt)dτ − pα1 􏽚

+∞

−∞
xhyh cos(ωt)dτ

− pα3 􏽚
+∞

−∞
x
3
hyh cos(ωt)dτ − pα0 􏽚

+∞

−∞
yh cos(ωt)dτ

+ f 􏽚
+∞

−∞
yh cos(Ωt)dτ.

(9)

Taking into consideration the expressions of the quan-
tities xh and yh given by (8) and using the standard integral
table [43], the Melnikov integral function (9) yields after
some mathematical manipulations to the following
equation:

M t0( 􏼁�K0+pK1 cos ωt0( 􏼁+pK2 sin ωt0( 􏼁+fK3 sin Ωt0( 􏼁.

(10)

Assuming that Ω � ω, the Melnikov function (10)
becomes

M t0( 􏼁 � K0 + pK1 cos ωt0( 􏼁 + pK2 + fK3( 􏼁sin ωt0( 􏼁, (11)

where the expression of Ki, i � 0, 3, are given in Appendix. It
is easy to remark that (11) can be rewritten as follows:

M t0( 􏼁 � K0 +

������������������

K
2
1p

2
+ K2p + K3f( 􏼁

2
􏽱

cos ωt0 − ϕ( 􏼁, (12)
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Figure 1: Phase portraits and its corresponding Poincaré maps showing the validation of the proposed analytical prediction of horseshoe
chaos in the case ω � Ω.
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Figure 2: Basins of attraction of the new parametric chemical system (1) with the parameters of Figure 1 for three different values of f:
(a) f � 0.03, (b) f � 2, and (c) f � 3.
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with ϕ � arctan(K2p + K3f/K1p).
To determine the Melnikov criterion for appearance of

horseshoe chaos in our new nonlinear dissipative parametric
oscillator, it is necessary to let M (t0) � 0 with M′(t0)≠ 0.
.us, M (t0) � 0 leads to

cos ωt0 − ϕ( 􏼁 � −
K0������������������

K
2
1p

2
+ K2p + K3f( 􏼁

2
􏽱 . (13)

Since
M′(t0) � −ω

������������������

K2
1p

2 + (K2p + K3f)2
􏽱

sin(ωt0 − ϕ)≠ 0 im-
plies sin(ωt0 − ϕ)≠ 0, then cos(ωt0 − ϕ)≠ 0. .us,
|cos(ωt0 − ϕ)|< 1. .erefore, the condition for the existence
of chaos is obtained if

M1 �
K0������������������

K
2
1p

2
+ K2p + K3f( 􏼁

2
􏽱

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

< 1. (14)
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Figure 3: Melnikov threshold curves for homoclinic chaos in the (f,Ω) plane with ω � (
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From this analytical result, the following theorem can be
formulated.

Theorem 1. If condition (14) is verified, then a homoclinic
bifurcation occurs and the new parametric chemical system
(1) may exhibit chaotic behavior.

Using the following system parameters k � 25.361,
μ0 � 25.41, s0 � 0.0392, λ � −0.0025, ω � Ω � 1.0, and
p � 0.001, we obtain M1 > 1 for f � 0.03 and M1 < 1 for
f � 3..erefore, the desired system given by (1) may display
periodic motion for f � 0.03. However, whenf � 3, the new
chemical system (1) may exhibit chaotic behavior. .e
numerical simulations realized in Figure 1 under initial
conditions x (0) � 0.5 and _x (0) � 0.5 confirm the analytical
prediction. To test again the validity of the proposed ana-
lytical prediction, we have plotted in Figure 2, the basins of
attraction of the new nonlinear chemical system (1) which
represent a best tool to study numerically the regularity or

irregularity of the attractors. .ese basins of attraction are
obtained by solving numerically the equation of motion (1)
and collecting the initial conditions for which the dynamics
of the new chemical system is sensitive. From Figure 2(a), we
obtain that the new parametric chemical oscillator show a
regular behavior when f � 0.03. However, the erosion of the
basin of attraction appears and becomes more and more
visible for f � 2 and f � 3. .us, we can conclude that the
analytical and numerical results are in good agreement.

Now, in the case where ω≠Ω, the Melnikov function
(10) becomes

M t0( 􏼁 � K0 + p

�������

K
2
1 + K

2
2

􏽱

sin ωt0 + ψ( 􏼁 + fK3 sinΩt0,

(15)

with tanψ � K1/K2. For p≠ 0 and ω≠Ω, the condition of a
zero of this Melnikov function is obtained from |sin(ωt0 +

ψ)|< 1 and |sin(Ωt0)|< 1. .erefore, a sufficient condition
for the onset of Melnikov chaos in our new chemical system
(1) can be expressed from [44, 45] as follows:
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f≥
p

�������

K
2
1 + K

2
2

􏽱

− K0

K3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (16)

From (16), the following theorem can be formulated.

Theorem 2. If condition (16) is satisfied, then a homoclinic
bifurcation occurs and the new chemical system (1) may
display chaotic motion.

Figure 3 shows the dependence of the amplitude f of the
periodic external excitation on the frequencyΩ for three different
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values of p. .rough this figure, we notice that the horseshoe
chaos region decreases when p increases. .is observation is
confirmed by the basins of attraction shown in Figure 4.

3. Coexisting Attractors

.e aim of this section is to investigate the coexisting be-
haviors of attractors and the eventual transitions to chaos
that can arise in the Biggs–Rauscher (BR) reaction system

governed by equation of motion (1) when the parameter p

varies. For this, we solve numerically the equation of motion
(1) by using the fourth-order Runge–Kutta algorithm with
the following system parameters: k � 25.361, μ0 � 25.41,
s0 � 0.0392, and λ � −0.0025. .e initial conditions and the
calculation step used to realize the numerical simulations are
(0.5, 0.5) (blue color), (−0.5, −0.5) (red color), (−0.8, 0.0)
(green color), (0.2, 0.2) (yellow color), and h � 0.005,
respectively.
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Figure 7: Phase portraits showing the coexistence of three different chaotic attractors for f � 7.9 under three initial conditions:
(a) (0.5, 0.5), (b) (−0.5, − 0.5), and (c) (−0.8, 0).

4 4.5 5 5.5 6 6.5 7 7.5 8

4 4.5 5 5.5 6 6.5 7 7.5 8

4

2

0

-2

x

4

2

0

-2

x

0.1
0.2

0
-0.1
-0.2
-0.3Ly

ap
un

ov
 ex

po
ne

nt

0.1
0.2

0
-0.1
-0.2
-0.3Ly

ap
un

ov
 ex

po
ne

nt

f

4 4.5 5 5.5 6 6.5 7 7.5 8

4 4.5 5 5.5 6 6.5 7 7.5 8

4

2

0

-2

x

0.1
0.2

0
-0.1
-0.2
-0.3Ly

ap
un

ov
 ex

po
ne

nt

f

4 4.5 5 5.5 6 6.5 7 7.5 8

4 4.5 5 5.5 6 6.5 7 7.5 8
f

p = 0.0 p = 0.001

p = 0.002

Figure 8: Bifurcation diagrams and its corresponding Lyapunov exponents versus f showing the effect of pwhen ω � (
�
5

√
− 1)/2 andΩ � 1.

.e parameters of Figure 3 are kept constant.

8 Complexity



40

30

20

10

0

-10

80

60

40

20

0

-20

-40

-20

-30

-40

x x

1 2 3 4 5 6 7 8
f

1 2 3 4 5 6 7 8
f

p = 1

p = 1.1

Figure 9: Effect of p on the bifurcation diagrams of the new nonlinear parametric chemical system (1) with the parameters of Figure 8.

−40 −20 0 20 40
−600

−400

−200

0

200

400

600

dx
/d

t

x
−4 −2 0 2 4

−1.5

−1

−0.5

0

0.5

1

(a)

−600

−400

−200

0

200

400

600
dx

/d
t

−100 −50 0 50 100 −2 −1 0 1 2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

(b)
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Figure 5 shows the influence of p on the bifurcation
diagrams of Biggs–Rauscher (BR) reaction system de-
scribed by equation (1). .rough this figure, we notice that

this parameter accentuates the symmetry breaking phe-
nomenon and removes the symmetry restoring phe-
nomenon. Moreover, the coexistence of attractors
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remains in the system under the study when p≠ 0. Figure 6
illustrates the coexisting behaviors of attractors for several
different values of f for p � 0.001. From this figure, we

clearly see that the new nonlinear dissipative parametric
chemical system presents multiple coexisting attractors.
For example, when f � 5.8, the left period-2 orbit coexists
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Figure 13: Effect of p on the bifurcation diagram of Figure 11 of the new chemical system obtained under initial conditions (0.5, 0.5).
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with the right period-2 orbit. For f � 6.7, asymmetric
period-6 and period-8 orbits coexist. As f � 6.8, the left
period-6 orbit coexists with the right chaotic attractor.
When f � 7, two chaotic asymmetric attractors of dif-
ferent topologies coexist. On the contrary, chaotic sym-
metric attractors of different complexities coexist when
f � 7.7 and f � 7.9. In addition, we found that, for
f � 7.9, the new parametric chemical system (1) displays
with three different initial conditions and chaotic be-
haviors of different topologies (see Figure 7).

We have afterward analyzed the influence of the pa-
rameter p on the bifurcation diagrams of the chemical re-
action system under consideration when ω≠Ω. .us, by
keeping constant the other parameters and taking
ω � (

�
5

√
− 1)/2 andΩ � 1, the obtained results are shown in

Figure 8. From this figure, we notice that the presence of the
parameter p provokes always a symmetry breaking. In
addition, the geometrical shape of attractors is modified, and
we note the disappearance of the symmetry restoring crisis
phenomenon. For p � 1.0 and p � 1.1, the bifurcation
structures have completely changed, as shown in Figure 9. In
addition, we clearly see through this figure that the am-
plitude of oscillations becomes important. In order to have
an idea about the new chemical system behavior as predicted
by these bifurcation diagrams, two phase portraits and its
corresponding Poincaré maps are plotted in Figure 10 for
two values of f. .rough this figure, we notice that the new
parametric chemical system (1) exhibits for these chosen
system parameters and chaotic behaviors which are con-
firmed by the Poincaré maps. When ω/Ω is rational, that is,
ω � 1 and Ω � 3, the new parametric chemical system (1)
displays bistability phenomenon, symmetric coexisting
attractors, and asymmetric coexisting attractors (see Fig-
ure 11)..e coexisting behaviors of asymmetric attractors of

different topologies are illustrated in Figure 12. We also
notice that, for f � 2.6, two chaotic symmetric attractors of
different complexities coexist with a period-1 orbit. More-
over, when f � 8.75, two asymmetric quasi-periodic orbits
coexist with a period-3 orbit of large oscillation amplitude.
We have also investigated, in this case of oscillation, the
effect of p on the bifurcation diagram of Figure 11 obtained
with initial conditions (0.5, 0.5). .e obtained numerical
results are shown in Figure 13. From this figure, we observe
that the new chemical system (1) exhibits various bifurca-
tions such as period-doubling and reverse period-doubling
bifurcations, period windows, period-m bubbles and reverse
period-m bubbles, antimonotonicity, intermittency, sym-
metry breaking, and symmetry restoring. In addition, pe-
riod-9 orbit route to chaos and period-m bubbles route to
chaos occur in the system. On the contrary, we also observe
merging of chaotic regions between the forward and reverse
period-doubling sequences.

When we use the external excitation frequency,Ω, as the
control parameter, with f � 1.8, p � 0.005, and
α0 � −0.0193, the new nonlinear chemical oscillator under
the study displays a period-3 route to chaos, period-1 route
to chaos, periodic windows, reverse period doubling, sym-
metry breaking and symmetry restoring, bistable chaotic
oscillations, and various coexisting behaviors of symmetric
and asymmetric attractors (see Figure 14). Figure 15 illus-
trates the different attractors predicted by bifurcation dia-
grams of Figure 14 for several different values ofΩ. .rough
this figure, we notice that our new chemical model presents
several bistable symmetric and asymmetric attractors of
different topologies and remarkable routes to chaos. We can
conclude that the new nonlinear parametric oscillator under
consideration displays a rich variety of dynamical behaviors
with unusual transitions to chaos.

3
2
1
0

-1
-2

0.4

0.2

0

-0.2

-0.4

X

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Ω

Ly
ap

un
ov

 ex
po

ne
nt

Figure 14: Bifurcation diagrams and its corresponding Lyapunov exponents vs. Ω with f � 1.8, α0 � −0.0193, and p � 0.005 .e other
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4. Conclusions

.is study deals with nonlinear dynamics of
Briggs–Rauscher reaction system modeled by a new non-
linear parametric oscillator. .eMelnikov method is used to
derive the condition of the appearance of horseshoe chaos in
a new nonlinear parametric chemical oscillator in the cases,
where Ω � ω and Ω≠ω. .e numerical simulations realized
confirm the obtained analytical predictions. On the contrary,
the complex dynamics of the new nonlinear parametric
chemical oscillator (1) is investigated numerically by using
the fourth-order Runge–Kutta algorithm. .e obtained
results show that the parametric parameter p also induces in
the new chemical parametric system and the symmetry
breaking phenomenon and removes the symmetry restoring
crisis phenomenon when p increases. Note that the new
nonlinear parametric chemical system presents bistability
phenomenon and coexisting behaviors of asymmetric
attractors in the case Ω � ω. Moreover, it is found that three
chaotic attractors of different topologies coexist for f � 7.9.
As ω/Ω is irrational, the geometrical shape of attractors has
completely changed. In addition, the symmetry restoring
crisis phenomenon disappears in the new chemical system
under the study. .e dynamical behavior of our new
chemical system becomes rich when ω/Ω is rational. In this

case, the coexisting behavior of symmetric and asymmetric
attractor appears in the system as well as the bistability
phenomenon. Furthermore, for f � 2.6 and f � 8.75,
multiple coexisting attractors take place in the system. As p
varies in this case of oscillation, the new chemical parametric
system (1) exhibits various bifurcations such as symmetry
breaking and symmetry restoring, period doubling and
reverse period doubling, period windows, intermittency,
period-m bubbles and reverse period-m bubbles, intermit-
tency, and antimonotonicity. In addition, period-9 orbit
route chaos and period-m bubbles transition to chaos occur
in the system as well as remerging chaotic band attractors.
When Ω is used as control parameter, the new nonlinear
chemical oscillator displays also various symmetric and
asymmetric bistable attractors. Moreover, symmetry
breaking, symmetry restoring, reverse period doubling,
period-3 orbit route to chaos, and period-1 motion leading
to chaos are obtained.

Appendix

A. Expression of Ki∈ 0,1,2,3{ }
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with
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