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In this contribution, we use the connection between stable polynomials and orthogonal polynomials on the real line to construct
sequences of Hurwitz polynomials that are robustly stable in terms of several uncertain parameters. (ese sequences are
constructed by using properties of orthogonal polynomials, such as the well-known three-term recurrence relation, as well as by
considering linear combinations of two orthogonal polynomials with consecutive degree. Some examples are presented.

1. Introduction and Background

1.1.Hurwitz Polynomials andRobust Stability. A polynomial
with real coefficients is called a Hurwitz polynomial if and
only if all of its roots have negative real part. (e study of
Hurwitz polynomials is motivated by the role they play in the
analysis of the stability of linear systems of the form

_y(t) � Ay(t), y ∈ Rn
, A ∈ Rn×n

, (1)

whereA is a fixedmatrix that represents some process and _y(t)

denotes the derivative of the vector y(t) componentwise. In
fact, it is very well-known that Hurwitz polynomials charac-
terize the stability of linear invariant-time continuous systems.
More precisely, such a linear system is asymptotically stable
(i.e., its solutions tend to zero as t⟶∞) if and only if the
characteristic polynomial det(A − xI), where I denotes the
identity n × n matrix, is a Hurwitz polynomial [1–3]. As a
consequence, many algebraic properties of Hurwitz (also called
stable) polynomials have been studied in the literature, in-
cluding many characterizations in order to determine whether
or not a given real polynomial is Hurwitz without computing
its roots explicitly. Among the most widely known criteria for
determining the stability of a given polynomial, we can

mention the Hurwitz–Routh test [4] and the stability test [5].
Other important characterizations are the Hermite–Biehler
theorem [6] and Markov’s parameters theorem [2]. (e latter
two characterizations play a central role in the relation between
Hurwitz polynomials and orthogonal polynomials, as it will be
discussed in the sequel.

On the other hand, in most of real-life applications, the
physical process represented by equation (1) has uncertainty.
(is uncertainty can be caused by the inherent nature of the
process under analysis, by the difficulty of taking precise
measurements on the variables of the process, or a com-
bination of both phenomena. As a consequence, it is useful
to introduce an uncertain parameter on the mathematical
representation of the linear system. In this situation, the
system is represented by

_y(t) � A(q)y(t), (2)

where q is a d− dimensional vector with d parameters de-
fined in some domain D ⊂ Rd, and the system is said to be
robustly stable if det(A(q) − xI) is a degree invariant
Hurwitz polynomial for every q ∈ D. Different types of
uncertainty are considered in the literature. For instance, the
uncertain structure defined by
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p(x, q) � qnx
n

+ qn− 1x
n− 1

+ . . . + q0, qi ∈ ai, bi􏼂 􏼃, ai < bi, i � 0, . . . , n, (3)

where q is a (n + 1)− dimensional vector in the rectangular
domain D � [a0, b0] × . . . × [an, bn] ∈ Rn+1, is referred to as
independent interval uncertainty. Here, the main tool is the
celebrated Kharitonov’s theorem [7] that establishes that the
robust stability of the whole family is equivalent to the
stability of just four polynomials, the so-called Kharitonov
polynomials. (e case where the coefficients of the char-
acteristic polynomial are linear combinations of the pa-
rameters qi is called affine linear uncertainty [5] and the
fundamental result to determine the robust stability is called
Edge’s theorem [8]. Polynomic uncertainty occurs when the
coefficients of the characteristic polynomial are multivariate
polynomials in the parameters qi. Finally, nonlinear un-
certainty structure is obtained when the coefficients of the
polynomial are more general nonlinear functions of the
parameters. It is worth mentioning that there are not general
theorems to determine the robust stability for polynomic
and nonlinear uncertainty, and therefore most of the ro-
bustness analysis is carried out by using numerical ap-
proaches [5, 9, 10].

1.2. Orthogonal Polynomials on the Real Line. Given a
positive Borel measure σ supported on some interval E ⊂ R,
an inner product on the linear space of polynomials can be
defined by

〈p, q〉σ � 􏽚
E
p(x)q(x)dσ(x). (4)

If E is unbounded, we require that the moments cn �

􏽒
E
xndσ(x) are finite for n≥ 0. (e Gram-Schmidt orthog-

onalization process guarantees the existence of a sequence of
real polynomials pn􏼈 􏼉n≥ 0 satisfying the orthogonality
conditions

〈pn, pm〉σ � cnδm,n, cn ≠ 0, n, m≥ 0, (5)

where δm,n is Kronecker’s delta. Such a sequence becomes
unique once a suitable normalization is chosen. In this
contribution, we will consider a monic sequence denoted by
Pn􏼈 􏼉n≥0. (e second kind polynomials Qn􏼈 􏼉n≥0 are defined by

Qn(x) � 􏽚
E

Pn(y) − Pn(x)

y − x
dσ(y), (6)

and play a central role in Padé approximation [11]. It is not
difficult to see that Qn is a polynomial of degree n − 1.

Orthogonal polynomials are a topic of study that dates
back to the late 17th century, although a general theory
started to flourish in the 18th century with the contributions
of Stieltjes [12], Markov [13], and Chebyshev [14], among
many others. Nowadays, it constitutes a very active area of
research due to their numerous applications in approxi-
mation theory [11], numerical integration [15], mathe-
matical physics [16], digital image processing [17, 18],
stochastic processes [19, 20], signal theory [21, 22], and

control theory [23], among many others. (ey have a
number of nice properties, including the following [24, 25]:

(1) For any n≥ 1, the roots of each Pn are real, simple,
and located in the interior of the convex hull of E.

(2) For any n≥ 1, the roots of Pn and Pn− 1 interlace. (at
is, between any two consecutive roots of Pn, there is
exactly one root of Pn− 1.

(3) For any n≥ 1, the roots of Pn and Qn interlace.

Notice that the first property above means that Pn will
have real, simple, and positive roots if E ⊂ R+. On the other
hand, Pn􏼈 􏼉n≥ 0 and Qn􏼈 􏼉n≥ 0 also satisfy the three-term re-
currence relations

Pn+1(x) � x − bn( 􏼁Pn(x) − anPn− 1(x), n≥ 0, (7)

Qn+1(x) � x − bn( 􏼁Qn(x) − anQn− 1(x), n≥ 1, (8)

with initial conditions P0 � 1, P− 1 � 0, Q0 � 0, Q(x) � 1,
where an􏼈 􏼉n≥ 0 and bn􏼈 􏼉n≥ 0 are a positive and a real sequence
of numbers, respectively. Notice that a0 is arbitrary and it is
usually defined as a0 � c0 � 􏽒

E
dσ(x). A converse result also

holds: any sequence Pn􏼈 􏼉n≥ 0 constructed by using equation
(7) with arbitrary sequences an􏼈 􏼉n≥ 0 (positive numbers) and
bn􏼈 􏼉n≥ 0 (real numbers) will be orthogonal with respect to
some positive measure σ supported onR. (is fact is known
as Favard’s theorem [24]. Moreover, it is possible to impose
conditions on the coefficients an and bn in order to guarantee
that the associated orthogonality measure is supported onR.
Namely, this will be the case if and only if bn > 0 for every
n≥ 0 and there exists a sequence gn􏼈 􏼉n≥ 0 satisfying 0<gn < 1
for n≥ 1, 0≤g0 < 1, and an/(bnbn− 1) � gn(1 − gn− 1) for n≥ 1.
Any pair of sequences an􏼈 􏼉n≥ 0, bn􏼈 􏼉n≥ 0 satisfying those
conditions are said to generate the chain sequence
an/(bnbn− 1)􏼈 􏼉n≥ 1. As a particular case, this occurs when
an􏼈 􏼉n≥ 0 and bn􏼈 􏼉n≥ 0 are chosen in such a way that

an/(bnbn− 1) � k for some fixed k satisfying 0< k≤ 1/4 (see
[24, 26]). Notice that in this case we have gn � 1/2 for every
n≥ 0.

1.3. Robust Stability via Orthogonality. (e relation between
Hurwitz polynomials and orthogonal polynomials has been
known in the literature for quite some time. (ey are both
closely related with the theory of continued fractions and the
moment problem, as pointed out in [2]. Also, in the early
nineties, Genin (see [27]) describes a relation between the
Euclid’s algorithm, the Routh–Hurwitz algorithm, and or-
thogonal polynomials and establishes that any Hurwitz poly-
nomial can be identified with a (finite) sequence of orthogonal
polynomials.(is relation has been recently analyzed withmore
detail in [28] (in the more general framework of matrix or-
thogonal polynomials) and [26]. Specifically, if f2n(x) � x2n +

a2n− 1x
2n− 1 + . . . + a1x + a0 is a (monic) polynomial of even

degree 2n and we consider the decomposition
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f2n(x) � h x
2

􏼐 􏼑 + xg x
2

􏼐 􏼑, (9)

then h is a polynomial of degree n and g is a polynomial of
degree at most n − 1. Indeed, they are the even and odd parts
of f2n. Hermite–Biehler theorem states that a polynomial
f(x) � h(x2) + xg(x2) is Hurwitz if and only if h and g

have negative, simple, and interlacing roots, with the
rightmost root being that of h, and h(0)g(0)> 0 [4]. In [26]
the authors show that, up to a change a variable and
multiplication by a constant, h is an orthogonal polynomial
with respect to some measure σ supported on R+, and g is
the associated second kind polynomial. More precisely, we
have

Pn(x) � (− 1)
n
h(− x), Qn(x) � (− 1)

n− 1
g(− x). (10)

A similar decomposition holds for odd degree Hurwitz
polynomials, but now the odd part has the form

βPn(x) − Qn(x) � (− 1)
n
g(− x), (11)

where β is the constant term that appears in the power
expansion of the rational function g(x)/h(x). It is important
to mention that the coefficients on this power expansion are
precisely the moments of the orthogonality measure σ. In
other words, to every Hurwitz polynomial f2n (or f2n+1), we
can associate a finite sequence of orthogonal polynomials
Pk􏼈 􏼉

n
k�0 and of course their corresponding second kind

polynomials Qk􏼈 􏼉
n
k�0. More importantly, as a straightforward

consequence of the Hermite–Biehler theorem, the following
converse result holds.

Theorem 1 (see [26]). Let σ be a positive measure supported
on R+ and denote by Pn􏼈 􏼉n≥0 and Qn􏼈 􏼉n≥ 0 its associated
(monic) orthogonal polynomials and second kind polyno-
mials, respectively. Define Gn(x) � Qn(x) + βnPn(x) with
βn > 0 such that the zeros of Pn and Gn are positive and
interlaced. 5en,

f2n+1(x) � (− 1)
n
xPn − x

2
􏼐 􏼑 +(− 1)

n
Gn − x

2
􏼐 􏼑, n≥ 0,

f2n(x) � (− 1)
n
Pn − x

2
􏼐 􏼑 +(− 1)

n− 1
xQn − x

2
􏼐 􏼑, n≥ 1,

(12)

are Hurwitz polynomials.

Notice that the construction of the odd degree Hurwitz
polynomial f2n+1 in (eorem 1 requires the choice of a
parameter βn in such a way that the roots of Pn and Gn

interlace. In Proposition 2.2 in [26], it was shown that it is
possible to choose βn � λ (independent of n) in such a way
that the roots of Pn andGn interlace for every n≥ 1. Indeed, it
suffices to take λ>M � limn⟶∞Qn(0)/Pn(0), provided
such a limit exists. On the other hand, if we fix m> 0 and
define M � Qm(0)/Pm(0), then Pk and Gk will have inter-
laced roots for all k � 1, . . . , m if λ>M.

Observe that the previous theorem implies that we can
construct a sequence of Hurwitz polynomials by using se-
quences Pn􏼈 􏼉n≥0 and Qn􏼈 􏼉n≥0, when the orthogonality measure
is supported on R+; i.e., the zeros of each Pn are simple and

positive. (is property was used in [29] to construct robustly
stable sequences of Hurwitz polynomials by using the Laguerre
and Jacobi classical orthogonality measures supported on R+

(see [25]).(emain idea was to introduce a parameter t on the
measure, in such a way that it remains positive. As a conse-
quence, the corresponding inner product, the associated or-
thogonal sequence, and the second kind polynomials will
depend on t. (at is, Pn(x, t)􏼈 􏼉n≥0 will be orthogonal for every
value of t, and thus the sequence fn(x, t)􏼈 􏼉n≥1 constructed by
using (eorem 1 will be Hurwitz for every value of t. In other
words, if we consider t as an uncertain parameter, the sequence
fn(x, t)􏼈 􏼉n≥1 will be robustly stable. It is worthmentioning that
robustly stable families constructed in such a way have been
already used in the design of a compensator that robustly
stabilizes an interval plant with uncertain time-delay (see [30])
and can also be used for applications in control design.

In this contribution, we propose two alternative ways to
construct robustly stable sequences of Hurwitz polynomials
by using other properties of orthogonal polynomials. (e
structure of the manuscript is as follows. In Section 2, we
introduce an uncertain parameter t on the coefficients of the
three-term recurrence relation and then use the Favard
theorem described in the previous subsection and (eorem
1 to construct a sequence of Hurwitz polynomials that is
robustly stable for every value of t within an specified range.
In Section 3, we generate robustly stable sequences by using
linear combinations of orthogonal polynomials. Some ex-
amples are presented in Section 4. Finally, some conclusions
and open problems are discussed in Section 5.

2. Stable Polynomials Generated by a
Recurrence Relation

In this section, we consider the recurrence relation

Pn+1(x, t) � x − bn(t)( 􏼁Pn(x, t) − an(t)Pn− 1(x, t), n≥ 0,

(13)

with initial conditions P− 1(x, t) � 0 and P0(x, t) � 1, and
an(t), bn(t) are functions of an uncertain parameter t. If
an(t)􏼈 􏼉n≥0, bn(t)􏼈 􏼉n≥0 generate a chain sequence for all t ∈ I,
where I is some interval, then Favard’s theorem guarantees
that the constructed monic sequence Pn(x, t)􏼈 􏼉n≥0 is or-
thogonal with respect to some positive measure σ supported
on R+. (us, the roots of each Pn(x, t) will be real, simple,
and positive for every value of t ∈ I. Clearly, the associated
second kind polynomials Qn(x, t)􏼈 􏼉n≥0 will also
be t-dependent, and for each n≥ 2 the roots of Pn(x, t) and
Qn(x, t) will satisfy an interlacing property for every value of
t ∈ I. As a consequence, we can use(eorem 1 to construct a
sequence of polynomials fn(x, t)􏼈 􏼉n≥1 that will be stable for
every value of t ∈ I.

Let us start with a simple example. For n≥ 0, consider
an(t) � t and

bn(α, t) �
t if n is odd,

α if n is even,
􏼨 for n≥ 0, (14)

where t ∈ I with I � (0,∞) and α≥ 4. It is easy to check that
an(t)􏼈 􏼉n≥0 and bn(α, t)􏼈 􏼉n≥0 satisfy

Complexity 3



0<
an(t)

bn− 1(α, t)bn(α, t)
⩽
1
4
, n≥ 1. (15)

As pointed out in the previous section, they constitute a
chain sequence. Notice that we have introduced two

variables t and α that can be considered as uncertain pa-
rameters. From our previous discussion, the sequence
Pn(x, α, t)􏼈 􏼉n≥ 0 defined by

Pn+1(x, α, t) � x − bn(α, t)( 􏼁Pn(x, α, t) − an(t)Pn− 1(x, α, t), n≥ 0, (16)

with P− 1(x, α, t) � 0, P0(x, α, t) � 1, is an orthogonal se-
quence for all t> 0 and all α≥ 4. Moreover, we can obtain the
following closed expressions for these polynomials.

Proposition 1. Let an(t)􏼈 􏼉n≥ 0 and bn(t)􏼈 􏼉n≥ 0 be defined as
before. For n≥ 1, t> 0, and α≥ 4, we have

P2n(x, α, t) � 􏽘
n

j�0
(− 1)

j 2n − j

2(n − j)
􏼠 􏼡t

j
(x − t)

n− j
(x − α)

n− j
, (17)

P2n− 1(x, α, t) � 􏽘
n− 1

j�0
(− 1)

j 2n − 1 − j

2(n − j) − 1
􏼠 􏼡t

j
(x − t)

n− j
(x − α)

n− 1− j
. (18)

Proof. We proceed by induction on n. Since we clearly have
P1(x, α, t) � (x − t) and P2(x, α, t) � (x − t)(x − α) − t,
assuming equations (17) and (18) hold for n≥ 1, we will

prove both of them for n + 1. Taking into account the
properties of the binomial coefficients and equation (16),
with yt � x − t and yα � x − α, we obtain

P2n+1(x, α, t) � ytP2n(x, α, t) − tP2n− 1(x, α, t),

� y
n+1
t y

n
α + 􏽘

n

j�1
(− 1)

j
2n − j

2(n − j)
􏼠 􏼡t

j
y

n− j+1
t y

n− j
α

+ 􏽘

n

j�1
(− 1)

j
2n − j

2(n − j) + 1
􏼠 􏼡t

j
y

n− j+1
t y

n− j
α ,

�
2n + 1

2n + 1
􏼠 􏼡y

n+1
t y

n
α + 􏽘

n

j�1
(− 1)

j
2n + 1 − j

2(n − j) + 1
􏼠 􏼡t

j
y

n− j+1
t y

n− j
α ,

� 􏽘
n

j�0
(− 1)

j
2(n + 1) − 1 − j

2(n + 1 − j) − 1
􏼠 􏼡t

j
y

n+1− j
t y

n− j
α ,

(19)

and equation (17) is proved. In a similar way, we get

P2n+2(x, α, t) � yαP2n+1(x, α, t) − tP2n(x, α, t),

� y
n+1
t y

n+1
α + 􏽘

n

j�1
(− 1)

j
2n + 1 − j

2(n + 1 − j) − 1
􏼠 􏼡t

j
y

n+1− j
t y

n+1− j
α

+ 􏽘

n+1

j�1
(− 1)

j
2n + 1 − j

2(n + 1 − j)
􏼠 􏼡t

j
y

n+1− j
t y

n+1− j
α ,

� y
n+1
t y

n+1
α + 􏽘

n

j�1
(− 1)

j
2n + 2 − j

2(n + 1 − j)
􏼠 􏼡t

j
y

n+1− j
t y

n+1− j
α

+(− 1)
n+1

t
n+1

,

(20)
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which yields equation (18) when n is replaced by n + 1.
Of course, we can obtain similar expressions for the

second kind polynomial Qn(x, α, t), since they satisfy the
same recurrence relation, with different initial conditions.

We state the following result without proof, since it is very
similar to the proof of the previous proposition. □

Proposition 2. For n≥ 1, t> 0, and α≥ 4,

Q2n+1(x, α, t) � 􏽘
n

j�0
(− 1)

j
2n − j

2(n − j)
􏼠 􏼡t

j
(x − α)

n− j
(x − t)

n− j
,

Q2n(x, α, t) � 􏽘
n− 1

j�0
(− 1)

j
2n − 1 − j

2(n − j) − 1
􏼠 􏼡t

j
(x − α)

n− j
(x − t)

n− 1− j
,

(21)

with Q1(x, α, t) � 1.

Several observations are in order. First, notice that if we
consider t and α as uncertain parameters, the structure of the
coefficients in Pn(x, α, t) and Qn(x, α, t) indicates that the
Hurwitz polynomial constructed via (eorem 1 will have
polynomic uncertainty. Second, observe that we can in-
troduce some generality in the previous example. In fact, we
can replace t by a more general continuous function g(t)

such that g(t) > 0 for every t ∈ I. For instance, we can
consider the case when an(t) � g2(t) and bn(α, t) � αg(t)

with α≥ 2. It is easily seen that an(t)􏼈 􏼉n≥0 and bn(α, t)􏼈 􏼉n≥0
satisfy equation (15) and, as a consequence, they generate a
chain sequence. (us, again by using equation (16), we can
construct a sequence of orthogonal polynomials that depend
on t and α. As before, we can get explicit expressions for their
coefficients.

Proposition 3. For n≥ 0, let an(t) � g2(t) and
bn(α, t) � αg(t), where g is a continuous and positive
function for all t ∈ I, and α≥ 2. 5en,

P2n− 1(x, α, t) � 􏽘
n− 1

j�0
(− 1)

j
2n − 1 − j

2(n − j) − 1
􏼠 􏼡g

2j
(t)(x − αg(t))

2(n− j)− 1
, (22)

P2n(x, α, t) � 􏽘
n

j�0
(− 1)

j 2n − j2(n − j)( 􏼁g
2j

(t)(x − αg(t))
2(n− j)

. (23)

Proof. (e case n � 0 is trivial. (e proof is by induction on
n≥ 1. Again, writing yα,t � x − αg(t) and using equation
(16), we obtain

P2n+1(x, α, t) � yα,tP2n(x, α, t) − g
2
(t)P2n− 1(x, α, t),

� y
2n+1
α,t + 􏽘

n

j�1
(− 1)

j
2n − j

2(n − j)
􏼠 􏼡g

2j
(t)y

2(n− j)+1
α,t

+ 􏽘
n

j�1
(− 1)

j− 1 2n − j

2(n − j) + 1
􏼠 􏼡g

2j
(t)y

2(n− j)+1
α,t ,

�
2n + 1

2n + 1
􏼠 􏼡y

2n+1
α,t + 􏽘

n

j�1
(− 1)

j
2n + 1 − j

2(n − j) + 1
􏼠 􏼡g

2j
(t)y

2(n− j)+1
α,t ,

� 􏽘
n

j�0
(− 1)

j
2(n + 1) − 1 − j

2(n + 1 − j) − 1
􏼠 􏼡g

2j
(t)y

2(n− j)+1
α.t ,

(24)

which is equation (22) when n is replaced by n + 1. Equation
(23) can be obtained in a similar way.

Moreover, since an(t)􏼈 􏼉n≥0 and bn(α, t)􏼈 􏼉n≥0 are constant
sequences, if α, t are fixed, and both the orthogonal and the
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second kind polynomials satisfy the same recurrence rela-
tion (with different initial conditions), it follows that
Qn(x, α, t) � Pn− 1(x, α, t) for every n≥ 1. Hence, it is con-
venient to expand equations (22) and (23) in terms of x. □

Proposition 4. For n≥ 0, let an(t) � g2(t), bn(α, t) � αg(t),
where g is a continuous and positive function for all t ∈ I, and
α≥ 2. 5en,

P2n(x, α, t) � 􏽘
n

k�0
􏽘

n+1− k

j�1
cn,k+j− 1

2(k + j − 1)

2k
􏼠 􏼡(− αg(t))

2(j− 1)⎛⎝ ⎞⎠x
2k

+ 􏽘
n− 1

k�0
􏽘

n− k

j�1
cn,k+j

2(k + j)

2k + 1
􏼠 􏼡(− αg(t))

2j− 1⎛⎝ ⎞⎠x
2k+1

,

P2n+1(x, α, t) � 􏽘
n

k�0
􏽘

n+1− k

j�1
dn,k+j− 1

2(k + j) − 1

2k
􏼠 􏼡(− αg(t))

2j− 1⎛⎝ ⎞⎠x
2k

+ 􏽘

n

k�0
􏽘

n− k

j�1
dn,k+j

2(k + j) + 1

2k + 1
􏼠 􏼡(− αg(t))

2j⎛⎝ ⎞⎠x
2k+1

,

(25)

where cn,k � (− 1)n+k n + k

2k
􏼠 􏼡g2(n− k)(t) and dn,k � (− 1)n+k

n + 1 + k

2k + 1􏼠 􏼡g2(n− k)(t).

Proof. (e result follows easily by using the binomial ex-
pansion theorem on equations (22) and (23).

As a consequence, for this particular choice of an(t) and
bn(α, t), using(eorem 1 and the subsequent discussion, we
can state the following result. □

Proposition 5. Let Pn(x, α, t)􏼈 􏼉n≥ 0 be the sequence of or-
thogonal polynomials as in Proposition 4. For n≥ 0, t> 0, and
α≥ 2,

f2n(x, α, t) � (− 1)
n
Pn − x

2
, α, t􏼐 􏼑 +(− 1)

n− 1
xPn− 1 − x

2
, α, t􏼐 􏼑. (26)

is a stable polynomial of degree 2n, where P− 1(x, α, t) � 0.
On the other hand, fix n and choose M such that
Pn− 1(0, α, t)/Pn(0, α, t)<M for t> 0 and α≥ 2. 5en,

f2k+1(x, α, t) � (− 1)
k
xPk − x

2
, α, t􏼐 􏼑 +(− 1)

k
Gk − x

2
, α, t􏼐 􏼑.

(27)

is a stable polynomial with degree 2k + 1 for all k � 1, . . . , n.
Here, Gk(x, α, t) � λPk(x, α, t) + Pk− 1(x, α, t) with λ>M,
where the coefficients of the even and odd powers of x in
fn(x, α, t) are given in Proposition 4.

We point out that since the only conditions on the
function g in Proposition 3 are positivity and continuity, the
procedure to construct sequences of stable Hurwitz poly-
nomials allows us to obtain different types of uncertainty. As
an example, we can set g(t) � sin(t) for t ∈ I � (0, π) and
the obtained uncertainty structure will be nonlinear. Finally,
it is also important to notice that there are many different
choices for an(t)􏼈 􏼉n≥0 and bn(t)􏼈 􏼉n≥0. (e only condition is
that they generate a chain sequence, as pointed out in the
previous section. In the general case, given both sequences,

Pn(x, t)􏼈 􏼉n≥0 and Qn(x, t)􏼈 􏼉n≥0 can be computed by using
equations (7) and (8), respectively, and the robustly stable
Hurwitz polynomials can be obtained by using (eorem 1.
Nevertheless, if both sequences are chosen in a simple way,
as the cases considered in this section, then it is possible to
get explicit expressions for the polynomials.

3. Stable Polynomials Associated with Linear
Combinations of Orthogonal Polynomials

(eparticular choice of the constant sequences an(t)􏼈 􏼉n≥0 and
bn(α, t)􏼈 􏼉n≥0 in the previous section led to the situation where

Qn � Pn− 1, and thus in the construction of robustly stable
polynomials given in Proposition 5 a linear combination ofPn

and Pn− 1 appears in the polynomial Gn used for the odd
degree polynomials. In this section, we further explore the
idea of using linear combinations of orthogonal polynomials
to construct robustly stable sequences of Hurwitz polyno-
mials. Recall that if Pn􏼈 􏼉n≥0 is a sequence of orthogonal
polynomials, then the roots of Pn and Pn− 1 are real, simple,
and interlaced. (e following result establishes an interlacing
property for linear combinations of orthogonal polynomials.

Theorem 2. (see [31]). For n≥ 1 and λ1, λ2 ∈ R and both not
zero, λ1Pn(x) + λ2Pn− 1(x) has real and simple roots.
Moreover, if μ1, μ2 ∈ R, then λ1Pn(x) + λ2Pn− 1(x) and
μ1Pn(x) + μ2Pn− 1(x) have no common roots and their roots
satisfy an interlacing property, unless one combination is a
scalar multiple of the other.

Set

Fn x; λ1, λ2( 􏼁 � λ1Pn(x) + λ2Pn− 1(x),

Gn x; μ1, μ2( 􏼁 � μ1Pn(x) + μ2Pn− 1(x).
(28)

λ1, λ2, μ1, μ2 ∈ R such that λ1μ2 − μ1λ2 ≠ 0. (en,
according to the previous theorem, the roots of Fn(x; λ1, λ2)
and Gn(x; μ1, μ2) are real, simple, and interlaced. As a
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consequence, we can use the Hermite–Biehler theorem to
construct Hurwitz polynomials as in (eorem 1. Namely,

f2n+1(x) � (− 1)
n
xFn − x

2
; λ1, λ2􏼐 􏼑 +(− 1)

n
Gn − x

2
; μ1, μ2􏼐 􏼑

(29)

will be a Hurwitz polynomial of degree 2n + 1 if the choice of
the four parameters λ1, λ2, μ1, μ2 ∈ R guarantees the inter-
lacing of the roots of Fn and Gn and the largest root of Fn is
greater than the largest root of Gn. Notice that the latter
condition implies we must have λ1 ≠ 0 and μ1 ≠ 0. A similar
approach can be taken to construct Hurwitz polynomials of
even degree, but it will be necessary to set μ1 � 0 so that Gn is
a polynomial of degree n − 1, and to write

f2n(x) � (− 1)
n
Fn − x

2
; λ1, λ2􏼐 􏼑 +(− 1)

n
xGn − x

2
; 0, μ2􏼐 􏼑,

(30)

where we again have the requirement λ1 ≠ 0 (which implies
μ2 ≠ 0 so that λ1μ2 − μ1λ2 ≠ 0). Observe that we can consider
λ1, λ2, μ1, μ2 ∈ R as uncertain parameters, and by deducing

appropriate ranges of values for each one of them such that
the interlacing property of the roots of Fn and Gn is satisfied,
the Hermite–Biehler theorem guarantees that the con-
structed polynomials will be robustly stable for all values of
the parameters within an specified range. In this sense, we
will determine such conditions on the four parameters.
Observe that the even and odd degree cases are independent
and thus will be analyzed separately. We begin with the even
degree case. Recall that the sign function is denoted by

sgn[x] �

1 if x> 0,

0 if x � 0,

− 1 if x< 0.

⎧⎪⎪⎨

⎪⎪⎩
(31)

Proposition 6. Let Pn(x)􏼈 􏼉n≥ 0 be a sequence of monic
polynomials orthogonal with respect to some positive measure
supported in some interval E ⊂ R+, and let Fn(x; λ1, λ2) and
Gn(x; 0, μ2) (i.e. μ1 � 0) be defined as above. 5en, for n≥ 1,

f2n(x) � (− 1)
nsgn λ1􏼂 􏼃Fn − x

2
; λ1, λ2􏼐 􏼑 +(− 1)

n− 1sgn μ2􏼂 􏼃xGn − x
2
; 0, μ2􏼐 􏼑. (32)

is a Hurwitz polynomial of degree 2n for every λ1 ≠ 0, μ2 ≠ 0,
and λ2 ∈ R such that

λ2 < −
λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

sgn λ1􏼂 􏼃

Pn(0)

Pn− 1(0)
. (33)

Proof. Since λ1, μ2 are nonzero and n≥ 1,
sgn[λ1]Fn(x; λ1, 0) � |λ1|Pn(x) and Pn− 1(x) have positive,
simple, and interlacing zeros, and thus their coefficients have
alternating signs. Hence, both (− 1)n− 1|μ2|Pn− 1(− x) and

(− 1)
n λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Pn(− x) +(− 1)
nsgn λ1􏼂 􏼃λ2Pn− 1(− x), (34)

have negative, simple, and interlacing zeros and positive
coefficients, provided that λ2 satisfies
sgn[λ1]λ2 < − |λ1|Pn(0)/Pn− 1(0). (e result follows from the
Hermite–Biehler theorem.

Now we consider the odd degree case. Recall that in this
situation we must have λ1 ≠ 0 and μ1 ≠ 0. Given n≥ 1, let us
denote by x

λ1 ,λ2
n,1 < . . . < x

λ1 ,λ2
n,n and y

μ1 ,μ2
n,1 < . . . <y

μ1 ,μ2
n,n the

roots of Fn(x; λ1, λ2) and Gn(x; μ1, μ2), respectively, in in-
creasing order.

Assume first λ2 � 0. As stated in Section 1, if the or-
thogonality measure is supported in E ⊂ R+, then the roots
of Fn(x; λ1, 0) � λ1Pn(x) belong to the interior of the convex
hull of E and interlace with the roots of Gn(x; μ1, μ2) when
λ1μ2 ≠ 0, from (eorem 2. Hence, our next goal is to de-
termine when the largest root of Fn(x; λ1, 0) is greater than
the largest root of Gn(x; μ1, μ2) in terms of the parameters
λ1, μ1, μ2, ∈ R. Furthermore, in this situation the roots of
Fn(x; λ1, 0) also interlace with the roots of Pn− 1, and
therefore sgn[Pn− 1(x

λ1 ,0
n,n ) � 1]. (us, for all μ1, μ2 ∈ R,

sgn Gn x
λ1 ,0
n,n ; μ1, μ2􏼐 􏼑􏽨 􏽩 � sgn μ2􏼂 􏼃sgn Pn− 1 x

λ1 ,0
n,n􏼐 􏼑􏽨 􏽩 � sgn μ2􏼂 􏼃.

(35)

As a consequence, for λ1μ2 ≠ 0, we get the following.

(1) If λ2 � 0, μ1 > 0 then

sgn μ2􏼂 􏼃y
μ1 ,μ2
n,k < sgn μ2􏼂 􏼃x

λ1 ,0
n,k . (36)

(2) If λ2 � 0, μ1 < 0 then

sgn μ2􏼂 􏼃x
λ1 ,0
n,k < sgn μ2􏼂 􏼃y

μ1 ,μ2
n,k . (37)

We now turn to the case λ2 ≠ 0. Notice that the
continuity of the determinant λ1μ2 − μ1λ2 ≠ 0 to-
gether with (eorem 2 implies that equations (36)
and (37) still hold when λ2 ≠ 0, as long as the de-
terminant is nonzero. (us, we consider the fol-
lowing four cases:

(3) If λ2 > 0 and μ1 > 0, then

sgn
μ1λ2
λ1

− μ2􏼢 􏼣x
λ1 ,λ2
n,k < sgn

μ1λ2
λ1

− μ2􏼢 􏼣y
μ1 ,μ2
n,k . (38)

(4) If λ2 > 0 and μ1 < 0, then

sgn
μ1λ2
λ1

− μ2􏼢 􏼣y
μ1 ,μ2
n,k < sgn

μ1λ2
λ1

− μ2􏼢 􏼣x
λ1 ,λ2
n,k . (39)

(5) If λ2 < 0 and μ1 > 0, then

sgn
μ1λ2
λ1

− μ2􏼢 􏼣x
λ1 ,λ2
n,k < sgn

μ1λ2
λ1

− μ2􏼢 􏼣y
μ1 ,μ2
n,k . (40)

(6) If λ2 < 0 and μ1 < 0, then
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sgn
μ1λ2
λ1

− μ2􏼢 􏼣y
μ1 ,μ2
n,k < sgn

μ1λ2
λ1

− μ2􏼢 􏼣x
λ1 ,λ2
n,k . (41)

Clearly, equations (36), (38), and (40) (resp. equations
(37), (39), and (41)) imply that the inequality for the case
μ1 > 0 (resp. μ1 < 0) is independent of value of λ2. As a
consequence, we can now proceed with the construction of
sequences of Hurwitz polynomials, by using the Hermi-
te–Biehler theorem and the interlacing property of the zeros
of Fn(x; λ1, λ2) and Gn(x; μ1, μ2). Recall that, for the odd
degree case, the construction of a Hurwitz polynomial de-
pends of the relative position of the zeros of Fn(x; λ1, λ2) and
Gn(x; μ1, μ2) and therefore of the values of parameters
λ1, λ2, μ2, μ1. □

Proposition 7. Let Pn(x)􏼈 􏼉n≥ 0 be a sequence of monic
polynomials orthogonal with respect to some positive measure
supported in some interval E ⊂ R+, and let Fn(x; λ1, λ2) and
Gn(x; μ1, μ2) be defined as above, with λ1 ≠ 0 and μ1 ≠ 0.
5en, for n≥ 1,

(i) if μ1 > 0 and λ2 ∈ R such that
sgn[λ1]λ2 < − |λ1|Pn(0)/Pn− 1(0), then

(− 1)
nsgn λ1􏼂 􏼃xFn − x

2
; λ1, λ2􏼐 􏼑 +(− 1)

n
Gn − x

2
; μ1, μ2􏼐 􏼑.

(42)

is a Hurwitz polynomial of degree 2n + 1 if and only if

μ1λ2
λ1
< μ2 < − μ1

Pn(0)

Pn− 1(0)
. (43)

Also,

(− 1)
n
xGn − x

2
; μ1, μ2􏼐 􏼑 +(− 1)

nsgn λ1􏼂 􏼃Fn − x
2
; λ1, λ2􏼐 􏼑.

(44)

is a Hurwitz polynomial of degree 2n + 1 if and only if

μ2 <min
μ1λ2
λ1

, − μ1
Pn(0)

Pn− 1(0)
􏼨 􏼩. (45)

(ii) if μ1 < 0 and λ2 ∈ R such that
sgn[λ1]λ2 < − |λ1|Pn(0)/Pn− 1(0), then

(− 1)
nsgn λ1􏼂 􏼃xFn − x

2
; λ1, λ2􏼐 􏼑 +(− 1)

nsgn μ1􏼂 􏼃Gn − x
2
; μ1, μ2􏼐 􏼑. (46)

is a Hurwitz polynomial of degree 2n + 1 if and only if

− μ1
Pn(0)

Pn− 1(0)
< μ2 <

μ1λ2
λ1

. (47)

Also,

(− 1)
nsgn μ1􏼂 􏼃xGn − x

2
; μ1, μ2􏼐 􏼑 +(− 1)

nsgn λ1􏼂 􏼃Fn − x
2
; λ1, λ2􏼐 􏼑. (48)

is a Hurwitz polynomial of degree 2n + 1 if and only if

μ2 >max
μ1λ2
λ1

, − μ1
Pn(0)

Pn− 1(0)
􏼨 􏼩. (49)

Proof. Assume μ1 > 0.(e proof is based on the observation
that both (− 1)nsgn[λ1]Fn(− x; λ1, λ2) and (− 1)nGn

(− x; μ1, μ2) have negative, simple, and interlacing zeros, and
thus their coefficients are positive if and only if
sgn[λ1]λ2 < − |λ1|Pn(0)/Pn− 1(0) and μ1λ2/λ1 ≠ μ2 < −

μ1Pn(0)/Pn− 1(0), respectively. Indeed, if it were true that
sgn[λ1]λ2 < − |λ1|Pn(0)/Pn− 1(0) and μ2 � − μ1Pn(0)/Pn− 1
(0), we would have Fn(0; λ1, λ2) � 0 and Gn(0; μ1, μ2) � 0.
Moreover, the fact that both Fn(x; λ1, λ2) and Gn(x; μ1, μ2)
have the same roots follows from(eorem 2 if μ2 � μ1λ2/λ1.
(erefore, since E ⊂ R+, we conclude that 0<y

μ1 ,μ2
n,k <x

λ1 ,λ2
n,k

(resp. 0< x
λ1 ,λ2
n,k <y

μ1 ,μ2
n,k ) for all k � 1, . . . , n if μ1λ2/λ1 < μ2

(resp. μ2 < μ1λ2/λ1). Hence i) follows from the Hermi-
te–Biehler theorem. A similar argument can be applied to
the case when μ1 < 0. □

4. Numerical Examples

In this sectionwe provide some numerical examples, computed
using Mathematica ®, to illustrate the behavior of the roots of
stable polynomials generated by the three-term relation
equation (13) and stable polynomials associated with linear
combinations of orthogonal polynomials. More specifically, we
will plot the location of the roots of some polynomials given by
Propositions 5 and 7 for some values of the parameters.

First, consider the case when g(t) � t1/2, t ∈ (0,∞), and
α≥ 2 in Proposition 5. (en, the first even degree polyno-
mials are
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f2(x, α, t) � x
2

+ x + αt
1/2

,

f4(x, α, t) � x
4

+ x
3

+ 2αt
1/2

x
2

+ αt
1/2

x + α2 − 1􏼐 􏼑t
1/2

,

f6(x, α, t) � x
6

+ x
5

+ 3αt
1/2

x
4

+ 2αt
1/2

x
3

+ 3α2 − 2􏼐 􏼑tx
2

+ α2 − 1􏼐 􏼑tx + α α2 − 2􏼐 􏼑t
3/2

.

(50)

And we obtain polynomic uncertainty in the parameter
q1 � α and nonlinear uncertainty in the parameter q2 � t.

Example 1. For our first example, Figure 1 illustrates the
motion of the roots of f4(x, α, t) when α � 2 and t varies
from 0.1 to 90 with a step size of 0.1 (panel (a)) and when
α � 8 and t varies from 0.1 to 200 with a step size of 0.5
(panel (b)). For both cases, notice that the real part of all the

complex roots tends approximately to − 1/4 when t⟶ 90
and t⟶ 200, respectively.

Example 2. Proceeding in a similar way, Figure 2 shows the
location of the roots of f6(x, α, t) when α � 2 and t varies
from 0.1 to 500 with a step size of 0.1 (panel (a)) and when
α � 4 and t varies from 0.1 to 1000 with a step size of 0.2
(panel (b)). Analogously, the real part of each pair of

6

4

2

–2

–4

–6

–0.4 –0.3 –0.2 –0.1

(a)

–0.4 –0.3 –0.2 –0.1

–10

–5

5

10

(b)

Figure 1: (a) (e location of the roots of f4(x, 2, t) for several values of t. (b) (e location of the roots of f4(x, 8, t) for several values of t.

5

–5

–0.35 –0.30 –0.25 –0.20 –0.15 –0.10 –0.05

(a)

–0.4 –0.3 –0.2 –0.1

–10

–5

5

10

(b)

Figure 2: (a) Location of the roots of f6(x, 2, t) for several values of t. (b) Location of the roots of f6(x, 4, t) for several values of t.
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conjugate complex roots tends to two distinct negative
numbers when t⟶ 500 and t⟶ 1000, which approxi-
mately are − 1/4 and − 1/8, respectively.

Example 3. In Figure 3 we present a comparison between
the evolution of the roots of f4(x, α, t) and f6(x, α, t) with
respect to α (with t fixed). (e panel (a) corresponds to the
case when t � 1 and α varies from 2 to 200 with a step size of
2, while the graphic on the right corresponds to the case
when t � 0.1 and α varies from 2 to 200 with a step size of
0.5. In both cases, notice that the real part of all the complex
roots approximately tends to − 1/2 or zero when α⟶ 200.

On the other hand, to construct stable polynomials of
degrees 3 and 5, we must compute − Pn− 1(0, α, t)/Pn(0, α, t)

when n � 2. In Proposition 5, take g(t) � t, t ∈ (0,∞), and
α≥ 2. Since P1(x, α, t) � x − αt and P2(x, α, t) �

x2 − 2αtx + (α2 − 1)t2, the corresponding polynomials are

f1(x, α, t) � x + λ

f3(x, α, t) � x
3

+ λx
2

+ αtx + λαt − 1,

f5(x, α, t) � x
5

+ λx
4

+ 2αtx
3

+(2λαt − 1)x
2

+ α2 − 1􏼐 􏼑t
2
x + α2 − 1􏼐 􏼑λt

2
− αt,

(51)

where λ> α(α2 − 1)− 1t− 1.

Example 4. We choose λ � λ(α, t) � 0.5 + α(α2 − 1)− 1t− 1;
then panel (a) in Figure 4 illustrates the location of the roots of

–0.5 –0.4 –0.3 –0.2 –0.1

–15

–10

–5

5

10

15

(a)

–0.5 –0.4 –0.3 –0.2 –0.1

–5

5

(b)

Figure 3: (a) (e location of the roots of f4(x, α, 1) for several values of α. (b) (e location of the roots of f6(x, α, 0.1) for several values of α.
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2
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Figure 4: Motion of the complex roots of two stable polynomials of degrees three (a) and five (b) constructed via Proposition 5 for several
values of t.
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f3(x, 6, t) when t varies from0.1 to 5with a step size of 0.05 and
panel (b) in Figure 4 shows the motion of the roots of
f5(x, 2.2, t) when t varies from 0.4 to 7 with a step size of 0.2.
For both cases, the single real root tends to limt⟶∞ − λ(α, t) �

− 0.5 and the real part of all the complex roots tends approx-
imately to 0 when t⟶ 5 and t⟶ 7, respectively.

Finally, we now show an example of robustly stable
polynomials constructed by using linear combinations of
Laguerre polynomials, which are orthogonal with respect to the
measure xαe− x with support inR+ and defined for α> − 1. In
particular, the first Laguerre monic polynomials are

L
α
1(x) � x − (α + 1),

L
α
2(x) � x

2
− 2(α + 2)x + α2 + 3α + 2,

L
α
3(x) � x

3
− 3(α + 3)x

2
+ 3 α2 + 5α + 6􏼐 􏼑x − α3

+ 6α2 + 11α + 6.

(52)

Example 5. Taking into account these polynomials, Figure 5
illustrates the motion of the roots of a stable polynomial of
degree 3 constructed with α � 2, λ1 � 1, λ2 � 0.7, and μ1 �

0.5 (panel (a)). According to Proposition 7, μ2 can vary from
− 2.95 to 0.05, and the roots are plotted using a step size of
0.3. Similarly, panel (b) in Figure 5 corresponds to the case
when α � 1/2, λ1 � 1, λ2 � − 0.5, μ1 � − 0.4, and μ2 varies
from − 0.925 to 0.125 with a step size of 0.15.

5. Discussion and Further Comments

We have used algebraic properties of orthogonal polyno-
mials to construct families of Hurwitz polynomials that are
robustly stable in terms of a set of parameters. First, we use
Favard’s theorem to introduce t and α as parameters in the
coefficients of the recurrence relation, which are now
continuous functions of those parameters. Notice that there
is a great deal of generality on the choice of an(t) and

bn(α, t). Indeed, the only requirement is that they generate a
chain sequence, as mentioned in Section 2. Of course, one
can introduce an arbitrary set of parameters, say
an(t1, . . . , tk), bn(􏽥t1, . . . ,􏽥tl), as long as the corresponding
sequences generate a chain sequence for all values of all
parameters within a specified range.

On the other hand, we have also shown that the Her-
mite–Biehler theorem can be used to construct Hurwitz
polynomials from linear combinations of two consecutive
degree orthogonal polynomials, whose roots satisfy an
interlacing property. Here, four real parameters are consid-
ered and Hurwitz polynomials of even and odd degree can be
constructed if the parameters satisfy some inequalities.

As a consequence of the results presented here, together
with those of the recent contribution [29], it is possible to use
orthogonal polynomials to construct sequences of robustly
stable Hurwitz polynomials in three different ways: by in-
troducing an uncertain parameter on the orthogonality
measure, by introducing uncertain parameters on the three-
term recurrence relation, and by using linear combinations
of orthogonal polynomials. (e results of this work can be
extended in the following directions:

(1) It is possible to use Hurwitz polynomials constructed
by using orthogonal polynomials in pole-placement
design: to develop a controller that yields a closed-
loop system with a prescribed characteristic poly-
nomial [32, 33]. In this situation, an interesting open
problem is to analyze the capabilities of the resulting
system, such as closed-loop frequency response,
disturbance rejection, and sensitivity [34]. It is worth
noticing that properties of orthogonal polynomials
have been used recently to propose a stabilization
method for interval plants with uncertain time-delay
by using the set value concept [30].

(2) Although the proposed Hurwitz polynomials are
robustly stable for the prescribed values of the
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Figure 5: Motion of the complex roots of a stable polynomial of degrees three (a) and five (b) constructed via Proposition 7 for several values of μ2.
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parameters, an interesting open problem is to deduce
the equations of motion of the roots in terms of the
parameters (i.e., their behavior in terms of the in-
volved parameters or, equivalently, the algebraic
expressions for the curves they describe on the
complex plane), as well as to determine the regions of
the complex plane where the roots will be located for
every value of the parameters. (is information
would be useful in the design of controllers in pole-
placement design previously mentioned.
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Proyectos de I+D para Jóvenes Investigadores de la Uni-
versidad de Alcalá 2021. (e work of the fifth author was
partially supported by Universidad Autónoma de Tam-
aulipas, under Grant PEI-PROINNOVA-2018-250117.

References

[1] J. C. Maxwell, “On governors,” Proceedings of the Royal Socity,
vol. 16, pp. 270–283, 1868.

[2] F. R. Gantmacher, 5e theory of matrices, Chelsea Publishing
Co., vol. 1, p. 2, New York, USA, 1959.

[3] P. Lancaster and M. Tismenetsky, “(e (eory of Matrices,”
Computer Science and Applied Mathematics, Academic Press,
Orlando, Florida, Second edition, 1985.

[4] O. Holtz, “Hermite-Biehler, Routh-Hurwitz, and total posi-
tivity,” Linear Algebra and Its Applications, vol. 372,
pp. 105–110, 2003.

[5] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust
Control: 5e Parametric Approach, Prentice-Hall, Upper
Saddle River, NJ, USA, 1995.

[6] C. Hermite, “Sur le nombre des racines d’une équation
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Matematika, vol. 19, no. 2, pp. 157–160, 1874.

[15] W. Gautschi, “Orthogonal polynomials: applications and
computation,” Acta Numerica, vol. 5, pp. 45–119, 1996.

[16] C. Chuan-Tsung, A. Mironov, A. Morozov, and A. Sleptsov,
“Orthogonal polynomials in mathematical physics,” Reviews
in Mathematical Physics, vol. 30, no. 6, pp. 119–182, 2018.

[17] R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by
Tchebichef moments,” IEEE Transactions on Image Processing,
vol. 10, no. 9, pp. 1357–1364, 2001.

[18] D. Rivero-Castillo, H. Pijeira, and P. Assunçao, “Edge detection
based on Krawtchouk polynomials,” Journal of Computational
and Applied Mathematics, vol. 284, pp. 244–250, 2015.

[19] W. Schoutens, “An application in stochastics of the Laguerre-
type polynomials,” Journal of Computational and Applied
Mathematics, vol. 133, no. 1-2, pp. 593–600, 2001.

[20] S. Lawi, “Hermite and Laguerre polynomials and matrix-
valued stochastic processes,” Electronic Communications in
Probability, vol. 13, pp. 67–84, 2008.

[21] H. Rauhut and R. Ward, “Sparse legendre expansions via ℓ1-
minimization,” Journal of Approximation 5eory, vol. 164,
no. 5, pp. 517–533, 2012.

[22] A. Sandryhaila, J. Kovacevic, and M. Puschel, “Algebraic
signal processing theory: 1-D nearest neighbor models,” IEEE
Transactions on Signal Processing, vol. 60, no. 5, pp. 2247–
2259, 2012.

[23] K. B. Datta and B. M. Mohan, “Orthogonal functions in
systems and control,” Advanced Series in Electrical and
Computer Engineering, World Scientific, vol. 9, Singapore, ,
1995.

[24] T. S. Chihara, An Introduction to Orthogonal Polynomials.
Mathematics and its Applications Series, Gordon & Breach,
New York, USA, 1978.
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